Supplementary for Provably Optimal Algorithms for Generalized Linear Contextual Bandits

A. Proof of Theorem 1

In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, V_{n} is denoted V and so on.
To prove normality-type results of the maximum likelihood estimator $\hat{\theta}$, typically we first show the $n^{-1 / 2}$-consistency of $\hat{\theta}$ to θ^{*}. Then, by using a second-order Taylor expansion or Newton-step, we can prove the desired normality of $\hat{\theta}$. More details can be found in standard textbooks such as Van der Vaart (2000).

Since m is twice differentiable with $\ddot{m} \geq 0$, the maximum-likelihood estimation can be written as the solution to the following equation

$$
\begin{equation*}
\sum_{i=1}^{n}\left(Y_{i}-\mu\left(X_{i}^{\prime} \theta\right)\right) X_{i}=0 . \tag{15}
\end{equation*}
$$

Define $G(\theta):=\sum_{i=1}^{n}\left(\mu\left(X_{i}^{\prime} \theta\right)-\mu\left(X_{i}^{\prime} \theta^{*}\right)\right) X_{i}$, and we have

$$
\begin{equation*}
G\left(\theta^{*}\right)=0 \text { and } G(\hat{\theta})=\sum_{i=1}^{n} \epsilon_{i} X_{i}, \tag{16}
\end{equation*}
$$

where the noise ϵ_{i} is defined in (1). For convenience, define $Z:=G(\hat{\theta})=\sum_{i=1}^{n} \epsilon_{i} X_{i}$.
Step 1: Consistency of $\hat{\theta}$. We first prove the consistency of $\hat{\theta}$. For any $\theta_{1}, \theta_{2} \in \mathbb{R}^{d}$, mean value theorem implies that there exists some $\bar{\theta}=v \theta_{1}+(1-v) \theta_{2}$ with $0<v<1$, such that

$$
\begin{equation*}
G\left(\theta_{1}\right)-G\left(\theta_{2}\right)=\left[\sum_{i=1}^{n} \dot{\mu}\left(X_{i}^{\prime} \bar{\theta}\right) X_{i} X_{i}^{\prime}\right]\left(\theta_{1}-\theta_{2}\right):=F(\bar{\theta})\left(\theta_{1}-\theta_{2}\right) \tag{17}
\end{equation*}
$$

Since $\dot{\mu}>0$ and $\lambda_{\text {min }}(V)>0$, we have

$$
\left(\theta_{1}-\theta_{2}\right)^{\prime}\left(G\left(\theta_{1}\right)-G\left(\theta_{2}\right)\right) \geq\left(\theta_{1}-\theta_{2}\right)^{\prime}(\kappa V)\left(\theta_{1}-\theta_{2}\right)>0
$$

for any $\theta_{1} \neq \theta_{2}$. Hence, $G(\theta)$ is an injection from \mathbb{R}^{d} to \mathbb{R}^{d}, and so G^{-1} is a well-defined function. Consequently, (15) has a unique solution $\hat{\theta}=G^{-1}(Z)$.
Let us consider an η-neighborhood of $\theta^{*}, \mathbb{B}_{\eta}:=\left\{\theta:\left\|\theta-\theta^{*}\right\| \leq \eta\right\}$, where $\eta>0$ is a constant that will be specified later. Note that \mathcal{B}_{η} is a convex set, thus $\bar{\theta} \in \mathcal{B}_{\eta}$ as long as $\theta_{1}, \theta_{2} \in \mathbb{B}_{\eta}$. Define $\kappa_{\eta}:=\inf _{\theta \in \mathbb{B}_{\eta}} \dot{\mu}\left(x^{\prime} \theta\right)>0$. From (17), for any $\theta \in \mathcal{B}_{\eta}$,

$$
\begin{aligned}
\|G(\theta)\|_{V^{-1}}^{2} & =\left\|G(\theta)-G\left(\theta^{*}\right)\right\|_{V^{-1}}^{2} \\
& =\left(\theta-\theta^{*}\right)^{\prime} F(\bar{\theta}) V^{-1} F(\bar{\theta})\left(\theta-\theta^{*}\right) \\
& \geq \kappa_{\eta}^{2} \lambda_{\min }(V)\left\|\theta-\theta^{*}\right\|^{2},
\end{aligned}
$$

where the last inequality is due to the fact that $F(\bar{\theta}) \succeq \kappa_{\eta} V$.
On the other hand, Lemma A of Chen et al. (1999) implies that

$$
\left\{\theta:\|G(\theta)\|_{V^{-1}} \leq \kappa_{\eta} \eta \sqrt{\lambda_{\min }(V)}\right\} \subset \mathcal{B}_{\eta} .
$$

Now it remains to upper bound $\|Z\|_{V^{-1}}=\|G(\hat{\theta})\|_{V^{-1}}$ to ensure $\hat{\theta} \in \mathbb{B}_{\eta}$. To do so, we need the following technical lemma, whose proof is deferred to Section C.

Lemma 7. Recall σ which is the constant in (2). For any $\delta>0$, define the following event:

$$
\mathcal{E}_{G}:=\left\{\|Z\|_{V^{-1}} \leq 4 \sigma \sqrt{d+\log (1 / \delta)}\right\}
$$

Then, \mathcal{E}_{G} holds with probability at least $1-\delta$.
Suppose \mathcal{E}_{G} holds for the rest of the proof. Then, $\eta \geq \frac{4 \sigma}{\kappa_{\eta}} \sqrt{\frac{d+\log (1 / \delta)}{\lambda_{\min (}(V)}}$ implies $\left\|\hat{\theta}_{t}-\theta\right\| \leq \eta$. Since $\kappa=\kappa_{1}$, we have $\kappa_{\eta} \geq \kappa$ as long as $\eta \leq 1$. Thus, we have

$$
\begin{equation*}
\|\hat{\theta}-\theta\| \leq \frac{4 \sigma}{\kappa} \sqrt{\frac{d+\log (1 / \delta)}{\lambda_{\min }(V)}} \leq 1 \tag{18}
\end{equation*}
$$

when $\lambda_{\min }(V) \geq 16 \sigma^{2}[d+\log (1 / \delta)] / \kappa^{2}$.

Step 2: Normality of $\hat{\theta}$. Now, we are ready to precede to prove the normality result. The following assumes \mathcal{E}_{G} holds (which is high-probability event, according to Lemma 7).
Define $\Delta:=\hat{\theta}-\theta^{*}$. It follows from (17) that there exists a $v \in[0,1]$ such that

$$
Z=G(\hat{\theta})-G\left(\theta^{*}\right)=(H+E) \Delta
$$

where $\tilde{\theta}:=v \theta^{*}+(1-v) \hat{\theta}, H:=F\left(\theta^{*}\right)=\sum_{i=1}^{n} \dot{\mu}\left(X_{i}^{\prime} \theta^{*}\right) X_{i} X_{i}^{\prime}$ and $E:=F(\tilde{\theta})-F\left(\theta^{*}\right)$. Intuitively, when $\hat{\theta}$ and θ^{*} are close, elements in E are small. By the mean value theorem,

$$
E=\sum_{i=1}^{n}\left(\dot{\mu}\left(X_{i}^{\prime} \tilde{\theta}\right)-\dot{\mu}\left(X_{i}^{\prime} \theta^{*}\right)\right) X_{i} X_{i}^{\prime}=\sum_{i=1}^{n} \ddot{\mu}\left(r_{i}\right) X_{i}^{\prime} \Delta X_{i} X_{i}^{\prime}
$$

for some $r_{i} \in \mathbb{R}$. Since $\ddot{\mu} \leq M_{\mu}$ and $v \in[0,1]$, for any $x \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$, we have

$$
\begin{aligned}
x^{\prime} H^{-1 / 2} E H^{-1 / 2} x & =(1-v) \sum_{i=1}^{n} \ddot{\mu}\left(r_{i}\right) X_{i}^{\prime} \Delta\left\|x^{\prime} H^{-1 / 2} X_{i}\right\|^{2} \\
& \leq \sum_{i=1}^{n} M_{\mu}\left\|X_{i}\right\|\|\Delta\|\left\|x^{\prime} H^{-1 / 2} X_{i}\right\|^{2} \\
& \leq M_{\mu}\|\Delta\|\left(x^{\prime} H^{-1 / 2}\left(\sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right) H^{-1 / 2} x\right) \\
& \leq \frac{M_{\mu}}{\kappa}\|\Delta\|\|x\|^{2}
\end{aligned}
$$

where we have used the assumption that $\left\|X_{i}\right\| \leq 1$ for the second inequality. Therefore,

$$
\begin{equation*}
\left\|H^{-1 / 2} E H^{-1 / 2}\right\| \leq \frac{M_{\mu}}{\kappa}\|\Delta\| \leq \frac{4 M_{\mu} \sigma}{\kappa^{2}} \sqrt{\frac{d+\log (1 / \delta)}{\lambda_{\min }(V)}} \tag{19}
\end{equation*}
$$

When $\lambda_{\min }(V) \geq 64 M_{\mu}^{2} \sigma^{2}(d+\log (1 / \delta)) / \kappa^{4}$, we have

$$
\begin{equation*}
\left\|H^{-1 / 2} E H^{-1 / 2}\right\| \leq 1 / 2 \tag{20}
\end{equation*}
$$

Now we are ready to prove the theorem. For any $x \in \mathbb{R}^{d}$,

$$
\begin{equation*}
x^{\prime}\left(\hat{\theta}-\theta^{*}\right)=x^{\prime}(H+E)^{-1} Z=x^{\prime} H^{-1} Z-x^{\prime} H^{-1} E(H+E)^{-1} Z \tag{21}
\end{equation*}
$$

Note that the matrix $(H+E)$ is nonsingular, so its inversion exists.

For the first term, $\left\{\epsilon_{i}\right\}$ are sub-Gaussian random variables with sub-Gaussian parameter σ. Define

$$
D:=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{\prime} \in \mathbb{R}^{n \times d}
$$

to be the design matrix. Hoeffding inequality gives

$$
\begin{equation*}
\mathbb{P}\left\{\left|x^{\prime} H^{-1} Z\right| \geq t\right\} \leq 2 \exp \left\{-\frac{t^{2}}{2 \sigma^{2}\left\|x^{\prime} H^{-1} D^{\prime}\right\|^{2}}\right\} \tag{22}
\end{equation*}
$$

Since $H \succeq \kappa V=\kappa D^{\prime} D$, we have

$$
\left\|x^{\prime} H^{-1} D^{\prime}\right\|^{2}=x^{\prime} H^{-1} D^{\prime} D H^{-1} x \leq \frac{1}{\kappa^{2}} x^{\prime} V^{-1} x=\frac{1}{\kappa^{2}}\|x\|_{V^{-1}}^{2}
$$

so (22) implies

$$
\mathbb{P}\left\{\left|x^{\prime} H^{-1} Z\right| \geq t\right\} \leq 2 \exp \left\{-\frac{t^{2} \kappa^{2}}{2 \sigma^{2}\|x\|_{V^{-1}}^{2}}\right\}
$$

Let the right-hand side be 2δ and solve for t, we obtain that with probability at least $1-2 \delta$,

$$
\begin{equation*}
\left|x^{\prime} H^{-1} Z\right| \leq \frac{\sqrt{2} \sigma}{\kappa} \sqrt{\log (1 / \delta)}\|x\|_{V^{-1}} \tag{23}
\end{equation*}
$$

For the second term,

$$
\begin{align*}
\left|x^{\prime} H^{-1} E(H+E)^{-1} Z\right| & \leq\|x\|_{H^{-1}}\left\|H^{-1 / 2} E(H+E)^{-1} Z\right\| \\
& \leq\|x\|_{H^{-1}}\left\|H^{-1 / 2} E(H+E)^{-1} H^{1 / 2}\right\|\|Z\|_{H^{-1}} \\
& \leq \frac{1}{\kappa}\|x\|_{V^{-1}}\left\|H^{-1 / 2} E(H+E)^{-1} H^{1 / 2}\right\|\|Z\|_{V^{-1}} \tag{24}
\end{align*}
$$

where the last inequality is due to the fact that $H \succeq \kappa V$. Since $(H+E)^{-1}=H^{-1}-H^{-1} E(H+E)^{-1}$, we have

$$
\begin{aligned}
\left\|H^{-1 / 2} E(H+E)^{-1} H^{1 / 2}\right\| & =\left\|H^{-1 / 2} E\left(H^{-1}-H^{-1} E(H+E)^{-1}\right) H^{1 / 2}\right\| \\
& =\left\|H^{-1 / 2} E H^{-1 / 2}+H^{-1 / 2} E H^{-1} E(H+E)^{-1} H^{1 / 2}\right\| \\
& \leq\left\|H^{-1 / 2} E H^{-1 / 2}\right\|+\left\|H^{-1 / 2} E H^{-1 / 2}\right\|\left\|H^{-1 / 2} E(H+E)^{-1} H^{1 / 2}\right\|
\end{aligned}
$$

By solving this inequality, we get

$$
\left\|H^{-1 / 2} E(H+E)^{-1} H^{1 / 2}\right\| \leq \frac{\left\|H^{-1 / 2} E H^{-1 / 2}\right\|}{1-\left\|H^{-1 / 2} E H^{-1 / 2}\right\|} \leq 2\left\|H^{-1 / 2} E H^{-1 / 2}\right\| \leq \frac{8 M_{\mu} \sigma}{\kappa^{2}} \sqrt{\frac{d+\log (1 / \delta)}{\lambda_{\min }(V)}}
$$

where we have used (20) and (19) in the second and third inequalities, respectively. Combining it with (24) and the bound in \mathcal{E}_{G}, we have

$$
\begin{equation*}
\left|x^{\prime} H^{-1} E(H+E)^{-1} Z\right| \leq \frac{32 M_{\mu} \sigma^{2}}{\kappa^{3}} \frac{d+\log (1 / \delta)}{\sqrt{\lambda_{\min }(V)}}\|x\|_{V^{-1}} \tag{25}
\end{equation*}
$$

From (21), (23) and (25), one can see that (5) holds as long as the lower bound (4) for $\lambda_{\min }(V)$ holds. Finally, an application of a union bound on two small-probability events (given in Lemma 7 and (23), respectively) asserts that (5) holds with probability at least $1-3 \delta$.

B. Proof of Proposition 1

In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, V_{n} is denoted V and so on.

Let X be a random vector drawn from the distribution ν. Define $Z:=\Sigma^{-1 / 2} X$. Then Z is isotropic, namely, $\mathbb{E}\left[Z Z^{\prime}\right]=$ \mathbf{I}_{d}. Define $U=\sum_{t=1}^{n} Z_{t} Z_{t}^{\prime}=\Sigma^{-1 / 2} V \Sigma^{-1 / 2}$. From Lemma 1, we have that, for any t, with probability at least $1-2 \exp \left(-C_{2} t^{2}\right)$,

$$
\lambda_{\min }(U) \geq n-C_{1} \sigma^{2} \sqrt{n d}-\sigma^{2} t \sqrt{n} .
$$

where σ is the sub-Gaussian parameter of Z, which is upper-bounded by $\left\|\Sigma^{-1 / 2}\right\|=\lambda_{\min }^{-1 / 2}(\Sigma)$ (see, e.g., Vershynin (2012)). We thus can rewrite the above inequality (which holds with probability $1-\delta$ as

$$
\lambda_{\min }(U) \geq n-\lambda_{\min }^{-1}(\Sigma)\left(C_{1} \sigma^{2} \sqrt{n d}+t \sqrt{n}\right)
$$

We now bound the minimum eigenvalue of V, as follows:

$$
\begin{aligned}
\lambda_{\min }(V) & =\min _{x \in \mathbb{B}^{d}} x^{\prime} V x \\
& =\min _{x \in \mathbb{B}^{d}} x^{\prime} \Sigma^{1 / 2} U \Sigma^{1 / 2} x \\
& \geq \lambda_{\min }(U) \min _{x \in \mathbb{B}^{d}} x^{\prime} \Sigma x \\
& =\lambda_{\min }(U) \lambda_{\min }(\Sigma) \\
& \geq \lambda_{\min }(\Sigma)\left(n-\lambda_{\min }^{-1}(\Sigma)\left(C_{1} \sigma^{2} \sqrt{n d}+t \sqrt{n}\right)\right) \\
& =\lambda_{\min }(\Sigma) n-C_{1} \sqrt{n d}-C_{2} \sqrt{n \log (1 / \delta)} .
\end{aligned}
$$

Finally, it can be verified (Lemma 9) that the last expression above is no less than B as long as

$$
n \geq\left(\frac{C_{1} \sqrt{d}+C_{2} \sqrt{\log (1 / \delta)}}{\lambda_{\min }(\Sigma)}\right)^{2}+\frac{2 B}{\lambda_{\min }(\Sigma)}
$$

finishing the proof.

C. Technical Lemmas and Proofs

C.1. Proof of Lemma 7

Noting that

$$
\|Z\|_{V^{-1}}=\left\|V^{-1 / 2} Z\right\|_{2}=\sup _{\|a\|_{2} \leq 1}\left\langle a, V^{-1 / 2} Z\right\rangle
$$

let $\hat{\mathbb{B}}$ be a $1 / 2$-net of the unit ball \mathbb{B}^{d}. Then $|\hat{\mathbb{B}}| \leq 6^{d}$ (Pollard, 1990, Lemma 4.1), and for any $x \in \mathbb{B}^{d}$, there is a $\hat{x} \in \hat{\mathbb{B}}$ such that $\|x-\hat{x}\| \leq 1 / 2$. Consequently,

$$
\begin{aligned}
\left\langle x, V^{-1 / 2} Z\right\rangle & =\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle+\left\langle x-\hat{x}, V^{-1 / 2} Z\right\rangle \\
& =\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle+\|x-\hat{x}\|\left\langle\frac{x-\hat{x}}{\|x-\hat{x}\|}, V^{-1 / 2} Z\right\rangle \\
& \leq\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle+\frac{1}{2} \sup _{z \in \mathbb{B}^{d}}\left\langle z, V^{-1 / 2} Z\right\rangle .
\end{aligned}
$$

Taking supremum on both sides, we get

$$
\sup _{x \in \mathbb{B}^{d}}\left\langle x, V^{-1 / 2} Z\right\rangle \leq 2 \max _{\hat{x} \in \tilde{\mathbb{B}}}\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle
$$

Then a union bound argument implies

$$
\begin{aligned}
\mathbb{P}\left\{\|Z\|_{V^{-1}}>t\right\} & \leq \mathbb{P}\left\{\max _{\hat{x} \in \mathbb{B}}\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle>t / 2\right\} \\
& \leq \sum_{\hat{x} \in \hat{\mathbb{B}}} \mathbb{P}\left\{\left\langle\hat{x}, V^{-1 / 2} Z\right\rangle>t / 2\right\} \\
& \leq \sum_{\hat{x} \in \hat{\mathbb{B}}} \exp \left\{-\frac{t^{2}}{8 \sigma^{2}\left\|\hat{x}^{\prime} V^{-1 / 2} X^{\prime}\right\|^{2}}\right\} \\
& \leq \exp \left\{-t^{2} /\left(8 \sigma^{2}\right)+d \log 6\right\},
\end{aligned}
$$

where we have used Hoeffding's inequality for the third inequality and $|\hat{\mathbb{B}}| \leq 6^{d}$ for the last inequality. A choice of $t=4 \sigma \sqrt{d+\log (1 / \delta)}$ completes the proof.

C.2. Proof of Lemma 2

By Abbasi-Yadkori et al. (2011, Lemma 11), we have

$$
\sum_{t=m+1}^{m+n}\left\|X_{t}\right\|_{V_{t}^{-1}}^{2} \leq 2 \log \frac{\operatorname{det} V_{m+n+1}}{\operatorname{det} V_{m+1}} \leq 2 d \log \left(\frac{\operatorname{tr}\left(V_{m+1}\right)+n}{d}\right)-2 \log \operatorname{det} V_{m+1}
$$

Note that $\operatorname{tr}\left(V_{m+1}\right)=\sum_{t=1}^{m} \operatorname{tr}\left(X_{t} X_{t}^{\prime}\right)=\sum_{t=1}^{m}\left\|X_{t}\right\|^{2} \leq m$ and that det $V_{m+1}=\prod_{i=1}^{d} \lambda_{i} \geq \lambda_{\text {min }}^{d}\left(V_{m+1}\right) \geq 1$, where $\left\{\lambda_{i}\right\}$ are the eigenvalues of V_{m+1}. Applying Cauchy-Schwartz inequality yields

$$
\sum_{t=m+1}^{m+n}\left\|X_{t}\right\|_{V_{t}^{-1}} \leq \sqrt{n \sum_{t=m+1}^{m+n}\left\|X_{t}\right\|_{V_{t}^{-1}}^{2}} \leq \sqrt{2 n d \log \left(\frac{n+m}{d}\right)} .
$$

C.3. Proof of Lemma 3

Define $G_{t}(\theta)=\sum_{i=1}^{t-1}\left(\mu\left(X_{i}^{\prime} \theta\right)-\mu\left(X_{i}^{\prime} \theta^{*}\right)\right) X_{i}$ and $Z_{t}=\sum_{i=1}^{t-1} \epsilon_{i} X_{i}$. Following the same argument as in the proof of Theorem 1, we have $G_{t}\left(\hat{\theta}_{t}\right)=Z_{t}$ and

$$
\begin{equation*}
\left\|G_{t}(\theta)\right\|_{V_{t}^{-1}}^{2} \geq \kappa^{2}\left\|\theta-\theta^{*}\right\|_{V_{t}}^{2} \tag{26}
\end{equation*}
$$

for any $\theta \in\left\{\theta:\left\|\theta-\theta^{*}\right\| \leq 1\right\}$. Combining (26) with the following lemma and the equality $Z_{t}=G_{t}\left(\hat{\theta}_{t}\right)$ completes the proof.
Lemma 8. Suppose there is an integer m such that $\lambda_{\min }\left(V_{m}\right) \geq 1$, then for any $\delta \in(0,1)$, with probability at least $1-\delta$, for all $t>m$,

$$
\left\|Z_{t}\right\|_{V_{t}^{-1}}^{2} \leq 4 \sigma^{2}\left(\frac{d}{2} \log (1+2 t / d)+\log (1 / \delta)\right) .
$$

Proof. For convenience, fix t such that $t>m$, and denote V_{t} and Z_{t} by V and Z, respectively. Furthermore, define $\bar{V}:=V+\lambda I$ and let $\mathbf{1}$ be the vector of all 1 s. It is easy to observe that

$$
\begin{equation*}
\|Z\|_{V^{-1}}^{2}=\|Z\|_{\bar{V}^{-1}}^{2}+Z^{\prime}\left(V^{-1}-\bar{V}^{-1}\right) Z \tag{27}
\end{equation*}
$$

We start with bounding the second term. The ShermanMorrison formula gives

$$
\bar{V}^{-1}=V^{-1}-\frac{\lambda V^{-2}}{1+\lambda \mathbf{1}^{\prime} V^{-1} \mathbf{1}} .
$$

Since $\mathbf{1}^{\prime} V^{-1} \mathbf{1} \geq 0$, the above implies that

$$
\begin{aligned}
0 & \leq Z^{\prime}\left(V^{-1}-\bar{V}^{-1}\right) Z \\
& \leq \lambda Z^{\prime} V^{-2} Z \\
& \leq \lambda\left\|V^{-1}\right\|\|Z\|_{V^{-1}}^{2} \\
& =\frac{\lambda}{\lambda_{\min }(V)}\|Z\|_{V^{-1}}^{2} .
\end{aligned}
$$

Since $\lambda_{\text {min }}(V) \geq \lambda_{\text {min }}\left(V_{m}\right) \geq 1$, we now have

$$
0 \leq Z^{\prime}\left(V^{-1}-\bar{V}^{-1}\right) Z \leq \lambda\|Z\|_{V^{-1}}^{2}
$$

The above inequality together with (27) implies that

$$
\|Z\|_{V^{-1}}^{2} \leq(1-\lambda)^{-1}\|Z\|_{\bar{V}^{-1}}^{2}
$$

The proof can be finished by applying Theorem 1 and Lemma 10 from Abbasi-Yadkori et al. (2011) to bound $\|Z\|_{\bar{V}^{-1}}^{2}$, using $\lambda=1 / 2$.

C.4. Proof of Lemma 6

We will prove the first part of the lemma by induction. It is easy to check the lemma holds for $s=1$. Suppose we have $a_{t}^{*} \in A_{s}$ and we want to prove $a_{t}^{*} \in A_{s+1}$. Since the algorithm proceeds to stage $s+1$, we know from step 2 b that

$$
\left|m_{t, a}^{(s)}-x_{t, a}^{\prime} \theta^{*}\right| \leq w_{t, a}^{(s)} \leq 2^{-s}
$$

for all $a \in A_{s}$. Specially, it holds for $a=a_{t}^{*}$ because $a_{t}^{*} \in A_{s}$ by our induction step. Then the optimality of a_{t}^{*} implies

$$
m_{t, a_{t}^{*}}^{(s)} \geq x_{t, a_{t}^{*}}^{\prime} \theta^{*}-2^{-s} \geq x_{t, a}^{\prime} \theta^{*}-2^{-s} \geq m_{t, a}^{(s)}-2 \cdot 2^{-s}
$$

for all $a \in A_{s}$. Thus we have $a_{t}^{*} \in A_{s+1}$ according to step 2 d .
Suppose a_{t} is selected at stage s_{t} in step 2 b . If $s_{t}=1$, obviously the lemma holds because $0 \leq \mu(x) \leq 1$ for all x. If $s_{t}>1$, since we have proved $a_{t}^{*} \in A_{s_{t}}$, again step 2 b at stage $s_{t}-1$ implies

$$
\left|m_{t, a}^{\left(s_{t}-1\right)}-x_{t, a}^{\prime} \theta^{*}\right| \leq 2^{-s_{t}+1}
$$

for $a=a_{t}$ and $a=a_{t}^{*}$. Step 2d at stage $s_{t}-1$ implies

$$
m_{t, a_{t}^{*}}^{\left(s_{t}-1\right)}-m_{t, a_{t}}^{\left(s_{t}-1\right)} \leq 2 \cdot 2^{-s_{t}+1}
$$

Combining above two inequalities, we get

$$
x_{t, a_{t}}^{\prime} \theta^{*} \geq m_{t, a_{t}}^{\left(s_{t}-1\right)}-2^{-s_{t}+1} \geq m_{t, a_{t}^{*}}^{\left(s_{t}-1\right)}-3 \cdot 2^{-s_{t}+1} \geq x_{t, a_{t}^{*}}^{\prime} \theta^{*}-4 \cdot 2^{-s_{t}+1}
$$

When a_{t} is selected in step 2 c , since $m_{t, a_{t}}^{\left(s_{t}\right)} \geq m_{t, a_{t}^{*}}^{\left(s_{t}\right)}$, we have

$$
x_{t, a_{t}}^{\prime} \theta^{*} \geq m_{t, a_{t}}^{\left(s_{t}\right)}-1 / \sqrt{T} \geq m_{t, a_{t}^{*}}^{\left(s_{t}\right)}-1 / \sqrt{T} \geq x_{t, a_{t}^{*}}^{\prime} \theta^{*}-2 / \sqrt{T}
$$

Using the fact that $\mu\left(x_{1}\right)-\mu\left(x_{2}\right) \leq L_{\mu}\left(x_{1}-x_{2}\right)$ for $x_{1} \geq x_{2}$, we will get the desired result.

C.5. Proof of Lemma 9

Lemma 9. Let a and b be two positive constants. If $m \geq a^{2}+2 b$, then $m-a \sqrt{m}-b \geq 0$.
Proof. The function $t \mapsto t^{2}-a t-b$ is monotonically increasing for $t \geq a / 2$. Since $m \geq a^{2}+2 b$, we have $\sqrt{m} \geq a / 2$, so

$$
\begin{aligned}
m-a \sqrt{m}-b & \geq a^{2}+2 b-a \sqrt{a^{2}+2 b}-b \\
& \geq a^{2}+b-a \sqrt{a^{2}+2 b+b^{2} / a^{2}} \\
& =a^{2}+b-a \sqrt{(a+b / a)^{2}} \\
& =a^{2}+b-a(a+b / a) \\
& =0
\end{aligned}
$$

