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A. Proof of Theorem 1
In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, Vn is denoted V and
so on.

To prove normality-type results of the maximum likelihood estimator ˆ✓, typically we first show the n�1/2-consistency of
ˆ✓ to ✓⇤. Then, by using a second-order Taylor expansion or Newton-step, we can prove the desired normality of ˆ✓. More
details can be found in standard textbooks such as Van der Vaart (2000).

Since m is twice differentiable with m̈ � 0, the maximum-likelihood estimation can be written as the solution to the
following equation
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. Hence, G(✓) is an injection from Rd to Rd, and so G�1 is a well-defined function. Consequently, (15)
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Let us consider an ⌘-neighborhood of ✓⇤, B⌘ := {✓ : k✓ � ✓⇤k  ⌘}, where ⌘ > 0 is a constant that will be specified
later. Note that B⌘ is a convex set, thus ¯✓ 2 B⌘ as long as ✓
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Lemma 7. Recall � which is the constant in (2). For any � > 0, define the following event:
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Step 2: Normality of ˆ✓. Now, we are ready to precede to prove the normality result. The following assumes EG holds
(which is high-probability event, according to Lemma 7).
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where we have used the assumption that kXik  1 for the second inequality. Therefore,
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Now we are ready to prove the theorem. For any x 2 Rd,
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Note that the matrix (H + E) is nonsingular, so its inversion exists.
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For the first term, {✏i} are sub-Gaussian random variables with sub-Gaussian parameter �. Define

D := [X
1
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2

, . . . , Xn]
0 2 Rn⇥d

to be the design matrix. Hoeffding inequality gives

P{|x0H�1Z| � t}  2 exp

(

� t2

2�2 kx0H�1D0k2

)

. (22)

Since H ⌫ V = D0D, we have

�

�x0H�1D0�
�

2

= x0H�1D0DH�1x  1

2

x0V �1x =

1

2

kxk2V �1 ,

so (22) implies

P{|x0H�1Z| � t}  2 exp

(

� t22

2�2 kxk2V �1

)

.

Let the right-hand side be 2� and solve for t, we obtain that with probability at least 1� 2�,

|x0H�1Z| 
p
2�



p

log(1/�) kxkV �1 . (23)

For the second term,
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where the last inequality is due to the fact that H ⌫ V . Since (H + E)
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where we have used (20) and (19) in the second and third inequalities, respectively. Combining it with (24) and the bound
in EG, we have
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From (21), (23) and (25), one can see that (5) holds as long as the lower bound (4) for �
min

(V ) holds. Finally, an
application of a union bound on two small-probability events (given in Lemma 7 and (23), respectively) asserts that (5)
holds with probability at least 1� 3�.
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B. Proof of Proposition 1
In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, Vn is denoted V and
so on.

Let X be a random vector drawn from the distribution ⌫. Define Z := ⌃
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finishing the proof.

C. Technical Lemmas and Proofs
C.1. Proof of Lemma 7
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Then a union bound argument implies
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where we have used Hoeffding’s inequality for the third inequality and |ˆB|  6
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C.2. Proof of Lemma 2

By Abbasi-Yadkori et al. (2011, Lemma 11), we have
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C.3. Proof of Lemma 3
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Proof. For convenience, fix t such that t > m, and denote Vt and Zt by V and Z, respectively. Furthermore, define
¯V := V + �I and let 1 be the vector of all 1s. It is easy to observe that
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Since �
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C.4. Proof of Lemma 6

We will prove the first part of the lemma by induction. It is easy to check the lemma holds for s = 1. Suppose we have
a⇤t 2 As and we want to prove a⇤t 2 As+1
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C.5. Proof of Lemma 9

Lemma 9. Let a and b be two positive constants. If m � a2 + 2b, then m� a
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