
Fast k-Nearest Neighbour Search via Prioritized DCI

Supplementary Material

Ke Li

1
Jitendra Malik

1

7. Analysis

We present proofs that were omitted from the main paper
below.

Theorem 1. Let
�

vli
 N

i=1

and
�

vsi0
 N 0

i0=1

be sets of vec-
tors such that

�

�vli
�

�

2

>
�

�vsi0
�

�

2

8i 2 [N], i0 2
[N 0

]. Furthermore, let
�

u0
ij

i2[N],j2[M]

be random uni-
formly distributed unit vectors such that u0

i1, . . . , u
0
iM

are independent for any given i. Consider the events
�

9vsi0 s.t. maxj

�

�

�hvli, u0
iji
�

�


�

�vsi0
�

�

2

 N

i=1

. The prob-
ability that at least k0 of these events occur is at
most 1

k0

PN
i=1

�

1� 2

⇡ cos

�1

�

�

�vs
max

�

�

2

/
�

�vli
�

�

2

��M
, where

�

�vs
max

�

�

2

= maxi0
�

�

�vsi0
�

�

2

. Furthermore, if k0 = N , it is

at most mini2[N]

n

�

1� 2

⇡ cos

�1

�

�

�vs
max

�

�

2

/
�

�vli
�

�

2

��M
o

.

Proof. The event that 9vsi0 s.t. maxj

�

�

�hvli, u0
iji
�

�


�

�vsi0
�

�

2

is equivalent to the event that maxj

�

�

�hvli, u0
iji
�

�


maxi0

�

�

�vsi0
�

�

2

=

�

�vs
max

�

�

2

. Take Ei to be the
event that maxj

�

�

�hvli, u0
iji
�

�


�

�vs
max

�

�

2

. By
Lemma 1, Pr(Ei) 

�

1� 2

⇡ cos

�1

�

�

�vs
max

�

�

2

/
�

�vli
�

�

2

��M .
It follows from Lemma 2 that the probability that
k0 of Ei’s occur is at most 1

k0

PN
i=1

Pr (Ei) 
1

k0

PN
i=1

�

1� 2

⇡ cos

�1

�

�

�vs
max

�

�

2

/
�

�vli
�

�

2

��M . If k0 =

N , we use the fact that
TN

i0=1

Ei0 ✓ Ei 8i, which
implies that Pr

⇣

TN
i0=1

Ei0

⌘

 mini2[N]

Pr (Ei) 

mini2[N]

n

�

1� 2

⇡ cos

�1

�

�

�vs
max

�

�

2

/
�

�vli
�

�

2

��M
o

.

Lemma 3. Consider points in the order they are re-
trieved from a composite index that consists of m
simple indices. The probability that there are at
least n

0

points that are not the true k-nearest neigh-
bours but are retrieved before some of them is at most

1

n0�k

Pn
i=2k+1

�

1� 2

⇡ cos

�1

�

�

�p(k) � q
�

�

2

/
�

�p(i) � q
�

�

2

��m
.

Proof. Points that are not the true k-nearest neighbours but
are retrieved before some of them will be referred to as
extraneous points and are divided into two categories: rea-
sonable and silly. An extraneous point is reasonable if it
is one of the 2k-nearest neighbours, and is silly otherwise.

For there to be n
0

extraneous points, there must be n
0

� k
silly extraneous points. Therefore, the probability that there
are n

0

extraneous points is upper bounded by the probabil-
ity that there are n

0

� k silly extraneous points.

Since points are retrieved from the composite index in
the order of increasing maximum projected distance to the
query, for any pair of points p and p0, if p is retrieved before
p0, then maxj {|hp� q, ujli|}  maxj {|hp0 � q, ujli|},
where {ujl}mj=1

are the projection directions associated
with the constituent simple indices of the composite index.

By Theorem 1, if we take
�

vli
 N

i=1

to be
�

p(i) � q
 n

i=2k+1

,
�

vsi0
 N 0

i0=1

to be
�

p(i) � q
 k

i=1

, M to be m,
�

u0
ij

j2[M]

to be {ujl}j2[m]

for all i 2 [N] and k0 to be n
0

� k, we
obtain an upper bound for the probability of there being
a subset of

�

p(i)
 n

i=2k+1

of size n
0

� k such that for all
points p in the subset, maxj {|hp� q, ujli|}  kp0 � qk

2

for some p0 2
�

p(i) � q
 k

i=1

. In other words, this is
the probability of there being n

0

� k points that are
not the 2k-nearest neighbours whose maximum pro-
jected distances are no greater than the distance from
some k-nearest neighbours to the query, which is at most

1

n0�k

Pn
i=2k+1

�

1� 2

⇡ cos

�1

�

�

�p(k) � q
�

�

2

/
�

�p(i) � q
�

�

2

��m
.

Since the event that maxj {|hp� q, ujli|} 
maxj {|hp0 � q, ujli|} is contained in the event that
maxj {|hp� q, ujli|}  kp0 � qk

2

for any p, p0, this is
also an upper bound for the probability of there being
n
0

� k points that are not the 2k-nearest neighbours
whose maximum projected distances do not exceed those
of some of the k-nearest neighbours, which by definition
is the probability that there are n

0

� k silly extraneous
points. Since this probability is no less than the probability
that there are n

0

extraneous points, the upper bound also
applies to this probability.

Lemma 4. Consider point projections in a composite
index that consists of m simple indices in the order they
are visited. The probability that n

0

point projections that
are not of the true k-nearest neighbours are visited before
all true k-nearest neighbours have been retrieved is at most

m
n0�mk

Pn
i=2k+1

�

1� 2

⇡ cos

�1

�

�

�p(k) � q
�

�

2

/
�

�p(i) � q
�

�

2

��

.

Fast k-Nearest Neighbour Search via Prioritized DCI

Proof. Projections of points that are not the true k-nearest
neighbours but are visited before the k-nearest neighbours
have all been retrieved will be referred to as extraneous pro-
jections and are divided into two categories: reasonable
and silly. An extraneous projection is reasonable if it is
of one of the 2k-nearest neighbours, and is silly otherwise.
For there to be n

0

extraneous projections, there must be
n
0

�mk silly extraneous projections, since there could be
at most mk reasonable extraneous projections. Therefore,
the probability that there are n

0

extraneous projections is
upper bounded by the probability that there are n

0

� mk
silly extraneous projections.

Since point projections are visited in the order of increas-
ing projected distance to the query, each extraneous silly
projection must be closer to the query projection than the
maximum projection of some k-nearest neighbour.

By Theorem 1, if we take
�

vli
 N

i=1

to be
�

p(2k+b(i�1)/mc+1) � q
 m(n�2k)

i=1

,
�

vsi0
 N 0

i0=1

to be
�

p(b(i�1)/mc+1) � q
 mk

i=1

, M to be 1, {u0
i1}

N
i=1

to be
�

u
(i mod m),l

 m(n�2k)

i=1

and k0 to be n
0

� mk, we ob-
tain an upper bound for the probability of there being
n
0

� mk point projections that are not of the 2k-nearest
neighbours whose distances to their respective query
projections are no greater than the true distance be-
tween the query and some k-nearest neighbour, which is

1

n0�mk

Pn
i=2k+1

m

✓

1� 2

⇡ cos

�1

✓

kp(k)�qk
2

kp(i)�qk
2

◆◆

.

Because maximum projected distances are no more than
true distances, this is also an upper bound for the proba-
bility of there being n

0

�mk silly extraneous projections.
Since this probability is no less than the probability that
there are n

0

extraneous projections, the upper bound also
applies to this probability.

Lemma 5. On a dataset with global
relative sparsity (k, �), the quantity
Pn

i=2k+1

�

1� 2

⇡ cos

�1

�

�

�p(k) � q
�

�

2

/
�

�p(i) � q
�

�

2

��m
is

at most O
�

kmax(log(n/k), (n/k)1�m log2 �
)

�

.

Proof. By definition of global relative sparsity, for all i �
2k + 1,

�

�p(i) � q
�

�

2

> �
�

�p(k) � q
�

�

2

. A recursive ap-
plication shows that for all i � 2

i0k + 1,
�

�p(i) � q
�

�

2

>

�i0
�

�p(k) � q
�

�

2

.

Applying the fact that 1� (2/⇡) cos�1

(x)  x 8x 2 [0, 1]
and the above observation yields:

n
X

i=2k+1

0

B

@

1� 2

⇡
cos

�1

0

B

@

�

�

�

p(k) � q
�

�

�

2

�

�

�

p(i) � q
�

�

�

2

1

C

A

1

C

A

m


n
X

i=2k+1

0

B

@

�

�

�

p(k) � q
�

�

�

2

�

�

�

p(i) � q
�

�

�

2

1

C

A

m

<

dlog2(n/k)e�1

X

i0=1

2

i0k��i0m

If � � m
p
2, this quantity is at most k log

2

(n/k). On the
other hand, if 1  � < m

p
2, this quantity can be simplified

to:

k

✓

2

�m

◆

✓

2

�m

◆dlog2(n/k)e�1

� 1

!

/

✓

2

�m
� 1

◆

= O

k

✓

2

�m

◆dlog2(n/k)e�1

!

= O

✓

k
⇣n

k

⌘

1�m log2 �
◆

Therefore,
Pn

i=2k+1

�

�

�p(k) � q
�

�

2

/
�

�p(i) � q
�

�

2

�m 
O
�

kmax(log(n/k), (n/k)1�m log2 �
)

�

.

Lemma 6. For a dataset with global relative spar-
sity (k, �) and a given composite index consist-
ing of m simple indices, there is some k

0

2
⌦(kmax(log(n/k), (n/k)1�m log2 �

)) such that the proba-
bility that the candidate points retrieved from the composite
index do not include some of the true k-nearest neighbours
is at most some constant ↵

0

< 1.

Proof. We will refer to the true k-nearest neighbours that
are among first k

0

points retrieved from the composite in-
dex as true positives and those that are not as false nega-
tives. Additionally, we will refer to points that are not true
k-nearest neighbours but are among the first k

0

points re-
trieved as false positives.

When not all the true k-nearest neighbours are among the
first k

0

candidate points, there must be at least one false
negative and so there can be at most k � 1 true positives.
Consequently, there must be at least k

0

�(k�1) false posi-
tives. To find an upper bound on the probability of the exis-
tence of k

0

� (k�1) false positives in terms of global rela-
tive sparsity, we apply Lemma 3 with n

0

set to k
0

�(k�1),
followed by Lemma 5. We conclude that this probability
is at most 1

k0�2k+1

O
�

kmax(log(n/k), (n/k)1�m log2 �
)

�

.
Because the event that not all the true k-nearest neighbours
are among the first k

0

candidate points is contained in the
event that there are k

0

� (k� 1) false positives, the former
is upper bounded by the same quantity. So, we can choose
some k

0

2 ⌦(kmax(log(n/k), (n/k)1�m log2 �
)) to make

it strictly less than 1.

Lemma 7. For a dataset with global relative spar-
sity (k, �) and a given composite index consist-
ing of m simple indices, there is some k

1

2

Fast k-Nearest Neighbour Search via Prioritized DCI

⌦(mkmax(log(n/k), (n/k)1�log2 �
)) such that the proba-

bility that the candidate points retrieved from the composite
index do not include some of the true k-nearest neighbours
is at most some constant ↵

1

< 1.

Proof. We will refer to the projections of true k-nearest
neighbours that are among first k

1

visited point projections
as true positives and those that are not as false negatives.
Additionally, we will refer to projections of points that are
not of the true k-nearest neighbours but are among the first
k
1

visited point projections as false positives.

When a k-nearest neighbour is not among the candidate
points that have been retrieved, some of its projections
must not be among the first k

1

visited point projections.
So, there must be at least one false negative, implying that
there can be at most mk � 1 true positives. Consequently,
there must be at least k

1

� (mk � 1) false positives. To
find an upper bound on the probability of the existence of
k
1

� (mk � 1) false positives in terms of global relative
sparsity, we apply Lemma 4 with n

0

set to k
1

� (mk � 1),
followed by Lemma 5. We conclude that this probability
is at most m

k1�2mk+1

O
�

kmax(log(n/k), (n/k)1�log2 �
)

�

.
Because the event that some true k-nearest neighbour is
missing from the candidate points is contained in the event
that there are k

1

� (mk � 1) false positives, the former is
upper bounded by the same quantity. So, we can choose
some k

1

2 ⌦(mkmax(log(n/k), (n/k)1�log2 �
)) to make

it strictly less than 1.

Theorem 2. For a dataset with global relative spar-
sity (k, �), for any ✏ > 0, there is some L,
k
0

2 ⌦(kmax(log(n/k), (n/k)1�m log2 �
)) and k

1

2
⌦(mkmax(log(n/k), (n/k)1�log2 �

)) such that the algo-
rithm returns the correct set of k-nearest neighbours with
probability of at least 1� ✏.

Proof. For a given composite index, by Lemma 6, there
is some k

0

2 ⌦(kmax(log(n/k), (n/k)1�m log2 �
)) such

that the probability that some of the true k-nearest
neighbours are missed is at most some constant ↵

0

<
1. Likewise, by Lemma 7, there is some k

1

2
⌦(mkmax(log(n/k), (n/k)1�log2 �

)) such that this prob-
ability is at most some constant ↵

1

< 1. By choos-
ing such k

0

and k
1

, this probability is therefore at most
min{↵

0

,↵
1

} < 1. For the algorithm to fail, all compos-
ite indices must miss some k-nearest neighbours. Since
each composite index is constructed independently, the al-
gorithm fails with probability of at most (min{↵

0

,↵
1

})L,
and so must succeed with probability of at least 1 �
(min{↵

0

,↵
1

})L. Since min{↵
0

,↵
1

} < 1, there is some
L that makes 1� (min{↵

0

,↵
1

})L � 1� ✏.

Theorem 3. For a given number of simple indices m, the
algorithm takes O

⇣

dkmax(log(n/k), (n/k)1�m/d0
)+

mk logm
⇣

max(log(n/k), (n/k)1�1/d0
)

⌘⌘

time to re-

trieve the k-nearest neighbours at query time, where d0 de-
notes the intrinsic dimensionality.

Proof. Computing projections of the query point along all
ujl’s takes O(dm) time, since L is a constant. Searching
in the binary search trees/skip lists Tjl’s takes O(m log n)
time. The total number of point projections that are
visited is at most ⇥(mkmax(log(n/k), (n/k)1�log2 �

)).
Because determining the next point to visit requires
popping and pushing a priority queue, which takes
O(logm) time, the total time spent on visiting points
is O(mk logmmax(log(n/k), (n/k)1�log2 �

)). The
total number of candidate points retrieved is at most
⇥(kmax(log(n/k), (n/k)1�m log2 �

)). Because true
distances are computed for every candidate point,
the total time spent on distance computation is
O(dkmax(log(n/k), (n/k)1�m log2 �

)). We can find
the k closest points to the query among the candidate
points using a selection algorithm like quickselect,
which takes O(kmax(log(n/k), (n/k)1�m log2 �

)) time
on average. Since the time for visiting points and
for computing distances dominates, the entire algo-
rithm takes O(dkmax(log(n/k), (n/k)1�m log2 �

) +

mk logmmax(log(n/k), (n/k)1�log2 �
)) time. Substitut-

ing 1/d0 for log
2

� yields the desired expression.

Theorem 4. For a given number of simple indices m, the
algorithm takes O(m(dn+n log n)) time to preprocess the
data points in D at construction time.

Proof. Computing projections of all n points along all ujl’s
takes O(dmn) time, since L is a constant. Inserting all n
points into mL self-balancing binary search trees/skip lists
takes O(mn log n) time.

Theorem 5. The algorithm requires O(m(d+log n)) time
to insert a new data point and O(m log n) time to delete a
data point.

Proof. In order to insert a data point, we need to compute
its projection along all ujl’s and insert it into each binary
search tree or skip list. Computing the projections takes
O(md) time and inserting them into the corresponding self-
balancing binary search trees or skip lists takes O(m log n)
time. In order to delete a data point, we simply remove
its projections from each of the binary search trees or skip
lists, which takes O(m log n) time.

Theorem 6. The algorithm requires O(mn) space in ad-
dition to the space used to store the data.

Proof. The only additional information that needs to be
stored are the mL binary search trees or skip lists. Since

Fast k-Nearest Neighbour Search via Prioritized DCI

(a) (b)

Figure 3. Memory usage of different algorithms on (a) CIFAR-100 and (b) MNIST. Lower values are better.

n entries are stored in each binary search tree/skip list, the
total additional space required is O(mn).

8. Experiments

Figure 3 shows the memory usage of different algorithms
on CIFAR-100 and MNIST.

