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A. Proof of Theorem 1
We first recall the following lemma.
Lemma 1 (Lemma 1, (Gong et al., 2013)). Under Assumption 1.{3}. For any η > 0 and any x,y ∈ Rd such that
x = proxηg(y − η∇f(y)), one has that

F (x) ≤ F (y)− ( 1
2η −

L
2 )‖x− y‖2.

Applying Lemma 1 with x = xk,y = yk, we obtain that

F (xk) ≤ F (yk)− ( 1
2η −

L
2 )‖xk − yk‖2. (12)

Since η < 1
L , it follows that F (xk) ≤ F (yk). Moreover, the update rule of APGnc guarantees that F (yk+1) ≤ F (xk). In

summary, for all k the following inequality holds:

F (yk+1) ≤ F (xk) ≤ F (yk) ≤ F (xk−1). (13)

Combing further with the fact that F (xk), F (yk) ≥ inf F > −∞ for all k, we conclude that {F (xk)}, {F (yk)} converge
to the same limit F ∗, i.e.,

lim
k→∞

F (xk) = lim
k→∞

F (yk) = F ∗. (14)

On the other hand, by induction we conclude from eq. (13) that for all k

F (yk) ≤ F (x0), F (xk) ≤ F (x0).

Combining with Assumption 1.1 that F has bounded sublevel set, we conclude that {xk} and {yk} are bounded and thus
have bounded limit points. Now combining eq. (12) and eq. (13) yields

( 1
2η −

L
2 )‖yk − xk‖2 ≤ F (yk)− F (xk)

≤ F (yk)− F (yk+1), (15)

which, after telescoping over k and letting k →∞, becomes
∞∑
k=1

( 1
2η −

L
2 )‖yk − xk‖2 ≤ F (y1)− inf F <∞. (16)

This further implies that ‖yk − xk‖ → 0, and hence {xk} and {yk} share the same set of limit points Ω. Note that Ω is
closed (it is a set of limit points) and bounded, we conclude that Ω is compact in Rd.

By optimality condition of the proximal gradient step of APGnc, we obtain that

−∇f(yk)− 1
η (xk − yk) ∈ ∂g(xk)

⇔ ∇f(xk)−∇f(yk)− 1
η (xk − yk)︸ ︷︷ ︸

uk

∈ ∂F (xk), (17)

which further implies that

‖uk‖ = ‖∇f(xk)−∇f(yk)− 1
η (xk − yk)‖

≤ (L+ 1
η )‖yk − xk‖ → 0. (18)

Consider any limit point z′ ∈ Ω, and w.l.o.g we write xk → z′, yk → z′ by restricting to a subsequence. By the definition
of the proximal map, the proximal gradient step of APGnc implies that

〈∇f(yk),xk − yk〉+ 1
2η‖yk − xk‖2 + g(xk)

≤ 〈∇f(yk), z′ − yk〉+ 1
2η‖z

′ − yk‖2 + g(z′). (19)
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Taking lim sup on both sides and note that xk − yk → 0, yk → z′, we obtain that lim supk→∞ g(xk) ≤ g(z′). Since
g is lower semicontinuous and xk → z′, it follows that lim supk→∞ g(xk) ≥ g(z′). Combining both inequalities, we
conclude that limk→∞ g(xk) = g(z′). Note that the continuity of f yields limk→∞ f(xk) = f(z′), we then conclude that
limk→∞ F (xk) = F (z′). Since limk→∞ F (xk) = F ∗ by eq. (14), we conclude that

F (z′) ≡ F ∗, ∀z′ ∈ Ω. (20)

Hence, F remains constant on the compact set Ω. To this end, we have established xk → z′, F (xk) → F (z′) and that
∂F (xk) 3 uk → 0. Recall the definition of limiting sub-differential, we conclude that 0 ∈ ∂F (z′) for all z′ ∈ Ω.

B. Proof of Theorem 2
Throughout the proof we assume that F (xk) 6= F ∗ for all k because otherwise the algorithm terminates and the conclusions
hold trivially. We also denote k0 as a sufficiently large positive integer.

Combining eq. (12) and eq. (13) yields that

F (xk+1) ≤ F (xk)− ( 1
2η −

L
2 )‖yk+1 − xk+1‖2. (21)

Moreover, eq. (17) and eq. (18) imply that

dist∂F (xk)(0) ≤ (L+ 1
η )‖yk − xk‖. (22)

We have shown in Appendix A that F (xk) ↓ F ∗, and it is also clear that distΩ(xk) → 0. Thus, for any ε, δ > 0 and all
k ≥ k0, we have

xk ∈ {x | distΩ(x) ≤ ε, F ∗ < F (x) < F ∗ + δ}.

Since Ω is compact and F is constant on it, the uniformized KL property implies that for all k ≥ k0

ϕ′(F (xk)− F ∗)dist∂F (xk)(0) ≥ 1. (23)

Recall that rk := F (xk)− F ∗. Then eq. (23) is equivalent to

1 ≤
(
ϕ′ (rk) dist∂F (xk) (0)

)2
(i)

≤ (ϕ′ (rk))
2
(

1
η + L

)2

‖yk − xk‖2

(ii)

≤ (ϕ′ (rk))
2

(
1
η+L

)2

1
2η−

L
2

[F (xk−1)− F (xk)]

≤ d1 (ϕ′ (rk))
2

(rk−1 − rk) ,

where (i) is due to eq. (22), (ii) follows from eq. (21), and d1 =
(

1
η + L

)2

/
(

1
2η −

L
2

)
. Since ϕ (t) = c

θ t
θ, we have that

ϕ′ (t) = ctθ−1. Thus the above inequality becomes

1 ≤ d1c
2r2θ−2
k (rk−1 − rk) . (24)

It has been shown in (Frankel et al., 2015; Li & Lin, 2015) that sequence {rk} satisfying the above inductive property
converges to zero at different rates according to θ as stated in the theorem.

C. Proof of Theorem 3
g non-convex, εk = 0: In this setting, we first prove the following inexact version of Lemma 1.

Lemma 2. Under Assumption 1.3. For any η > 0 and any x,y ∈ Rd such that x = proxηg(y− η(∇f(y) + e)), one has
that

F (x) ≤ F (y) + (L2 −
1
2η )‖x− y‖2 + ‖x− y‖‖e‖.
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Proof. By Assumption 1.3 we have that

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ L
2 ‖x− y‖2.

Also, by the definition of proximal map, the proximal gradient step implies that

g(x) + 1
2η‖x− y + η(∇f(y) + e)‖2 ≤ g(y) + 1

2η‖η(∇f(y) + e)‖2,

which, after simplifications becomes that

g(x) ≤ g(y)− 1
2η‖x− y‖2 − 〈x− y, (∇f(y) + e)〉.

Combine the above two inequalities further gives that

F (x) ≤ F (y) + (L2 −
1
2η )‖x− y‖2 + ‖x− y‖‖e‖.

Using Lemma 2 with x = xk,y = yk, e = ek and notice the fact that ‖ek‖ ≤ γ‖xk − yk‖, we obtain that

F (xk) ≤ F (yk) + (γ + L
2 −

1
2η )‖xk − yk‖2. (25)

Moreover, the optimality condition of the proximal gradient step with gradient error gives that By optimality condition of
the proximal gradient step of APGnc, we obtain that

∇f(xk)−∇f(yk)− ek − 1
η (xk − yk) ∈ ∂F (xk),

which further implies that

dist∂F (xk)(0) ≤ (γ + L+ 1
η )‖yk − xk‖. (26)

Notice that eq. (25) and eq. (26) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis of exact APGnc.
Thus, by choosing η < 1

2γ+L and redefining d1 = ( 1
η + L + γ)2/( 1

2η −
L
2 − γ), all the statements in Theorem 1 remain

true and the convergence rates in Theorem 2 remain the same order with a worse constant.

g convex: We first present the following lemma.

Lemma 3. For any x,v ∈ Rd, let u′ ∈ ∂εg(x) such that∇f(x) + u′ has minimal norm. Denote ξ := dist∂g(x)(u
′), then

we have

dist∂F (x)(0) ≤ dist∇f(x)+∂εg(x)(0) + ξ. (27)

Proof. We observe the following

dist∂F (x)(0) = min
u∈∂g(x)

‖∇f(x) + u‖

= min
u∈∂g(x)

‖∇f(x) + u′ + u− u′‖, ∀u′ ∈ ∂εg(x)

≤ ‖∇f(x) + u′‖+ min
u∈∂g(x)

‖u− u′‖, ∀u′ ∈ ∂εg(x)

≤ min
u′∈∂ε

g(x)‖∇f(x) + u′‖+ ξ

= dist∇f(x)+∂εg(x)(0) + ξ. (28)

Recall that we have two inexactness, i.e., xk = proxεkηg(yk − η(∇f(yk) + ek)). Following a proof similar to that of
Lemma 2 and notice that εk ≤ δ‖xk − yk‖2, we can obtain that

F (xk) ≤ F (yk) + (γ + L
2 −

1
2η )‖xk − yk‖2 + εk

≤ F (yk) + (γ′ + L
2 −

1
2η )‖xk − yk‖2 (29)
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for some γ′ > γ > 0. Since g is convex, by Lemma 2 in (Schmidt et al., 2011) one can exhibit vk with ‖vk‖ ≤
√

2ηεk
such that

1
η [yk − xk − η(∇f(yk) + ek)− vk] ∈ ∂εkg(xk).

This implies that

dist∇f(xk)+∂εkg(xk)(0) ≤ (γ + 1
η + L)‖xk − yk‖+

√
2εk
η .

Apply Lemma 3 and notice that εk ≤ δ‖xk − yk‖2, ξk ≤ λ‖xk − yk‖, we obtain that

dist∂F (xk)(0) ≤ (γ′ +
1

η
+ L)‖xk − yk‖ (30)

for some γ′ > γ > 0. Now eq. (29) and eq. (30) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis
of exact APGnc. Thus, by choosing η < 1

2γ′+L and redefining d1 = ( 1
η + L + γ′)2/( 1

2η −
L
2 − γ

′), all the statements in
Theorem 1 remain true and the convergence rates in Theorem 2 remain the same order with a worse constant.

D. Proof of Theorem 4
We first define the following quantities for the convenience of the proof.

ct = ct+1(1 + 1
m ) + ηL2

2 , cm = 0, (31)

Rtk := E
[
F (xtk) + ct‖xtk − x0

k‖2
]
, (32)

x̄t+1
k = proxηg(x

t
k − η∇f(xtk)). (33)

Note that x̄t+1
k is a reference sequence introduced for the convenience of analysis, and is not being computed in the

implementation of the algorithm. Then it has been shown in the proof of Theorem 5 of (Reddi et al., 2016b) that

Rt+1
k ≤ Rtk +

(
L− 1

2η

)
E
[
‖x̄t+1

k − xtk‖2
]
. (34)

Telescoping eq. (34) over t from t = 1 to t = m− 1, we obtain

E[F (xmk )] ≤ E

[
F (x̄1

k) + c1‖x̄1
k − x0

k‖2 +

m−1∑
t=1

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2
]
. (35)

Following from eq. (31), a simple induction shows that ct ≤ ηL2m. Setting η < 1
2L and recalling that F (yk) ≤ F (xmk−1).,

eq. (35) further implies that

E[F (yk+1)] ≤ E[F (xmk )] ≤ E[F (x̄1
k)] + ηL2mE[‖x̄1

k − x0
k‖2]. (36)

Now telescoping eq. (34) again over t from t = 0 to t = m− 1 and applying eq. (36), we obtain

E[F (xmk )] ≤ E[F (yk)] +

m−1∑
t=0

(L− 1
2η )E

[
‖x̄t+1

k − xtk‖2
]
. (37)

Combining all the above facts, we conclude that for η < 1
2L

E[F (yk)] ≤ E[F (yk−1)] ≤ . . . ≤ F (y0). (38)

Since E[F (·)] is bounded below, E[F (yk)] decreases to a finite limit, say, F ∗. Define rk = E [F (yk)− F ∗], and assume
rk > 0 for all k (since otherwise rk = 0 and the algorithm terminates). Applying the KŁ property with θ = 1/2, we obtain

1
c (F (x)− F ∗) 1

2 ≤ dist∂F (x)(0). (39)

Setting x = x̄1
k, we further obtain

1
c2 (F (x̄1

k)− F ∗) ≤ dist2
∂F (x̄1

k)(0) ≤
(
L+ 1

η

)2

‖x̄1
k − yk‖2, (40)
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where the last inequality is due to eq. (33). Taking expectation over both sides and using eq. (36), we obtain

1
c2E[F (xmk )− F ∗]− ηL2m

c2 E
[
‖x̄1

k − x0
k‖2
]
≤
(
L+ 1

η

)2

E
[
‖x̄1

k − yk‖2
]
. (41)

Noting that x0
k = yk and EF (yk+1) ≤ EF (xmk ), we then rearrange the above inequality and obtain

1
c2E[F (yk+1)− F ∗] ≤ 1

c2E[F (xmk )− F ∗] ≤
[(
L+ 1

η

)2

+ ηL2m
c2

]
E
[
‖x̄1

k − yk‖2
]

(42)

≤ (L+ 1
η )

2
+ ηL2m

c2
1
2η−L

(E[F (yk)]− E[F (yk+1)]) , (43)

which can be further rewritten as

rk+1 ≤ d (rk − rk+1) , (44)

where d =
c2(L+ 1

η )
2
+ηL2m

1
2η−L

. Then a simple induction yields that

rk+1 ≤
(

d
d+1

)k+1

(F (y0)− F ∗) . (45)

E. Proof of Theorem 5
We first introduce some auxiliary lemmas.

Lemma 4. Consider the convex function g and x,y ∈ Rd such that y = proxεηg(x) for some ε > 0. Then, there exists
‖i‖ ≤

√
2ηε that satisfies the following inequality for all z ∈ Rd.

g(y) + 1
2η‖y − x‖2 ≤ g(z) + 1

2η‖z− x‖2 − 1
2η‖y − z‖2 + 〈y − z, 1

η i〉+ ε. (46)

Proof. By Lemma 2 in (Schmidt et al., 2011), there exists ‖i‖ ≤
√

2ηε such that

1
η (x− y − i) ∈ ∂εg(y). (47)

Then, the definition of ε-subdifferential implies that

g(z)− g(y) ≥ 〈z− y, ∂εg(y)〉 − ε = 〈z− y, 1
η (x− y − i)〉 − ε, ∀ z ∈ Rd. (48)

The desired result follows by rearranging the above inequality.

Lemma 5. Consider the convex function g and x,y,d ∈ Rd such that y = proxεηg(x− ηd) for some ε > 0. Then, there
exists ‖i‖ ≤

√
2ηε that satisfies the following inequality for all z ∈ Rd.

g(y) = 〈y − z,d− 1
η i〉 ≤ g(z) + 1

2η

[
‖z− x‖2 − ‖y − z‖2 − ‖y − x‖2

]
+ ε. (49)

Proof. By Lemma 4, we obtain the following inequality for all z ∈ Rd.

g(y) + 〈y − x,d〉+ 1
2η‖y − x‖2 +

η

2
‖d‖2

≤ g(z) + 1
2η‖z− x + ηd‖2 − 1

2η‖y − z‖2 + 〈y − z, 1
η i〉+ ε

= g(z) + 〈z− x,d〉 1
2η‖z− x‖2 + η

2‖d‖
2 − 1

2η‖y − z‖2 + 〈y − z, 1
η i〉+ ε. (50)

The desired result follows by rearranging the above inequality.

Lemma 6. Consider the convex function g and x,y,d ∈ Rd such that y = proxεηg(x− ηd) for some ε > 0. Then, there
exists ‖i‖ ≤

√
2ηε that satisfies the following inequality for all z ∈ Rd.

F (y) + 〈y − z,d− 1
η i−∇f(x)〉 ≤ F (z) +

(
L
2 −

1
2η

)
‖y − x‖2 +

(
L
2 + 1

2η

)
‖z− x‖2 − 1

2η‖y − z‖2 + ε. (51)
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Proof. By Lipschitz continuity of∇f , we obtain

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2 ‖y − x‖2, (52)

f(x) ≤ f(z) + 〈∇f(x),x− z〉+ L
2 ‖x− z‖2. (53)

Adding the above inequalities together yields

f(y) ≤ f(z) + 〈∇f(x),y − z〉+ L
2

[
‖y − x‖2 + ‖z− x‖2

]
. (54)

Combining with Lemma 5, we then obtain the desired result.

Recall the reference sequence x̄t+1
k = proxηg(x

t
k − η∇f(xtk)). Applying Lemma 6 with ε = 0, y = x̄t+1

k , z = xtk, and
d = ∇f(xtk) and taking expectation on both sides, we obtain

E[F (x̄t+1
k )] ≤ E

[
F (xtk) +

(
L
2 −

1
2η

)
‖x̄t+1

k )− xtk‖2 − 1
2η‖x̄

t+1
k − xtk‖2

]
. (55)

Similarly, applying Lemma 6 with ε = εtk, y = xt+1
k , z = x̄t+1

k , d = vtk and taking expectation on both sides, we obtain

E[F (xt+1
k )] ≤ E

[
F (x̄t+1

k ) + 〈xt+1
k − x̄t+1

k ,∇f
(
xtk
)
− vtk + 1

η ik〉

+
(
L
2 −

1
2η

)
‖xt+1

k − xtk‖2 +
(
L
2 + 1

2η

)
‖x̄t+1

k − xtk‖2 − 1
2η‖x̄

t+1
k − xt+1

k ‖
2 + εtk

]
. (56)

Adding eq. (55) and eq. (56) together yields

E[F (xt+1
k )] ≤ E

[
F (xtk) +

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +
(
L
2 −

1
2η

)
‖xt+1

k − xtk‖2 − 1
2η‖x̄

t+1
k − xt+1

k ‖
2 + T

]
(57)

where T = 〈xt+1
k − x̄t+1

k ,∇f (xtk)− vtk + ik
η 〉+ εtk. Now we bound E[T ] as follows.

E[T ] ≤ 1
2ηE

[
‖xt+1

k − xt+1
k ‖

2
]

+ η
2E
[
‖∇f

(
xtk
)
− vtk + ik

η ‖
2
]

+ εtk (58)

≤ 1
2ηE

[
‖xt+1

k − xt+1
k ‖

2
]

+ ηE
[
‖∇f

(
xtk
)
− vtk‖2

]
+ ηE

[
‖ ikη ‖

2
]

+ εtk (59)

≤ 1
2ηE

[
‖xt+1

k − xt+1
k ‖

2
]

+ ηE
[
‖∇f

(
xtk
)
− vtk‖2

]
+ 3εtk. (60)

By Lemma 3 of (Reddi et al., 2016b), it holds that E
[
‖∇f (xtk)− vtk‖2

]
≤ L2E

[
‖xtk − x0

k‖2
]
. Combining with the

above inequality, we further obtain that

E[T ] ≤ 1
2ηE

[
‖xt+1

k − xt+1
k ‖

2
]

+ ηL2E
[
‖xtk − x0

k‖2
]

+ 3εtk. (61)

Substituting the above result into eq. (57), we obtain

E[F (xt+1
k )] ≤ E

[
F (xtk) +

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +
(
L
2 −

1
2η

)
‖xt+1

k − xtk‖2 + ηL2‖xtk − x0
k‖2 + 3εtk

]
. (62)

Recalling that Rtk := E
[
F (xtk) + ct‖xtk − x0

k‖2
]
, where ct = ηL2 (1+β)m−t−1

β with β > 0. Then, we can upper bound
Rt+1
k as

Rt+1
k =E

[
F (xt+1

k ) + ct+1‖xt+1
k − xtk + xtk − x0

k‖2
]

(63)

=E
[
F (xt+1

k ) + ct+1

(
‖xt+1

k − xtk‖2 + ‖xtk − x0
k‖2 + 2〈xt+1

k − xtk,x
t
k − x0

k〉
)]

(64)

≤E
[
F (xt+1

k ) + ct+1

(
1 + 1

β

)
‖xt+1

k − xtk‖2 + ct+1 (1 + β) ‖xtk − x0
k‖2
]

(65)

≤E
[
F (xtk) +

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +
[
ct+1

(
1 + 1

β

)
+ L

2 −
1
2η

]
‖xt+1

k − xtk‖2 (66)

+
[
ct+1 (1 + β) + ηL2

]
‖xtk − x0

k‖2 + 3εtk
]
. (67)
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Setting β = 1/m in ct and observe that

ct = ηL2 (1+β)m−t−1
β = ηL2m

(
(1 + β)m−t − 1

)
≤ ηL2m (e− 1) ≤ 2ηL2m, (68)

which further implies that

ct+1

(
1 + 1

β

)
+ L

2 ≤ 2ηL2m(1 +m) ≤ 4ηL2m2 + L
2 = 4ρLm2 + L

2 ≤
1
2η . (69)

Also note that ct = ct+1(1 + β) + ηL2. Collecting all these facts, Rt+1
k can be further upper bounded by

Rt+1
k ≤ Rtk + E

[(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 + 3εtk

]
. (70)

Telescoping eq. (70) from t = 1 to t = m− 1, we obtain

E[F (xmk )] ≤ E

[
F (x̄1

k) + c1‖x̄1
k − x0

k‖2 +

m−1∑
t=1

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +

m−1∑
t=1

3εtk

]
. (71)

Again, telescoping eq. (70) from t = 0 to t = m− 1 we obtain

E[F (yk+1)] ≤ E[F (xmk )] ≤ E[F (yk)] +

m−1∑
t=0

(L− 1
2η )E

[
‖x̄t+1

k − xtk‖2
]

+ 3

m−1∑
t=0

E
[
εtk
]
. (72)

Assume
m−1∑
t=0

E
[
‖x̄t+1

k − xtk‖2
]
> 0, because otherwise the algorithm is terminated. Assume that there exists α > 0 such

that 3
m−1∑
t=0

E [εtk] ≤ α
m−1∑
t=0

E
[
‖x̄t+1

k − xtk‖2
]

and 1
2η − L− α > 0. Then eq. (72) further implies that

E[F (yk+1)] ≤ E[F (xmk )] ≤ E[F (yk)] +

m−1∑
t=0

(L− 1
2η + α)E

[
‖x̄t+1

k − xtk‖2
]
. (73)

That is, we have E[F (yk)] ≤ E[F (yk−1)] ≤ . . . ≤ F (y0), and hence E[F (yk)] ↓ F ∗. We can further upper bound
eq. (71) as

E[F (xmk )] ≤E

[
F (x̄1

k) + c1‖x̄1
k − x0

k‖2 +

m−1∑
t=1

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +

m−1∑
t=1

3εtk

]

≤E

[
F (x̄1

k) + c1‖x̄1
k − x0

k‖2 −
(
L− 1

2η

)
‖x̄1

k − x0
k‖2 +

m−1∑
t=0

(
L− 1

2η

)
‖x̄t+1

k − xtk‖2 +

m−1∑
t=0

3εtk

]

≤E

[
F (x̄1

k) +
(
c1 + 1

2η

)
‖x̄1

k − x0
k‖2 +

m−1∑
t=0

(
L− 1

2η + α
)
‖x̄t+1

k − xtk‖2
]

≤E
[
F (x̄1

k)
]

+ E
[(

2ηL2m+ 1
2η

)
‖x̄1

k − x0
k‖2
]
. (74)

Define rk = E [F (yk)− F ∗], and suppose rk > 0 for all k (otherwise the algorithm terminates in finite steps). Applying
the KŁ condition with θ = 1/2, we obtain

1
c (F (x)− F ∗) 1

2 ≤ dist∂F (x)(0). (75)

Setting x = x̄1
k, we obtain

1

c2
(F (x̄1

k)− F ∗) ≤ dist2
∂F (x̄1

k)(0) ≤
(
L+ 1

η

)2

‖x̄1
k − yk‖2. (76)
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Taking expectation on both sides and using the result from eq. (74), we obtain

1

c2
E[F (xmk )− F ∗]− 2ηL2m+ 1

2η

c2 E
[
‖x̄k1 − x0

k‖2
]
≤
(
L+ 1

η

)2

E
[
‖x̄1

k − yk‖2
]
. (77)

Note that x0
k = yk. Then rearranging the above inequality yields

1
c2E[F (yk+1)− F ∗] ≤ 1

c2
E[F (xmk )− F ∗] ≤

[(
L+ 1

η

)2

+
2ηL2m+ 1

2η

c2

]
E
[
‖x̄1

k − yk‖2
]

(78)

≤ (L+ 1
η )

2
+

2ηL2m+ 1
2η

c2
1
2η−L−α

(E[F (yk)]− E[F (yk+1)]) , (79)

which can be rewritten as rk+1 ≤ d (rk − rk+1) with d =
c2(L+ 1

η )
2
+2ηL2m+ 1

2η
1
2η−L−α

. Then, induction yields that

rk+1 ≤
d

d+ 1
rk ≤

(
d

d+ 1

)k+1

(F (y0)− F ∗) . (80)


