Supplementary Materials

A. Proof of Theorem 1

We first recall the following lemma.
Lemma 1 (Lemma 1, (Gong et al., 2013)). Under Assumption 1.\{3\}. For any $\eta>0$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ such that $\mathbf{x}=\operatorname{prox}_{\eta g}(\mathbf{y}-\eta \nabla f(\mathbf{y}))$, one has that

$$
F(\mathbf{x}) \leq F(\mathbf{y})-\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\|\mathbf{x}-\mathbf{y}\|^{2} .
$$

Applying Lemma 1 with $\mathbf{x}=\mathbf{x}_{k}, \mathbf{y}=\mathbf{y}_{k}$, we obtain that

$$
\begin{equation*}
F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{y}_{k}\right)-\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2} . \tag{12}
\end{equation*}
$$

Since $\eta<\frac{1}{L}$, it follows that $F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{y}_{k}\right)$. Moreover, the update rule of APGnc guarantees that $F\left(\mathbf{y}_{k+1}\right) \leq F\left(\mathbf{x}_{k}\right)$. In summary, for all k the following inequality holds:

$$
\begin{equation*}
F\left(\mathbf{y}_{k+1}\right) \leq F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{y}_{k}\right) \leq F\left(\mathbf{x}_{k-1}\right) . \tag{13}
\end{equation*}
$$

Combing further with the fact that $F\left(\mathbf{x}_{k}\right), F\left(\mathbf{y}_{k}\right) \geq \inf F>-\infty$ for all k, we conclude that $\left\{F\left(\mathbf{x}_{k}\right)\right\},\left\{F\left(\mathbf{y}_{k}\right)\right\}$ converge to the same limit F^{*}, i.e.,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(\mathbf{x}_{k}\right)=\lim _{k \rightarrow \infty} F\left(\mathbf{y}_{k}\right)=F^{*} . \tag{14}
\end{equation*}
$$

On the other hand, by induction we conclude from eq. (13) that for all k

$$
F\left(\mathbf{y}_{k}\right) \leq F\left(\mathbf{x}_{0}\right), \quad F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{x}_{0}\right) .
$$

Combining with Assumption 1.1 that F has bounded sublevel set, we conclude that $\left\{\mathbf{x}_{k}\right\}$ and $\left\{\mathbf{y}_{k}\right\}$ are bounded and thus have bounded limit points. Now combining eq. (12) and eq. (13) yields

$$
\begin{align*}
\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2} & \leq F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{x}_{k}\right) \\
& \leq F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{y}_{k+1}\right), \tag{15}
\end{align*}
$$

which, after telescoping over k and letting $k \rightarrow \infty$, becomes

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2} \leq F\left(\mathbf{y}_{1}\right)-\inf F<\infty . \tag{16}
\end{equation*}
$$

This further implies that $\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\| \rightarrow 0$, and hence $\left\{\mathbf{x}_{k}\right\}$ and $\left\{\mathbf{y}_{k}\right\}$ share the same set of limit points Ω. Note that Ω is closed (it is a set of limit points) and bounded, we conclude that Ω is compact in \mathbb{R}^{d}.
By optimality condition of the proximal gradient step of APGnc, we obtain that

$$
\begin{align*}
-\nabla f\left(\mathbf{y}_{k}\right)-\frac{1}{\eta}\left(\mathbf{x}_{k}-\mathbf{y}_{k}\right) & \in \partial g\left(\mathbf{x}_{k}\right) \\
\Leftrightarrow \underbrace{\nabla f\left(\mathbf{x}_{k}\right)-\nabla f\left(\mathbf{y}_{k}\right)-\frac{1}{\eta}\left(\mathbf{x}_{k}-\mathbf{y}_{k}\right)}_{\mathbf{u}_{k}} & \in \partial F\left(\mathbf{x}_{k}\right), \tag{17}
\end{align*}
$$

which further implies that

$$
\begin{align*}
\left\|\mathbf{u}_{k}\right\| & =\left\|\nabla f\left(\mathbf{x}_{k}\right)-\nabla f\left(\mathbf{y}_{k}\right)-\frac{1}{\eta}\left(\mathbf{x}_{k}-\mathbf{y}_{k}\right)\right\| \\
& \leq\left(L+\frac{1}{\eta}\right)\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\| \rightarrow 0 . \tag{18}
\end{align*}
$$

Consider any limit point $\mathbf{z}^{\prime} \in \Omega$, and w.l.o.g we write $\mathbf{x}_{k} \rightarrow \mathbf{z}^{\prime}, \mathbf{y}_{k} \rightarrow \mathbf{z}^{\prime}$ by restricting to a subsequence. By the definition of the proximal map, the proximal gradient step of APGnc implies that

$$
\begin{align*}
& \left\langle\nabla f\left(\mathbf{y}_{k}\right), \mathbf{x}_{k}-\mathbf{y}_{k}\right\rangle+\frac{1}{2 \eta}\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2}+g\left(\mathbf{x}_{k}\right) \\
& \quad \leq\left\langle\nabla f\left(\mathbf{y}_{k}\right), \mathbf{z}^{\prime}-\mathbf{y}_{k}\right\rangle+\frac{1}{2 \eta}\left\|\mathbf{z}^{\prime}-\mathbf{y}_{k}\right\|^{2}+g\left(\mathbf{z}^{\prime}\right) . \tag{19}
\end{align*}
$$

Taking limsup on both sides and note that $\mathbf{x}_{k}-\mathbf{y}_{k} \rightarrow 0, \mathbf{y}_{k} \rightarrow \mathbf{z}^{\prime}$, we obtain that $\lim \sup _{k \rightarrow \infty} g\left(\mathbf{x}_{k}\right) \leq g\left(\mathbf{z}^{\prime}\right)$. Since g is lower semicontinuous and $\mathbf{x}_{k} \rightarrow \mathbf{z}^{\prime}$, it follows that $\lim \sup _{k \rightarrow \infty} g\left(\mathbf{x}_{k}\right) \geq g\left(\mathbf{z}^{\prime}\right)$. Combining both inequalities, we conclude that $\lim _{k \rightarrow \infty} g\left(\mathbf{x}_{k}\right)=g\left(\mathbf{z}^{\prime}\right)$. Note that the continuity of f yields $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)=f\left(\mathbf{z}^{\prime}\right)$, we then conclude that $\lim _{k \rightarrow \infty} F\left(\mathbf{x}_{k}\right)=F\left(\mathbf{z}^{\prime}\right)$. Since $\lim _{k \rightarrow \infty} F\left(\mathbf{x}_{k}\right)=F^{*}$ by eq. (14), we conclude that

$$
\begin{equation*}
F\left(\mathbf{z}^{\prime}\right) \equiv F^{*}, \quad \forall \mathbf{z}^{\prime} \in \Omega \tag{20}
\end{equation*}
$$

Hence, F remains constant on the compact set Ω. To this end, we have established $\mathbf{x}_{k} \rightarrow \mathbf{z}^{\prime}, F\left(\mathbf{x}_{k}\right) \rightarrow F\left(\mathbf{z}^{\prime}\right)$ and that $\partial F\left(\mathbf{x}_{k}\right) \ni \mathbf{u}_{k} \rightarrow 0$. Recall the definition of limiting sub-differential, we conclude that $0 \in \partial F\left(\mathbf{z}^{\prime}\right)$ for all $\mathbf{z}^{\prime} \in \Omega$.

B. Proof of Theorem 2

Throughout the proof we assume that $F\left(\mathbf{x}_{k}\right) \neq F^{*}$ for all k because otherwise the algorithm terminates and the conclusions hold trivially. We also denote k_{0} as a sufficiently large positive integer.

Combining eq. (12) and eq. (13) yields that

$$
\begin{equation*}
F\left(\mathbf{x}_{k+1}\right) \leq F\left(\mathbf{x}_{k}\right)-\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\left\|\mathbf{y}_{k+1}-\mathbf{x}_{k+1}\right\|^{2} \tag{21}
\end{equation*}
$$

Moreover, eq. (17) and eq. (18) imply that

$$
\begin{equation*}
\operatorname{dist}_{\partial F\left(\mathbf{x}_{k}\right)}(\mathbf{0}) \leq\left(L+\frac{1}{\eta}\right)\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\| \tag{22}
\end{equation*}
$$

We have shown in Appendix A that $F\left(\mathbf{x}_{k}\right) \downarrow F^{*}$, and it is also clear that $\operatorname{dist}_{\Omega}\left(\mathbf{x}_{k}\right) \rightarrow 0$. Thus, for any $\epsilon, \delta>0$ and all $k \geq k_{0}$, we have

$$
\mathbf{x}_{k} \in\left\{\mathbf{x} \mid \operatorname{dist}_{\Omega}(\mathbf{x}) \leq \epsilon, F^{*}<F(\mathbf{x})<F^{*}+\delta\right\}
$$

Since Ω is compact and F is constant on it, the uniformized KL property implies that for all $k \geq k_{0}$

$$
\begin{equation*}
\varphi^{\prime}\left(F\left(\mathbf{x}_{k}\right)-F^{*}\right) \operatorname{dist}_{\partial F\left(\mathbf{x}_{k}\right)}(\mathbf{0}) \geq 1 \tag{23}
\end{equation*}
$$

Recall that $r_{k}:=F\left(\mathbf{x}_{k}\right)-F^{*}$. Then eq. (23) is equivalent to

$$
\begin{aligned}
& 1 \leq\left(\varphi^{\prime}\left(r_{k}\right) \operatorname{dist}_{\partial F\left(\mathbf{x}_{k}\right)}(\mathbf{0})\right)^{2} \\
& \quad \stackrel{(i)}{\leq}\left(\varphi^{\prime}\left(r_{k}\right)\right)^{2}\left(\frac{1}{\eta}+L\right)^{2}\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2} \\
& \quad \stackrel{(i i)}{\leq}\left(\varphi^{\prime}\left(r_{k}\right)\right)^{2} \frac{\left(\frac{1}{\eta}+L\right)^{2}}{\frac{1}{2 \eta}-\frac{L}{2}}\left[F\left(\mathbf{x}_{k-1}\right)-F\left(\mathbf{x}_{k}\right)\right] \\
& \quad \leq d_{1}\left(\varphi^{\prime}\left(r_{k}\right)\right)^{2}\left(r_{k-1}-r_{k}\right)
\end{aligned}
$$

where (i) is due to eq. (22), (ii) follows from eq. (21), and $d_{1}=\left(\frac{1}{\eta}+L\right)^{2} /\left(\frac{1}{2 \eta}-\frac{L}{2}\right)$. Since $\varphi(t)=\frac{c}{\theta} t^{\theta}$, we have that $\varphi^{\prime}(t)=c t^{\theta-1}$. Thus the above inequality becomes

$$
\begin{equation*}
1 \leq d_{1} c^{2} r_{k}^{2 \theta-2}\left(r_{k-1}-r_{k}\right) \tag{24}
\end{equation*}
$$

It has been shown in (Frankel et al., 2015; Li \& Lin, 2015) that sequence $\left\{r_{k}\right\}$ satisfying the above inductive property converges to zero at different rates according to θ as stated in the theorem.

C. Proof of Theorem 3

g non-convex, $\epsilon_{k}=0$: In this setting, we first prove the following inexact version of Lemma 1.
Lemma 2. Under Assumption 1.3. For any $\eta>0$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ such that $\mathbf{x}=\operatorname{prox}_{\eta g}(\mathbf{y}-\eta(\nabla f(\mathbf{y})+\mathbf{e}))$, one has that

$$
F(\mathbf{x}) \leq F(\mathbf{y})+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\|\mathbf{x}-\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|\|\mathbf{e}\|
$$

Proof. By Assumption 1.3 we have that

$$
f(\mathbf{x}) \leq f(\mathbf{y})+\langle\mathbf{x}-\mathbf{y}, \nabla f(\mathbf{y})\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Also, by the definition of proximal map, the proximal gradient step implies that

$$
g(\mathbf{x})+\frac{1}{2 \eta}\|\mathbf{x}-\mathbf{y}+\eta(\nabla f(\mathbf{y})+\mathbf{e})\|^{2} \leq g(\mathbf{y})+\frac{1}{2 \eta}\|\eta(\nabla f(\mathbf{y})+\mathbf{e})\|^{2}
$$

which, after simplifications becomes that

$$
g(\mathbf{x}) \leq g(\mathbf{y})-\frac{1}{2 \eta}\|\mathbf{x}-\mathbf{y}\|^{2}-\langle\mathbf{x}-\mathbf{y},(\nabla f(\mathbf{y})+\mathbf{e})\rangle
$$

Combine the above two inequalities further gives that

$$
F(\mathbf{x}) \leq F(\mathbf{y})+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\|\mathbf{x}-\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|\|\mathbf{e}\|
$$

Using Lemma 2 with $\mathbf{x}=\mathbf{x}_{k}, \mathbf{y}=\mathbf{y}_{k}, \mathbf{e}=\mathbf{e}_{k}$ and notice the fact that $\left\|\mathbf{e}_{k}\right\| \leq \gamma\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|$, we obtain that

$$
\begin{equation*}
F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{y}_{k}\right)+\left(\gamma+\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2} \tag{25}
\end{equation*}
$$

Moreover, the optimality condition of the proximal gradient step with gradient error gives that By optimality condition of the proximal gradient step of APGnc, we obtain that

$$
\nabla f\left(\mathbf{x}_{k}\right)-\nabla f\left(\mathbf{y}_{k}\right)-\mathbf{e}_{k}-\frac{1}{\eta}\left(\mathbf{x}_{k}-\mathbf{y}_{k}\right) \in \partial F\left(\mathbf{x}_{k}\right)
$$

which further implies that

$$
\begin{equation*}
\operatorname{dist}_{\partial F\left(\mathbf{x}_{k}\right)}(\mathbf{0}) \leq\left(\gamma+L+\frac{1}{\eta}\right)\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\| \tag{26}
\end{equation*}
$$

Notice that eq. (25) and eq. (26) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis of exact APGnc. Thus, by choosing $\eta<\frac{1}{2 \gamma+L}$ and redefining $d_{1}=\left(\frac{1}{\eta}+L+\gamma\right)^{2} /\left(\frac{1}{2 \eta}-\frac{L}{2}-\gamma\right)$, all the statements in Theorem 1 remain true and the convergence rates in Theorem 2 remain the same order with a worse constant.
g convex: We first present the following lemma.
Lemma 3. For any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^{d}$, let $\mathbf{u}^{\prime} \in \partial_{\epsilon} g(\mathbf{x})$ such that $\nabla f(\mathbf{x})+\mathbf{u}^{\prime}$ has minimal norm. Denote $\xi:=\operatorname{dist}_{\partial g(\mathbf{x})}\left(\mathbf{u}^{\prime}\right)$, then we have

$$
\begin{equation*}
\operatorname{dist}_{\partial F(\mathbf{x})}(\mathbf{0}) \leq \operatorname{dist}_{\nabla f(\mathbf{x})+\partial_{\epsilon} g(\mathbf{x})}(\mathbf{0})+\xi \tag{27}
\end{equation*}
$$

Proof. We observe the following

$$
\begin{align*}
\operatorname{dist}_{\partial F(\mathbf{x})}(\mathbf{0}) & =\min _{\mathbf{u} \in \partial g(\mathbf{x})}\|\nabla f(\mathbf{x})+\mathbf{u}\| \\
& =\min _{\mathbf{u} \in \partial g(\mathbf{x})}\left\|\nabla f(\mathbf{x})+\mathbf{u}^{\prime}+\mathbf{u}-\mathbf{u}^{\prime}\right\|, \forall \mathbf{u}^{\prime} \in \partial_{\epsilon} g(\mathbf{x}) \\
& \leq\left\|\nabla f(\mathbf{x})+\mathbf{u}^{\prime}\right\|+\min _{\mathbf{u} \in \partial g(\mathbf{x})}\left\|\mathbf{u}-\mathbf{u}^{\prime}\right\|, \forall \mathbf{u}^{\prime} \in \partial_{\epsilon} g(\mathbf{x}) \\
& \leq \min _{\mathbf{u}^{\prime} \in \partial_{\epsilon}} g(\mathbf{x})\left\|\nabla f(\mathbf{x})+\mathbf{u}^{\prime}\right\|+\xi \\
& =\operatorname{dist}_{\nabla f(\mathbf{x})+\partial_{\epsilon} g(\mathbf{x})}(\mathbf{0})+\xi \tag{28}
\end{align*}
$$

Recall that we have two inexactness, i.e., $\mathbf{x}_{k}=\operatorname{prox}_{\eta g}^{\epsilon_{k}}\left(\mathbf{y}_{k}-\eta\left(\nabla f\left(\mathbf{y}_{k}\right)+\mathbf{e}_{k}\right)\right)$. Following a proof similar to that of Lemma 2 and notice that $\epsilon_{k} \leq \delta\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2}$, we can obtain that

$$
\begin{align*}
F\left(\mathbf{x}_{k}\right) & \leq F\left(\mathbf{y}_{k}\right)+\left(\gamma+\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2}+\epsilon_{k} \\
& \leq F\left(\mathbf{y}_{k}\right)+\left(\gamma^{\prime}+\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2} \tag{29}
\end{align*}
$$

for some $\gamma^{\prime}>\gamma>0$. Since g is convex, by Lemma 2 in (Schmidt et al., 2011) one can exhibit \mathbf{v}_{k} with $\left\|\mathbf{v}_{k}\right\| \leq \sqrt{2 \eta \epsilon_{k}}$ such that

$$
\frac{1}{\eta}\left[\mathbf{y}_{k}-\mathbf{x}_{k}-\eta\left(\nabla f\left(\mathbf{y}_{k}\right)+\mathbf{e}_{k}\right)-\mathbf{v}_{k}\right] \in \partial_{\epsilon_{k}} g\left(\mathbf{x}_{k}\right)
$$

This implies that

$$
\operatorname{dist}_{\nabla f\left(\mathbf{x}_{k}\right)+\partial_{\epsilon_{k}} g\left(\mathbf{x}_{k}\right)}(\mathbf{0}) \leq\left(\gamma+\frac{1}{\eta}+L\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|+\sqrt{\frac{2 \epsilon_{k}}{\eta}}
$$

Apply Lemma 3 and notice that $\epsilon_{k} \leq \delta\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|^{2}, \xi_{k} \leq \lambda\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\|$, we obtain that

$$
\begin{equation*}
\operatorname{dist}_{\partial F\left(\mathbf{x}_{k}\right)}(\mathbf{0}) \leq\left(\gamma^{\prime}+\frac{1}{\eta}+L\right)\left\|\mathbf{x}_{k}-\mathbf{y}_{k}\right\| \tag{30}
\end{equation*}
$$

for some $\gamma^{\prime}>\gamma>0$. Now eq. (29) and eq. (30) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis of exact APGnc. Thus, by choosing $\eta<\frac{1}{2 \gamma^{\prime}+L}$ and redefining $d_{1}=\left(\frac{1}{\eta}+L+\gamma^{\prime}\right)^{2} /\left(\frac{1}{2 \eta}-\frac{L}{2}-\gamma^{\prime}\right)$, all the statements in Theorem 1 remain true and the convergence rates in Theorem 2 remain the same order with a worse constant.

D. Proof of Theorem 4

We first define the following quantities for the convenience of the proof.

$$
\begin{align*}
& c_{t}=c_{t+1}\left(1+\frac{1}{m}\right)+\frac{\eta L^{2}}{2}, \quad c_{m}=0 \tag{31}\\
& R_{k}^{t}:=\mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+c_{t}\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \tag{32}\\
& \overline{\mathbf{x}}_{k}^{t+1}=\operatorname{prox}_{\eta g}\left(\mathbf{x}_{k}^{t}-\eta \nabla f\left(\mathbf{x}_{k}^{t}\right)\right) \tag{33}
\end{align*}
$$

Note that $\overline{\mathbf{x}}_{k}^{t+1}$ is a reference sequence introduced for the convenience of analysis, and is not being computed in the implementation of the algorithm. Then it has been shown in the proof of Theorem 5 of (Reddi et al., 2016b) that

$$
\begin{equation*}
R_{k}^{t+1} \leq R_{k}^{t}+\left(L-\frac{1}{2 \eta}\right) \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right] \tag{34}
\end{equation*}
$$

Telescoping eq. (34) over t from $t=1$ to $t=m-1$, we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)+c_{1}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}+\sum_{t=1}^{m-1}\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right] \tag{35}
\end{equation*}
$$

Following from eq. (31), a simple induction shows that $c_{t} \leq \eta L^{2} m$. Setting $\eta<\frac{1}{2 L}$ and recalling that $F\left(\mathbf{y}_{k}\right) \leq F\left(\mathbf{x}_{k-1}^{m}\right)$., eq. (35) further implies that

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)\right]+\eta L^{2} m \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \tag{36}
\end{equation*}
$$

Now telescoping eq. (34) again over t from $t=0$ to $t=m-1$ and applying eq. (36), we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right]+\sum_{t=0}^{m-1}\left(L-\frac{1}{2 \eta}\right) \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right] \tag{37}
\end{equation*}
$$

Combining all the above facts, we conclude that for $\eta<\frac{1}{2 L}$

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{y}_{k-1}\right)\right] \leq \ldots \leq F\left(\mathbf{y}_{0}\right) \tag{38}
\end{equation*}
$$

Since $\mathbb{E}[F(\cdot)]$ is bounded below, $\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right]$ decreases to a finite limit, say, F^{*}. Define $r_{k}=\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)-F^{*}\right]$, and assume $r_{k}>0$ for all k (since otherwise $r_{k}=0$ and the algorithm terminates). Applying the KŁ property with $\theta=1 / 2$, we obtain

$$
\begin{equation*}
\frac{1}{c}\left(F(\mathbf{x})-F^{*}\right)^{\frac{1}{2}} \leq \operatorname{dist}_{\partial F(\mathbf{x})}(\mathbf{0}) \tag{39}
\end{equation*}
$$

Setting $\mathbf{x}=\overline{\mathbf{x}}_{k}^{1}$, we further obtain

$$
\begin{equation*}
\frac{1}{c^{2}}\left(F\left(\overline{\mathbf{x}}_{k}^{1}\right)-F^{*}\right) \leq \operatorname{dist}_{\partial F\left(\overline{\mathbf{x}}_{k}^{1}\right)}^{2}(\mathbf{0}) \leq\left(L+\frac{1}{\eta}\right)^{2}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2} \tag{40}
\end{equation*}
$$

where the last inequality is due to eq. (33). Taking expectation over both sides and using eq. (36), we obtain

$$
\begin{equation*}
\frac{1}{c^{2}} \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)-F^{*}\right]-\frac{\eta L^{2} m}{c^{2}} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \leq\left(L+\frac{1}{\eta}\right)^{2} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2}\right] \tag{41}
\end{equation*}
$$

Noting that $\mathbf{x}_{k}^{0}=\mathbf{y}_{k}$ and $\mathbb{E} F\left(\mathbf{y}_{k+1}\right) \leq \mathbb{E} F\left(\mathbf{x}_{k}^{m}\right)$, we then rearrange the above inequality and obtain

$$
\begin{align*}
\frac{1}{c^{2}} \mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)-F^{*}\right] \leq \frac{1}{c^{2}} \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)-F^{*}\right] & \leq\left[\left(L+\frac{1}{\eta}\right)^{2}+\frac{\eta L^{2} m}{c^{2}}\right] \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2}\right] \tag{42}\\
& \leq \frac{\left(L+\frac{1}{\eta}\right)^{2}+\frac{\eta L^{2} m}{c^{2}}}{\frac{1}{2 \eta}-L}\left(\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right]-E\left[F\left(\mathbf{y}_{k+1}\right)\right]\right) \tag{43}
\end{align*}
$$

which can be further rewritten as

$$
\begin{equation*}
r_{k+1} \leq d\left(r_{k}-r_{k+1}\right) \tag{44}
\end{equation*}
$$

where $d=\frac{c^{2}\left(L+\frac{1}{\eta}\right)^{2}+\eta L^{2} m}{\frac{1}{2 \eta}-L}$. Then a simple induction yields that

$$
\begin{equation*}
r_{k+1} \leq\left(\frac{d}{d+1}\right)^{k+1}\left(F\left(\mathbf{y}_{0}\right)-F^{*}\right) \tag{45}
\end{equation*}
$$

E. Proof of Theorem 5

We first introduce some auxiliary lemmas.
Lemma 4. Consider the convex function g and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ such that $\mathbf{y}=\operatorname{prox}_{\eta g}^{\epsilon}(\mathbf{x})$ for some $\epsilon>0$. Then, there exists $\|\mathbf{i}\| \leq \sqrt{2 \eta \epsilon}$ that satisfies the following inequality for all $\mathbf{z} \in \mathbb{R}^{d}$.

$$
\begin{equation*}
g(\mathbf{y})+\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{x}\|^{2} \leq g(\mathbf{z})+\frac{1}{2 \eta}\|\mathbf{z}-\mathbf{x}\|^{2}-\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{z}\|^{2}+\left\langle\mathbf{y}-\mathbf{z}, \frac{1}{\eta} \mathbf{i}\right\rangle+\epsilon \tag{46}
\end{equation*}
$$

Proof. By Lemma 2 in (Schmidt et al., 2011), there exists $\|\mathbf{i}\| \leq \sqrt{2 \eta \epsilon}$ such that

$$
\begin{equation*}
\frac{1}{\eta}(\mathbf{x}-\mathbf{y}-\mathbf{i}) \in \partial_{\epsilon} g(\mathbf{y}) \tag{47}
\end{equation*}
$$

Then, the definition of ϵ-subdifferential implies that

$$
\begin{equation*}
g(\mathbf{z})-g(\mathbf{y}) \geq\left\langle\mathbf{z}-\mathbf{y}, \partial_{\epsilon} g(\mathbf{y})\right\rangle-\epsilon=\left\langle\mathbf{z}-\mathbf{y}, \frac{1}{\eta}(\mathbf{x}-\mathbf{y}-\mathbf{i})\right\rangle-\epsilon, \forall \mathbf{z} \in \mathbb{R}^{d} \tag{48}
\end{equation*}
$$

The desired result follows by rearranging the above inequality.
Lemma 5. Consider the convex function g and $\mathbf{x}, \mathbf{y}, \mathbf{d} \in \mathbb{R}^{d}$ such that $\mathbf{y}=\operatorname{prox}_{\eta g}^{\epsilon}(\mathbf{x}-\eta \mathbf{d})$ for some $\epsilon>0$. Then, there exists $\|\mathbf{i}\| \leq \sqrt{2 \eta \epsilon}$ that satisfies the following inequality for all $\mathbf{z} \in \mathbb{R}^{d}$.

$$
\begin{equation*}
g(\mathbf{y})=\left\langle\mathbf{y}-\mathbf{z}, \mathbf{d}-\frac{1}{\eta} \mathbf{i}\right\rangle \leq g(\mathbf{z})+\frac{1}{2 \eta}\left[\|\mathbf{z}-\mathbf{x}\|^{2}-\|\mathbf{y}-\mathbf{z}\|^{2}-\|\mathbf{y}-\mathbf{x}\|^{2}\right]+\epsilon \tag{49}
\end{equation*}
$$

Proof. By Lemma 4, we obtain the following inequality for all $\mathbf{z} \in \mathbb{R}^{d}$.

$$
\begin{align*}
g(\mathbf{y})+ & \langle\mathbf{y}-\mathbf{x}, \mathbf{d}\rangle+\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{x}\|^{2}+\frac{\eta}{2}\|\mathbf{d}\|^{2} \\
& \leq g(\mathbf{z})+\frac{1}{2 \eta}\|\mathbf{z}-\mathbf{x}+\eta \mathbf{d}\|^{2}-\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{z}\|^{2}+\left\langle\mathbf{y}-\mathbf{z}, \frac{1}{\eta} \mathbf{i}\right\rangle+\epsilon \\
& =g(\mathbf{z})+\langle\mathbf{z}-\mathbf{x}, \mathbf{d}\rangle \frac{1}{2 \eta}\|\mathbf{z}-\mathbf{x}\|^{2}+\frac{\eta}{2}\|\mathbf{d}\|^{2}-\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{z}\|^{2}+\left\langle\mathbf{y}-\mathbf{z}, \frac{1}{\eta} \mathbf{i}\right\rangle+\epsilon \tag{50}
\end{align*}
$$

The desired result follows by rearranging the above inequality.
Lemma 6. Consider the convex function g and $\mathbf{x}, \mathbf{y}, \mathbf{d} \in \mathbb{R}^{d}$ such that $\mathbf{y}=\operatorname{prox}_{\eta g}^{\epsilon}(\mathbf{x}-\eta \mathbf{d})$ for some $\epsilon>0$. Then, there exists $\|\mathbf{i}\| \leq \sqrt{2 \eta \epsilon}$ that satisfies the following inequality for all $\mathbf{z} \in \mathbb{R}^{d}$.

$$
\begin{equation*}
F(\mathbf{y})+\left\langle\mathbf{y}-\mathbf{z}, \mathbf{d}-\frac{1}{\eta} \mathbf{i}-\nabla f(\mathbf{x})\right\rangle \leq F(\mathbf{z})+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\|\mathbf{y}-\mathbf{x}\|^{2}+\left(\frac{L}{2}+\frac{1}{2 \eta}\right)\|\mathbf{z}-\mathbf{x}\|^{2}-\frac{1}{2 \eta}\|\mathbf{y}-\mathbf{z}\|^{2}+\epsilon . \tag{51}
\end{equation*}
$$

Proof. By Lipschitz continuity of ∇f, we obtain

$$
\begin{array}{r}
f(\mathbf{y}) \leq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2} \\
f(\mathbf{x}) \leq f(\mathbf{z})+\langle\nabla f(\mathbf{x}), \mathbf{x}-\mathbf{z}\rangle+\frac{L}{2}\|\mathbf{x}-\mathbf{z}\|^{2} \tag{53}
\end{array}
$$

Adding the above inequalities together yields

$$
\begin{equation*}
f(\mathbf{y}) \leq f(\mathbf{z})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{z}\rangle+\frac{L}{2}\left[\|\mathbf{y}-\mathbf{x}\|^{2}+\|\mathbf{z}-\mathbf{x}\|^{2}\right] \tag{54}
\end{equation*}
$$

Combining with Lemma 5, we then obtain the desired result.
Recall the reference sequence $\overline{\mathbf{x}}_{k}^{t+1}=\operatorname{prox}_{\eta g}\left(\mathbf{x}_{k}^{t}-\eta \nabla f\left(\mathbf{x}_{k}^{t}\right)\right)$. Applying Lemma 6 with $\epsilon=0, \mathbf{y}=\overline{\mathbf{x}}_{k}^{t+1}, \mathbf{z}=\mathbf{x}_{k}^{t}$, and $\mathbf{d}=\nabla f\left(\mathbf{x}_{k}^{t}\right)$ and taking expectation on both sides, we obtain

$$
\begin{equation*}
\left.\mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{t+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+\left(\frac{L}{2}-\frac{1}{2 \eta}\right) \| \overline{\mathbf{x}}_{k}^{t+1}\right)-\mathbf{x}_{k}^{t}\left\|^{2}-\frac{1}{2 \eta}\right\| \overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t} \|^{2}\right] \tag{55}
\end{equation*}
$$

Similarly, applying Lemma 6 with $\epsilon=\epsilon_{k}^{t}, \mathbf{y}=\mathbf{x}_{k}^{t+1}, \mathbf{z}=\overline{\mathbf{x}}_{k}^{t+1}, \mathbf{d}=\mathbf{v}_{k}^{t}$ and taking expectation on both sides, we obtain

$$
\begin{align*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)\right] & \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{t+1}\right)+\left\langle\mathbf{x}_{k}^{t+1}-\overline{\mathbf{x}}_{k}^{t+1}, \nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}+\frac{1}{\eta} \mathbf{i}_{k}\right\rangle\right. \\
& \left.+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\left(\frac{L}{2}+\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}-\frac{1}{2 \eta}\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}+\epsilon_{k}^{t}\right] \tag{56}
\end{align*}
$$

Adding eq. (55) and eq. (56) together yields

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}-\frac{1}{2 \eta}\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}+T\right] \tag{57}
\end{equation*}
$$

where $T=\left\langle\mathbf{x}_{k}^{t+1}-\overline{\mathbf{x}}_{k}^{t+1}, \nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}+\frac{\mathbf{i}_{k}}{\eta}\right\rangle+\epsilon_{k}^{t}$. Now we bound $\mathbb{E}[T]$ as follows.

$$
\begin{align*}
\mathbb{E}[T] & \leq \frac{1}{2 \eta} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}\right]+\frac{\eta}{2} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}+\frac{\mathbf{i}_{k}}{\eta}\right\|^{2}\right]+\epsilon_{k}^{t} \tag{58}\\
& \leq \frac{1}{2 \eta} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}\right]+\eta \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}\right\|^{2}\right]+\eta \mathbb{E}\left[\left\|\frac{\mathbf{i}_{k}}{\eta}\right\|^{2}\right]+\epsilon_{k}^{t} \tag{59}\\
& \leq \frac{1}{2 \eta} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}\right]+\eta \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}\right\|^{2}\right]+3 \epsilon_{k}^{t} \tag{60}
\end{align*}
$$

By Lemma 3 of (Reddi et al., 2016b), it holds that $\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}^{t}\right)-\mathbf{v}_{k}^{t}\right\|^{2}\right] \leq L^{2} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right]$. Combining with the above inequality, we further obtain that

$$
\begin{equation*}
\mathbb{E}[T] \leq \frac{1}{2 \eta} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t+1}\right\|^{2}\right]+\eta L^{2} \mathbb{E}\left[\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right]+3 \epsilon_{k}^{t} \tag{61}
\end{equation*}
$$

Substituting the above result into eq. (57), we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\left(\frac{L}{2}-\frac{1}{2 \eta}\right)\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\eta L^{2}\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}+3 \epsilon_{k}^{t}\right] \tag{62}
\end{equation*}
$$

Recalling that $R_{k}^{t}:=\mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+c_{t}\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right]$, where $c_{t}=\eta L^{2} \frac{(1+\beta)^{m-t}-1}{\beta}$ with $\beta>0$. Then, we can upper bound R_{k}^{t+1} as

$$
\begin{align*}
R_{k}^{t+1}= & \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)+c_{t+1}\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}+\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \tag{63}\\
= & \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)+c_{t+1}\left(\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}+2\left\langle\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}, \mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\rangle\right)\right] \tag{64}\\
\leq & \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t+1}\right)+c_{t+1}\left(1+\frac{1}{\beta}\right)\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+c_{t+1}(1+\beta)\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \tag{65}\\
\leq & \mathbb{E}\left[F\left(\mathbf{x}_{k}^{t}\right)+\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\left[c_{t+1}\left(1+\frac{1}{\beta}\right)+\frac{L}{2}-\frac{1}{2 \eta}\right]\left\|\mathbf{x}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right. \tag{66}\\
& \left.+\left[c_{t+1}(1+\beta)+\eta L^{2}\right]\left\|\mathbf{x}_{k}^{t}-\mathbf{x}_{k}^{0}\right\|^{2}+3 \epsilon_{k}^{t}\right] \tag{67}
\end{align*}
$$

Setting $\beta=1 / m$ in c_{t} and observe that

$$
\begin{equation*}
c_{t}=\eta L^{2} \frac{(1+\beta)^{m-t}-1}{\beta}=\eta L^{2} m\left((1+\beta)^{m-t}-1\right) \leq \eta L^{2} m(e-1) \leq 2 \eta L^{2} m \tag{68}
\end{equation*}
$$

which further implies that

$$
\begin{equation*}
c_{t+1}\left(1+\frac{1}{\beta}\right)+\frac{L}{2} \leq 2 \eta L^{2} m(1+m) \leq 4 \eta L^{2} m^{2}+\frac{L}{2}=4 \rho L m^{2}+\frac{L}{2} \leq \frac{1}{2 \eta} \tag{69}
\end{equation*}
$$

Also note that $c_{t}=c_{t+1}(1+\beta)+\eta L^{2}$. Collecting all these facts, R_{k}^{t+1} can be further upper bounded by

$$
\begin{equation*}
R_{k}^{t+1} \leq R_{k}^{t}+\mathbb{E}\left[\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+3 \epsilon_{k}^{t}\right] \tag{70}
\end{equation*}
$$

Telescoping eq. (70) from $t=1$ to $t=m-1$, we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)+c_{1}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}+\sum_{t=1}^{m-1}\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\sum_{t=1}^{m-1} 3 \epsilon_{k}^{t}\right] \tag{71}
\end{equation*}
$$

Again, telescoping eq. (70) from $t=0$ to $t=m-1$ we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right]+\sum_{t=0}^{m-1}\left(L-\frac{1}{2 \eta}\right) \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right]+3 \sum_{t=0}^{m-1} \mathbb{E}\left[\epsilon_{k}^{t}\right] \tag{72}
\end{equation*}
$$

Assume $\sum_{t=0}^{m-1} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right]>0$, because otherwise the algorithm is terminated. Assume that there exists $\alpha>0$ such that $3 \sum_{t=0}^{m-1} \mathbb{E}\left[\epsilon_{k}^{t}\right] \leq \alpha \sum_{t=0}^{m-1} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right]$ and $\frac{1}{2 \eta}-L-\alpha>0$. Then eq. (72) further implies that

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right]+\sum_{t=0}^{m-1}\left(L-\frac{1}{2 \eta}+\alpha\right) \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right] \tag{73}
\end{equation*}
$$

That is, we have $\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right] \leq \mathbb{E}\left[F\left(\mathbf{y}_{k-1}\right)\right] \leq \ldots \leq F\left(\mathbf{y}_{0}\right)$, and hence $\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)\right] \downarrow F^{*}$. We can further upper bound eq. (71) as

$$
\begin{align*}
\mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)\right] & \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)+c_{1}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}+\sum_{t=1}^{m-1}\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\sum_{t=1}^{m-1} 3 \epsilon_{k}^{t}\right] \\
& \leq E\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)+c_{1}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}-\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}+\sum_{t=0}^{m-1}\left(L-\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}+\sum_{t=0}^{m-1} 3 \epsilon_{k}^{t}\right] \\
& \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)+\left(c_{1}+\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}+\sum_{t=0}^{m-1}\left(L-\frac{1}{2 \eta}+\alpha\right)\left\|\overline{\mathbf{x}}_{k}^{t+1}-\mathbf{x}_{k}^{t}\right\|^{2}\right] \\
& \leq \mathbb{E}\left[F\left(\overline{\mathbf{x}}_{k}^{1}\right)\right]+\mathbb{E}\left[\left(2 \eta L^{2} m+\frac{1}{2 \eta}\right)\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \tag{74}
\end{align*}
$$

Define $r_{k}=\mathbb{E}\left[F\left(\mathbf{y}_{k}\right)-F^{*}\right]$, and suppose $r_{k}>0$ for all k (otherwise the algorithm terminates in finite steps). Applying the KŁ condition with $\theta=1 / 2$, we obtain

$$
\begin{equation*}
\frac{1}{c}\left(F(\mathbf{x})-F^{*}\right)^{\frac{1}{2}} \leq \operatorname{dist}_{\partial F(\mathbf{x})}(\mathbf{0}) \tag{75}
\end{equation*}
$$

Setting $\mathbf{x}=\overline{\mathbf{x}}_{k}^{1}$, we obtain

$$
\begin{equation*}
\frac{1}{c^{2}}\left(F\left(\overline{\mathbf{x}}_{k}^{1}\right)-F^{*}\right) \leq \operatorname{dist}_{\partial F\left(\overline{\mathbf{x}}_{k}^{1}\right)}^{2}(\mathbf{0}) \leq\left(L+\frac{1}{\eta}\right)^{2}\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2} \tag{76}
\end{equation*}
$$

Taking expectation on both sides and using the result from eq. (74), we obtain

$$
\begin{equation*}
\frac{1}{c^{2}} \mathbb{E}\left[F\left(\mathbf{x}_{k}^{m}\right)-F^{*}\right]-\frac{2 \eta L^{2} m+\frac{1}{2 \eta}}{c^{2}} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{x}_{k}^{0}\right\|^{2}\right] \leq\left(L+\frac{1}{\eta}\right)^{2} \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2}\right] \tag{77}
\end{equation*}
$$

Note that $\mathbf{x}_{k}^{0}=\mathbf{y}_{k}$. Then rearranging the above inequality yields

$$
\begin{align*}
\frac{1}{c^{2}} \mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)-F^{*}\right] \leq \frac{1}{c^{2}} E\left[F\left(\mathbf{x}_{k}^{m}\right)-F^{*}\right] & \leq\left[\left(L+\frac{1}{\eta}\right)^{2}+\frac{2 \eta L^{2} m+\frac{1}{2 \eta}}{c^{2}}\right] \mathbb{E}\left[\left\|\overline{\mathbf{x}}_{k}^{1}-\mathbf{y}_{k}\right\|^{2}\right] \tag{78}\\
& \left.\leq \frac{\left(L+\frac{1}{\eta}\right)^{2}+\frac{2 \eta L^{2} m+\frac{1}{2 \eta}}{\frac{1}{2 \eta}-L-\alpha}\left(\mathbb{c ^ { 2 }}\right.}{}\left[F\left(\mathbf{y}_{k}\right)\right]-\mathbb{E}\left[F\left(\mathbf{y}_{k+1}\right)\right]\right) \tag{79}
\end{align*}
$$

which can be rewritten as $r_{k+1} \leq d\left(r_{k}-r_{k+1}\right)$ with $d=\frac{c^{2}\left(L+\frac{1}{\eta}\right)^{2}+2 \eta L^{2} m+\frac{1}{2 \eta}}{\frac{1}{2 \eta}-L-\alpha}$. Then, induction yields that

$$
\begin{equation*}
r_{k+1} \leq \frac{d}{d+1} r_{k} \leq\left(\frac{d}{d+1}\right)^{k+1}\left(F\left(\mathbf{y}_{0}\right)-F^{*}\right) \tag{80}
\end{equation*}
$$

