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In this document, we provide the proofs to Theorem 1 and
Corollary 1, which appear in Section 3.1 of the main docu-
ment. We also explain the optional UOS-EXPLORE initial-
ization phase of the SUPERPAC algorithm.

1. Proofs of Technical Results

Theorem 1. Consider two d-dimensional subspaces S1 and
Sy. Lety = x +n, where x € Sy and n ~ N(0,0°Ip).
Define

_ dist(y, S1)
u(y) = m .
Then
(1 —e)\/o?(D —d)
4o/ (D —d) T dsi(e. 5 ()
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() < (1+¢)y/o2(D —d)
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. - 2 .
with probability at least 1 — 4e=°=" (P=d) \yhere ¢ is an
absolute constant.

Proof. The proof relies on theorem 5.2.1 from (Vershynin,
2016), restated below.

Theorem 2. (Concentration on Gauss space) Consider a
random vector X ~ N(0,0%1p) and a Lipschitz function
f:RP — R. Then for every t > 0,
ct? >
—,
o?||f HLip

where || f||;,, is the Lipschitz constant of f.

P{f(X) —Ef(X)| = t} < 2exp (
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First consider the numerator and note that y — Py =
Pty ~ N(0,02Pit) with

E||Piy|”* = o*(D - d).

Let f(z) = ||Pzl||,, where P is an arbitrary projection
matrix. In this case, || f||;;, = 1, as f is a composition of
1-Lipschitz functions, which is also 1-Lipschitz. Further, by
Exercise 5.2.5 of (Vershynin, 2016), we can replace E || X ||,

o\ 1/2
by (E1X13)
Thm. 2 to the above, we see that

P{[lts] - VoD@ 2 o} < 2w (-5 ).

(1)
Similarly, for the denominator, note that y — Poy = Ps-y ~
N (Pstz,0?Pst) with

in the concentration inequality. Applying

E||Psy|” = 0*(D - d) ++°.

Since Ps-y is no longer centered, we let g(2) = z + P,
which also has ||g||;;, = 1. Applying Thm. 2 to the cen-

tered random vector i ~ A(0, 02 P;-) with Lipschitz func-
tion h = f o g, we have that

]P’{’HPQJ‘yH ,\/W’ >t} <2exp( Uf)

2

Letting ¢t = o?(D—d) in (1) and t =

e/o2(D — d)—i—’y in (2) yields
(1-2)V/02(D —d) <|[|Piy|| < (1 +)\/o?(D - d)
and
(1-2)Vo* (D —d) +12 < || P3|
< (14¢e)y/o2(D —d)+12,

each with probability at least 1 — 2exp (—ce?(D — d))
(since v > 0). Applying the union bound gives the statement
of the theorem. O

Corollary 1. Suppose x1 € Sy is such that

dist(z1,S2)? = sin? (¢1) —|—5< Zbln (bZ) 3)
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for some small § > 0; that is, x1 is close to the intersection
of 81 and Ss. Let x5 be a random point in S1 generated as
xo = Uyw where Uy is a basis for S; and w ~ N (0, %Id).
We observe y; = x; + n;, where n; ~ N(0,0?), i = 1,2.
If there exists T > 1 such that

5 1

0< = ——

7T T

and

d
T (sin2(¢1) + éaQ (D — d)) < éZsirﬁ((/ﬁi) NG

i=1

that is, the average angle is sufficiently larger than the
smallest angle, then

2 2
P{uyr) > ply2)} > 1 — e (o) de  ge=elss) (O=a)
where 11(y) is defined as in Thm. 1, ¢ is an absolute constant,
and s = % Z?Zl sin?(¢;).
Proof. We have from Thm. 1 that

(1+¢)\/o2(D—d)
(1—¢)\/o2(D —d)+~2

w(y2) <

and
(1-¢)\/o2(D - d)

T+ave D "

with probability at least 1 — 4¢ =" (P=d)_ Therefore if we
get the upper bound of (ys2) to be smaller than the lower
bound of p(y1), we are done. Rearranging this desired
inequality we see that we need

v < B = (1= BHo*(D - d). (5)

where 3 = (1 —€)/(1 + ¢). Let € be such that 8* = 5/6,
and let 7 = sin®*(¢;) + ds as in the theorem. Then we
wish to select J to satisfy

393 = sin®(61) - Lo*(D — d)

§ < . 6)
S

(y1)

Applying concentration with 73, we have that v2 > (1 —
€)2s with probability at least 1 — e~%"9s where c is an
absolute constant. Therefore taking & to be such that (1 —
€)? = 6/7, we require

5s—sin®(¢1) — 20 (D—d) 5 1

§< X 2 _Z
< S 7T T

where we used the definition of 7 in the theorem. To quantify
the probability we need the appropriate values for € and &;
we lower bound both with simple fractions: 1/50 < & where
(1—¢)/(1+¢))* =B =>5/6and 7/100 < & where (1 —
€)? = 6/7. Applying the union bound with the chosen
concentration values implies that p(y1) > £1(y2) holds with

2 1\2
probability at least 1 — e=c(360) ds _ go=e(d) (0=

Algorithm 1 UOS-EXPLORE
Input: X = {x1,25,...,2y5}: data, K: number of
subspaces, d: dimension of subspaces, A: affinity matrix,
maxQueries: maximum number of pairwise comparisons
Estimate Labels: C' < SPECTRALCLUSTERING(A,K)
Calculate Margin: Calculate margin and set
Ty 4 arg max, y fi(x) (most confident point)
Initialize Certain Sets: 7, < xv, Z « {71},
numQueries < 0, n, < 1
while n. < K and numQueries < maxQueries do
Obtain Test Point: Choose z7 as point of maximum
margin such that C(z7) # C(z € Zy) for any k. If
no such xr exists, choose x at random.
Assign x7 to Certain Set:

Sort {Z1,---, Zy_} in order of most likely must-

link (via subspace residual for x7), query xp against

representatives from Zj until must-link constraint is

found or £ = n.. If no must-link constraint found,

set Z < {Z1,---, Zp,,{xr}} and increment n..
end while

2. UOS-EXPLORE Algorithm

In this section, we describe the process of initializing the
certain sets. Note that this step is not necessary, as we
could initialize all certain sets to be empty, but we found
it led to improved performance experimentally. A main
distinction between subspace clustering and the general
clustering problem is that in the UoS model points can lie
arbitrarily far from each other but still be on or near the
same subspace. For this reason, the EXPLORE algorithm
from (Basu et al., 2004) is unlikely to quickly find points
from different clusters in an efficient manner. Here we
define an analogous algorithm for the UoS case, termed
UOS-EXPLORE, with pseudocode given in Algorithm 1.
The goal of UOS-EXPLORE is to find K certain sets, each
containing as few points as possible (ideally a single point),
allowing us to more rapidly assign test points to certain
sets in the SUPERPAC algorithm. We begin by selecting
our test point zp as the most certain point, or the point of
maximum margin and placing it in its own certain set. We
then iteratively select 7 as the point of maximum margin
that (1) is not in any certain set and (2) has a different
cluster estimate from all points in the certain sets. If no
such point exists, we choose uniformly at random from all
points not in any certain set. This point is queried against
a single representative from each certain set according to
the UoS model as above until either a must-link is found
or all set representatives have been queried, in which case
7 is added to a new certain set. This process is repeated
until either K certain sets have been created or a terminal
number of queries have been used. As points of maximum
margin are more likely to be correctly clustered than other
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points in the set, we expect that by choosing points whose
estimated labels indicate they do not belong to any current
certain set, we will quickly find a point with no must-link
constraints. In our simulations, we found that this algorithm
finds at least one point from each cluster in nearly the lower
limit of K (K — 1)/2 queries on the Yale dataset.
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