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Leveraging Union of Subspace Structure to Improve Constrained Clustering:
Supplementary Material

Anonymous Authors1

In this document, we provide the proofs to Theorem 1 and
Corollary 1, which appear in Section 3.1 of the main docu-
ment. We also explain the optional UOS-EXPLORE initial-
ization phase of the SUPERPAC algorithm.

1. Proofs of Technical Results
Theorem 1. Consider two d-dimensional subspaces S1 and
S2. Let y = x + n, where x ∈ S1 and n ∼ N (0, σ2ID).
Define

µ(y) =
dist(y,S1)

dist(y,S2)
.

Then

(1− ε)
√
σ2(D − d)

(1 + ε)
√
σ2(D − d) + dist(x,S2)2

≤ µ(y)

and

µ(y) ≤
(1 + ε)

√
σ2(D − d)

(1− ε)
√
σ2(D − d) + dist(x,S2)2

,

with probability at least 1 − 4e−cε
2(D−d), where c is an

absolute constant.

Proof. The proof relies on theorem 5.2.1 from (Vershynin,
2016), restated below.

Theorem 2. (Concentration on Gauss space) Consider a
random vector X ∼ N (0, σ2ID) and a Lipschitz function
f : RD → R. Then for every t ≥ 0,

P {|f(X)− Ef(X)| ≥ t} ≤ 2 exp

(
− ct2

σ2 ‖f‖2Lip

)
,

where ‖f‖Lip is the Lipschitz constant of f .

*Equal contribution 1Anonymous Institution, Anonymous City,
Anonymous Region, Anonymous Country. Correspondence to:
Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

First consider the numerator and note that y − P1y =
P⊥1 y ∼ N (0, σ2P⊥1 ) with

E
∥∥P⊥1 y∥∥2 = σ2(D − d).

Let f(z) = ‖Pz‖2, where P is an arbitrary projection
matrix. In this case, ‖f‖Lip = 1, as f is a composition of
1-Lipschitz functions, which is also 1-Lipschitz. Further, by
Exercise 5.2.5 of (Vershynin, 2016), we can replace E ‖X‖2
by
(
E ‖X‖22

)1/2
in the concentration inequality. Applying

Thm. 2 to the above, we see that

P
{∣∣∣∥∥P⊥1 y∥∥−√σ2(D − d)

∣∣∣ ≥ t} ≤ 2 exp

(
−ct

2

σ2

)
.

(1)
Similarly, for the denominator, note that y−P2y = P⊥2 y ∼
N (P⊥2 x, σ

2P⊥2 ) with

E
∥∥P⊥2 y∥∥2 = σ2(D − d) + γ2.

Since P⊥2 y is no longer centered, we let g(z) = z + P⊥2 x,
which also has ‖g‖Lip = 1. Applying Thm. 2 to the cen-
tered random vector ȳ ∼ N (0, σ2P⊥2 ) with Lipschitz func-
tion h = f ◦ g, we have that

P
{∣∣∣∥∥P⊥2 y∥∥−√σ2(D − d) + γ2

∣∣∣ ≥ t} ≤ 2 exp

(
−ct

2

σ2

)
.

(2)
Letting t = ε

√
σ2(D − d) in (1) and t =

ε
√
σ2(D − d) + γ2 in (2) yields

(1− ε)
√
σ2(D − d) ≤

∥∥P⊥1 y∥∥ ≤ (1 + ε)
√
σ2(D − d)

and

(1− ε)
√
σ2(D − d) + γ2 ≤

∥∥P⊥2 y∥∥
≤ (1 + ε)

√
σ2(D − d) + γ2,

each with probability at least 1 − 2 exp
(
−cε2(D − d)

)
(since γ > 0). Applying the union bound gives the statement
of the theorem.

Corollary 1. Suppose x1 ∈ S1 is such that

dist(x1,S2)2 = sin2(φ1) + δ

(
1

d

d∑
i=1

sin2(φi)

)
(3)
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for some small δ ≥ 0; that is, x1 is close to the intersection
of S1 and S2. Let x2 be a random point in S1 generated as
x2 = U1w where U1 is a basis for S1 and w ∼ N (0, 1dId).
We observe yi = xi + ni, where ni ∼ N (0, σ2), i = 1, 2.
If there exists τ > 1 such that

δ <
5

7
− 1

τ

and

τ

(
sin2(φ1) +

1

6
σ2 (D − d)

)
<

1

d

d∑
i=1

sin2(φi) , (4)

that is, the average angle is sufficiently larger than the
smallest angle, then

P {µ(y1) > µ(y2)} ≥ 1− e−c(
7

100 )
2
ds − 4e−c(

1
50 )

2
(D−d)

where µ(y) is defined as in Thm. 1, c is an absolute constant,
and s = 1

d

∑d
i=1 sin2(φi).

Proof. We have from Thm. 1 that

µ(y2) ≤
(1 + ε)

√
σ2(D − d)

(1− ε)
√
σ2(D − d) + γ22

and
(1− ε)

√
σ2(D − d)

(1 + ε)
√
σ2(D − d) + γ21

≤ µ(y1)

with probability at least 1− 4e−cε
2(D−d). Therefore if we

get the upper bound of µ(y2) to be smaller than the lower
bound of µ(y1), we are done. Rearranging this desired
inequality we see that we need

γ21 < β4γ22 − (1− β4)σ2(D − d). (5)

where β = (1 − ε)/(1 + ε). Let ε be such that β4 = 5/6,
and let γ21 = sin2(φ1) + δs as in the theorem. Then we
wish to select δ to satisfy

δ <
5
6γ

2
2 − sin2(φ1)− 1

6σ
2(D − d)

s
. (6)

Applying concentration with γ22 , we have that γ22 ≥ (1 −
ξ)2s with probability at least 1 − e−cξ

2ds where c is an
absolute constant. Therefore taking ξ to be such that (1−
ξ)2 = 6/7, we require

δ <
5
7s− sin2(φ1)− 1

6σ
2(D − d)

s
=

5

7
− 1

τ

where we used the definition of τ in the theorem. To quantify
the probability we need the appropriate values for ε and ξ;
we lower bound both with simple fractions: 1/50 < εwhere
((1− ε)/(1 + ε))

4
= β = 5/6 and 7/100 < ξ where (1−

ξ)2 = 6/7. Applying the union bound with the chosen
concentration values implies that µ(y1) > µ(y2) holds with

probability at least 1− e−c(
7

100 )
2
ds − 4e−c(

1
50 )

2
(D−d).

Algorithm 1 UOS-EXPLORE

Input: X = {x1, x2, . . . , xN}: data, K: number of
subspaces, d: dimension of subspaces, A: affinity matrix,
maxQueries: maximum number of pairwise comparisons
Estimate Labels: Ĉ ← SPECTRALCLUSTERING(A,K)
Calculate Margin: Calculate margin and set
x∨ ← arg maxx∈X µ̂(x) (most confident point)

Initialize Certain Sets: Z1 ← x∨, Z ← {Z1},
numQueries← 0, nc ← 1

while nc < K and numQueries < maxQueries do
Obtain Test Point: Choose xT as point of maximum
margin such that Ĉ(xT ) 6= Ĉ(x ∈ Zk) for any k. If
no such xT exists, choose xT at random.
Assign xT to Certain Set:

Sort {Z1, · · · , Znc
} in order of most likely must-

link (via subspace residual for xT ), query xT against
representatives from Zk until must-link constraint is
found or k = nc. If no must-link constraint found,
set Z ← {Z1, · · · , Znc , {xT }} and increment nc.

end while

2. UOS-EXPLORE Algorithm
In this section, we describe the process of initializing the
certain sets. Note that this step is not necessary, as we
could initialize all certain sets to be empty, but we found
it led to improved performance experimentally. A main
distinction between subspace clustering and the general
clustering problem is that in the UoS model points can lie
arbitrarily far from each other but still be on or near the
same subspace. For this reason, the EXPLORE algorithm
from (Basu et al., 2004) is unlikely to quickly find points
from different clusters in an efficient manner. Here we
define an analogous algorithm for the UoS case, termed
UOS-EXPLORE, with pseudocode given in Algorithm 1.
The goal of UOS-EXPLORE is to find K certain sets, each
containing as few points as possible (ideally a single point),
allowing us to more rapidly assign test points to certain
sets in the SUPERPAC algorithm. We begin by selecting
our test point xT as the most certain point, or the point of
maximum margin and placing it in its own certain set. We
then iteratively select xT as the point of maximum margin
that (1) is not in any certain set and (2) has a different
cluster estimate from all points in the certain sets. If no
such point exists, we choose uniformly at random from all
points not in any certain set. This point is queried against
a single representative from each certain set according to
the UoS model as above until either a must-link is found
or all set representatives have been queried, in which case
xT is added to a new certain set. This process is repeated
until either K certain sets have been created or a terminal
number of queries have been used. As points of maximum
margin are more likely to be correctly clustered than other
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points in the set, we expect that by choosing points whose
estimated labels indicate they do not belong to any current
certain set, we will quickly find a point with no must-link
constraints. In our simulations, we found that this algorithm
finds at least one point from each cluster in nearly the lower
limit of K(K − 1)/2 queries on the Yale dataset.
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