Leveraging Union of Subspace Structure to Improve Constrained Clustering: Supplementary Material

Anonymous Authors¹

In this document, we provide the proofs to Theorem 1 and Corollary 1, which appear in Section 3.1 of the main document. We also explain the optional UOS-EXPLORE initialization phase of the SUPERPAC algorithm.

1. Proofs of Technical Results

Theorem 1. Consider two d-dimensional subspaces S_1 and S_2 . Let y = x + n, where $x \in S_1$ and $n \sim \mathcal{N}(0, \sigma^2 I_D)$. Define

$$\mu(y) = \frac{\operatorname{dist}(y, \mathcal{S}_1)}{\operatorname{dist}(y, \mathcal{S}_2)} \; .$$

Then

$$\frac{(1-\varepsilon)\sqrt{\sigma^2(D-d)}}{(1+\varepsilon)\sqrt{\sigma^2(D-d)} + \operatorname{dist}(x,\mathcal{S}_2)^2} \le \mu(y)$$

and

$$\mu(y) \le \frac{(1+\varepsilon)\sqrt{\sigma^2(D-d)}}{(1-\varepsilon)\sqrt{\sigma^2(D-d)} + \operatorname{dist}(x,\mathcal{S}_2)^2},$$

with probability at least $1 - 4e^{-c\varepsilon^2(D-d)}$, where c is an absolute constant.

Proof. The proof relies on theorem 5.2.1 from (Vershynin, 2016), restated below.

Theorem 2. (Concentration on Gauss space) Consider a random vector $X \sim \mathcal{N}(0, \sigma^2 I_D)$ and a Lipschitz function $f : \mathbb{R}^D \to \mathbb{R}$. Then for every $t \ge 0$,

$$\mathbb{P}\left\{\left|f(X) - \mathbb{E}f(X)\right| \ge t\right\} \le 2\exp\left(-\frac{ct^2}{\sigma^2 \left\|f\right\|_{\text{Lip}}^2}\right),$$

where $||f||_{\text{Lip}}$ is the Lipschitz constant of f.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute. First consider the numerator and note that $y - P_1 y = P_1^{\perp} y \sim \mathcal{N}(0, \sigma^2 P_1^{\perp})$ with

$$\mathbb{E} \left\| P_1^{\perp} y \right\|^2 = \sigma^2 (D - d).$$

Let $f(z) = ||Pz||_2$, where *P* is an arbitrary projection matrix. In this case, $||f||_{\text{Lip}} = 1$, as *f* is a composition of 1-Lipschitz functions, which is also 1-Lipschitz. Further, by Exercise 5.2.5 of (Vershynin, 2016), we can replace $\mathbb{E} ||X||_2$ by $(\mathbb{E} ||X||_2^2)^{1/2}$ in the concentration inequality. Applying Thm. 2 to the above, we see that

$$\mathbb{P}\left\{ \left| \left\| P_1^{\perp} y \right\| - \sqrt{\sigma^2 (D - d)} \right| \ge t \right\} \le 2 \exp\left(-\frac{ct^2}{\sigma^2} \right).$$
(1)

Similarly, for the denominator, note that $y - P_2 y = P_2^{\perp} y \sim \mathcal{N}(P_2^{\perp} x, \sigma^2 P_2^{\perp})$ with

$$\mathbb{E}\left\|P_2^{\perp}y\right\|^2 = \sigma^2(D-d) + \gamma^2.$$

Since $P_2^{\perp} y$ is no longer centered, we let $g(z) = z + P_2^{\perp} x$, which also has $||g||_{\text{Lip}} = 1$. Applying Thm. 2 to the centered random vector $\bar{y} \sim \mathcal{N}(0, \sigma^2 P_2^{\perp})$ with Lipschitz function $h = f \circ g$, we have that

$$\mathbb{P}\left\{ \left| \left\| P_2^{\perp} y \right\| - \sqrt{\sigma^2 (D - d) + \gamma^2} \right| \ge t \right\} \le 2 \exp\left(-\frac{ct^2}{\sigma^2} \right).$$
(2)

Letting $t = \varepsilon \sqrt{\sigma^2 (D - d)}$ in (1) and $t = \varepsilon \sqrt{\sigma^2 (D - d) + \gamma^2}$ in (2) yields

$$(1-\varepsilon)\sqrt{\sigma^2(D-d)} \le \left\|P_1^{\perp}y\right\| \le (1+\varepsilon)\sqrt{\sigma^2(D-d)}$$

and

$$(1-\varepsilon)\sqrt{\sigma^2(D-d)+\gamma^2} \le \left\|P_2^{\perp}y\right\|$$
$$\le (1+\varepsilon)\sqrt{\sigma^2(D-d)+\gamma^2},$$

each with probability at least $1 - 2 \exp(-c\varepsilon^2(D-d))$ (since $\gamma > 0$). Applying the union bound gives the statement of the theorem.

Corollary 1. Suppose $x_1 \in S_1$ is such that

$$\operatorname{dist}(x_1, \mathcal{S}_2)^2 = \sin^2(\phi_1) + \delta\left(\frac{1}{d}\sum_{i=1}^d \sin^2(\phi_i)\right) \quad (3)$$

^{*}Equal contribution ¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

110 for some small $\delta \geq 0$; that is, x_1 is close to the intersection 111 of S_1 and S_2 . Let x_2 be a random point in S_1 generated as 112 $x_2 = U_1 w$ where U_1 is a basis for S_1 and $w \sim \mathcal{N}(0, \frac{1}{d}I_d)$. 113 We observe $y_i = x_i + n_i$, where $n_i \sim \mathcal{N}(0, \sigma^2)$, i = 1, 2. 114 If there exists $\tau > 1$ such that

$$\delta < \frac{5}{7} - \frac{1}{\tau}$$

_s and

$$\tau\left(\sin^2(\phi_1) + \frac{1}{6}\sigma^2\left(D - d\right)\right) < \frac{1}{d}\sum_{i=1}^d \sin^2(\phi_i) , \quad (4)$$

that is, the average angle is sufficiently larger than the smallest angle, then

$$\mathbb{P}\left\{\mu(y_1) > \mu(y_2)\right\} \ge 1 - e^{-c\left(\frac{7}{100}\right)^2 ds} - 4e^{-c\left(\frac{1}{50}\right)^2 (D-d)}$$

where $\mu(y)$ is defined as in Thm. 1, c is an absolute constant, and $s = \frac{1}{d} \sum_{i=1}^{d} \sin^2(\phi_i)$.

Proof. We have from Thm. 1 that

$$\mu(y_2) \le \frac{(1+\varepsilon)\sqrt{\sigma^2(D-d)}}{(1-\varepsilon)\sqrt{\sigma^2(D-d)}+\gamma_2^2}$$

and

$$\frac{(1-\varepsilon)\sqrt{\sigma^2(D-d)}}{(1+\varepsilon)\sqrt{\sigma^2(D-d)+\gamma_1^2}} \le \mu(y_1)$$

with probability at least $1 - 4e^{-c\varepsilon^2(D-d)}$. Therefore if we get the upper bound of $\mu(y_2)$ to be smaller than the lower bound of $\mu(y_1)$, we are done. Rearranging this desired inequality we see that we need

$$\gamma_1^2 < \beta^4 \gamma_2^2 - (1 - \beta^4) \sigma^2 (D - d).$$
 (5)

where $\beta = (1 - \varepsilon)/(1 + \varepsilon)$. Let ε be such that $\beta^4 = 5/6$, and let $\gamma_1^2 = \sin^2(\phi_1) + \delta s$ as in the theorem. Then we wish to select δ to satisfy

$$\delta < \frac{\frac{5}{6}\gamma_2^2 - \sin^2(\phi_1) - \frac{1}{6}\sigma^2(D-d)}{s}.$$
 (6)

Applying concentration with γ_2^2 , we have that $\gamma_2^2 \ge (1 - \xi)^2 s$ with probability at least $1 - e^{-c\xi^2 ds}$ where *c* is an absolute constant. Therefore taking ξ to be such that $(1 - \xi)^2 = 6/7$, we require

$$\delta < \frac{\frac{5}{7}s - \sin^2(\phi_1) - \frac{1}{6}\sigma^2(D-d)}{s} = \frac{5}{7} - \frac{1}{\tau}$$

157 where we used the definition of τ in the theorem. To quantify 158 the probability we need the appropriate values for ε and ξ ; 159 we lower bound both with simple fractions: $1/50 < \varepsilon$ where 160 $((1-\varepsilon)/(1+\varepsilon))^4 = \beta = 5/6$ and $7/100 < \xi$ where $(1-\xi)^2 = 6/7$. Applying the union bound with the chosen 162 concentration values implies that $\mu(y_1) > \mu(y_2)$ holds with 163 probability at least $1 - e^{-c(\frac{\tau}{100})^2 ds} - 4e^{-c(\frac{1}{50})^2(D-d)}$. **Algorithm 1** UOS-EXPLORE 166 **Input:** $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$: data, K: number of 167 subspaces, d: dimension of subspaces, A: affinity matrix, 168 maxQueries: maximum number of pairwise comparisons 169 **Estimate Labels:** $\hat{C} \leftarrow \text{SPECTRALCLUSTERING}(A, K)$ Calculate Margin: Calculate margin and set 171 $x_{\vee} \leftarrow \arg \max_{x \in \mathcal{X}} \hat{\mu}(x) \text{ (most confident point)}$ 172 Initialize Certain Sets: $Z_1 \leftarrow x_{\vee}, \mathcal{Z} \leftarrow \{Z_1\},$ numQueries $\leftarrow 0, n_c \leftarrow 1$ 174 while $n_c < K$ and numQueries < maxQueries do 175 **Obtain Test Point:** Choose x_T as point of maximum 176 margin such that $\hat{C}(x_T) \neq \hat{C}(x \in Z_k)$ for any k. If no such x_T exists, choose x_T at random. 178 Assign x_T to Certain Set: 179 Sort $\{Z_1, \dots, Z_{n_c}\}$ in order of most likely must-180 link (via subspace residual for x_T), query x_T against 181

link (via subspace residual for x_T), query x_T against representatives from Z_k until must-link constraint is found or $k = n_c$. If no must-link constraint found, set $\mathcal{Z} \leftarrow \{Z_1, \cdots, Z_{n_c}, \{x_T\}\}$ and increment n_c . end while

182

183

184

185

186

187

189

190

191

194

195

196

198

199

200

201

202

204

206

208

209

210

211

212

213

214

215

216

217

218

219

2. UOS-EXPLORE Algorithm

In this section, we describe the process of initializing the certain sets. Note that this step is not necessary, as we could initialize all certain sets to be empty, but we found it led to improved performance experimentally. A main distinction between subspace clustering and the general clustering problem is that in the UoS model points can lie arbitrarily far from each other but still be on or near the same subspace. For this reason, the EXPLORE algorithm from (Basu et al., 2004) is unlikely to quickly find points from different clusters in an efficient manner. Here we define an analogous algorithm for the UoS case, termed UOS-EXPLORE, with pseudocode given in Algorithm 1. The goal of UOS-EXPLORE is to find K certain sets, each containing as few points as possible (ideally a single point), allowing us to more rapidly assign test points to certain sets in the SUPERPAC algorithm. We begin by selecting our test point x_T as the most certain point, or the point of maximum margin and placing it in its own certain set. We then iteratively select x_T as the point of maximum margin that (1) is not in any certain set and (2) has a different cluster estimate from all points in the certain sets. If no such point exists, we choose uniformly at random from all points not in any certain set. This point is queried against a single representative from each certain set according to the UoS model as above until either a must-link is found or all set representatives have been queried, in which case x_T is added to a new certain set. This process is repeated until either K certain sets have been created or a terminal number of queries have been used. As points of maximum margin are more likely to be correctly clustered than other

220	points in the set, we expect that by choosing points whose	275 276
221	estimated labels indicate they do not belong to any current	
222	certain set, we will quickly find a point with no must-link	277
223	constraints. In our simulations, we found that this algorithm	278
224	finds at least one point from each cluster in nearly the lower	279
225	limit of $K(K-1)/2$ queries on the Yale dataset.	280
226		281
227	References	282
228		283
229	Basu, Sugato, Banerjee, Arindam, and Mooney, Raymond J.	284
230	Active semi-supervision for pairwise constrained cluster-	285
231	ing. In Proc. SIAM Int. Conf. on Data Mining, 2004.	286
232	Vershynin, Roman. A Course in High Dimensional Prob-	287
233	ability. 2016. URL www-personal.umich.edu/	288
234	<pre>~romanv/teaching/2015-16/626/HDP-book.</pre>	289
235	pdf.	290
236	par.	291
237		292
238		293
239		294
240		295
241		296
242		297
243		298
244		299
245		300
246		301
247		302
248		303
249		304
250		305
251		306
252		307
253		308
254		309
255		310
256		311
257		312
258		313
259		314
260		315
261		316
262		317
263		318
264		319
265		320
266		321
267		322
268		323
269		324
270		325
271		326
272		327
273		328 329
274		329