
Appendix

A. Details of the Proof
Proof of Theorem 2 We assume the optimization starts with an initialized weights w0. t is denoted as the iteration index.
Let wtg and wts be the model parameter updated by our omniscient teacher and SGD, respectively. We first consider the
case where t = 1. For SGD, the first gradient update w1

s is

w1
s = w0 − ηt

∂`(
〈
w0, xs

〉
, ys)

∂w0
. (10)

Then we compute the difference between w1
s and w∗:∥∥w1

s − w∗
∥∥2
2

=

∥∥∥∥∥w0 − ηt
∂`(
〈
w0, x

〉
, y)

∂w0
− w∗

∥∥∥∥∥
2

2

=
∥∥w0 − w∗

∥∥2
2

+ η2t

∥∥∥∥∥∂`(
〈
w0, x

〉
, y)

∂w0

∥∥∥∥∥
2

2

− 2ηt

〈
w0 − w∗,

∂`(
〈
w0, x

〉
, y)

∂w0

〉 (11)

Because the omniscient teacher is to minimize last two term, so we are guaranteed to have∥∥w1
g − w∗

∥∥2
2
≤
∥∥w1

s − w∗
∥∥2
2
. (12)

So with the same initialization w0
g = w0

s ,
∥∥w1

g − w∗
∥∥2
2
≤
∥∥w1

s − w∗
∥∥2
2

is always true. Then we consider the case where
t = k, k ≥ 1. We first compute the difference between wk+1

g and w∗:

∥∥wk+1
g − w∗

∥∥2
2

=

∥∥∥∥∥wkg − ηt ∂`(
〈
wkg , x

〉
, y)

∂wk+1
− w∗

∥∥∥∥∥
2

2

=
∥∥wkg − w∗∥∥22 + min

{x,y}

{
η2t

∥∥∥∥∥∂`(
〈
wkg , x

〉
, y)

∂wkg

∥∥∥∥∥
2

2

− 2ηt

〈
wkg − w∗,

∂`(
〈
wkg , x

〉
, y)

∂wkg

〉}

=
∥∥wkg − w∗∥∥22 + η2t

∥∥∥∥∥∂`(
〈
wkg , x

k
∗
〉
, yk∗ )

∂wkg

∥∥∥∥∥
2

2

− 2ηt

〈
wkg − w∗,

∂`(
〈
wkg , x

k
∗
〉
, yk∗ )

∂wkg

〉
=
∥∥wkg − w∗∥∥22 − TV (wkg )

(13)

where xk∗, y
k
∗ is the sample selected by the omniscient teacher in the k-th iteration. Using the given conditions, we can

bound the difference between wk+1
s and w∗ from below:∥∥wk+1

s − w∗
∥∥2
2

=

∥∥∥∥∥wks − ηt ∂`(
〈
wks , x

s
〉
, ys)

∂wks
− w∗

∥∥∥∥∥
2

2

=
∥∥wks − w∗∥∥22 + η2t

∥∥∥∥∥∂`(
〈
wks , x

k
s

〉
, yks )

∂wks

∥∥∥∥∥
2

2

− 2ηt

〈
wks − w∗,

∂`(
〈
wks , x

k
s

〉
, yks )

∂wks

〉
≥
∥∥wks − w∗∥∥22 − TV (wks )

(14)

where xks , y
k
s is the sample selected by the random teacher in the k-th iteration. Comparing Eq. 13 and Eq. 14 and using

the condition in the theorem, the following inequality always holds under the condition
∥∥wkg − w∗∥∥22 ≤ ∥∥wks − w∗∥∥22:∥∥wk+1

s − w∗
∥∥2
2

=
∥∥wks − w∗∥∥22 − TV (wks ) ≥

∥∥wkg − w∗∥∥22 − TV (wkg ) =
∥∥wk+1

g − w∗
∥∥2
2
. (15)

Further because we already know that
∥∥w1

g − w∗
∥∥2
2
≤
∥∥w1

s − w∗
∥∥2
2
, using induction we can conclude that

∥∥wtg − w∗∥∥22
will be always not larger than ‖wts − w∗‖

2
2 (t can be any iteration). Therefore, in each iteration the omniscient teacher can

always converge not slower than random teacher (SGD).
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Proof of Proposition 3 Consider the square loss `(〈w, x〉 , y) = (〈w, x〉 − y)2, we have ∂`(〈w,x〉,y)
∂w = 2(〈w, x〉 − y)x.

Suppose we are given two initializations w1, w2 satisfying ‖w1 − w∗‖22 ≤ ‖w2 − w∗‖22. For square loss, we first write out

‖w1 − w∗‖2 − TV (w1) = ‖w1 − w∗‖2 + min
x∈X ,y∈Y

{η2t T1(x, y|w1)− 2ηtT2(x, y|w1)}

= ‖w1 − w∗‖2 + min
{x,y}

{
η2t

∥∥∥∥∂`(〈w1, x〉 , y)

∂w1

∥∥∥∥2
2

− 2ηt

〈
w1 − w∗,

∂`(〈w1, x
∗〉 , y∗)

∂w1

〉}
= ‖w1 − w∗‖2 +

{
2( R
‖w1−w∗‖ )

2 ‖w1 − w∗‖2 (w1 − w∗), if R
‖w1−w∗‖ <

1
ηt

−‖w1 − w∗‖2 , if R
‖w1−w∗‖ ≥

1
ηt

(16)

Similarly for w2, we have

‖w2 − w∗‖2 − TV (w2)

= ‖w2 − w∗‖2 +

{
2( R
‖w2−w∗‖ )

2 ‖w2 − w∗‖2 (w2 − w∗), if R
‖w2−w∗‖ <

1
ηt

−‖w2 − w∗‖2 , if R
‖w2−w∗‖ ≥

1
ηt

(17)

There will be three scenarios to consider: (1) Rηt ≤ ‖w1 − w∗‖ ≤ ‖w2 − w∗‖; (2) ‖w1 − w∗‖ ≤ Rηt ≤ ‖w2 − w∗‖; (3)
‖w1 − w∗‖ ≤ ‖w2 − w∗‖ ≤ Rηt. It is easy to verify that under all three scenarios, we have

‖w1 − w∗‖2 − TV (w1) ≤ ‖w2 − w∗‖2 − TV (w2) (18)

To simplify notations, we denote β(〈w,x〉,y) = ∇〈w,x〉` (〈w, x〉 , y) for a loss function `(·, ·) in the following proof. For
omniscient teacher, (x̂, ŷ) denotes a specific construction of (x, y). Notice that (x̃, ỹ) will not be used in omniscient teacher
case to avoid ambiguity, since the student and the teacher use the same representation space.

Proof of Theorem 4 At t-step, the omniscient teacher selects the samples via optimization

min
x∈X ,y∈Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉
.

We denote x̂ = γ (wt − w∗) and ŷ ∈ Y , since γ (w − w∗) ∈ X , we have

min
x∈X ,y∈Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉

(19)

≤
(
η2β2

(〈wt,x̂〉,ŷ)γ
2 − 2ηβ(〈wt,x̂〉,ŷ)γ

)
‖wt − w∗‖22. (20)

Plug Eq. (19) into the recursion Eq. (3), we have∥∥wt+1 − w∗
∥∥2
2

= min
x∈X ,y∈Y

∥∥∥∥wt − η ∂`(〈w, x〉 , y)

∂w
− w∗

∥∥∥∥2
2

=
∥∥wt − w∗∥∥2

2
+ min
x∈X ,y∈Y

η2
∥∥∥∥∂`(〈wt, x〉 , y)

∂wt

∥∥∥∥2
2

− 2η

〈
wt − w∗, ∂`(〈w

t, x〉 , y)

∂wt

〉
≤
(

1 + η2β2
(〈wt,x̂〉,ŷ)γ

2 − 2ηβ(〈wt,x̂〉,ŷ)γ
)
‖wt − w∗‖22 =

(
1− ηβ(〈wt,γ(wt−w∗)〉,ŷ)γ

)2 ‖wt − w∗‖22.
(21)

First we let ν(γ) = minw,y γ∇〈w,γ(w−w∗)〉` (〈w, γ (w − w∗)〉 , y). Then we have the condition 0 < ν(γ) ≤
γβ(〈w,γ(w−w∗)〉,ŷ) ≤ 1

η <∞ for any w, y, so we can obtain

0 ≤ 1− γηβ(〈w,γ(w−w∗)〉,ŷ) ≤ 1− ην(γ),

after simplifying ν(γ) to ν, we therefore have the following inequality from Eq. (21):∥∥wt+1 − w∗
∥∥2
2
≤ (1− ην)

2 ∥∥wt − w∗∥∥2
2
,

Thus we can have the exponential convergence:∥∥wt − w∗∥∥
2
≤ (1− ην)

t ∥∥w0 − w∗
∥∥
2
,

in other words, the student needs
(

log 1
1−ην

)−1
log ‖w

0−w∗‖
ε samples to achieve an ε-approximation of w∗.
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Proof of Proposition 5 Because ` (〈w, x〉 , y) is ζ1-strongly convex w.r.t. w, we have

ζ1

(
` (〈w, x〉 , y)−min

w
` (〈w, x〉 , y)

)
≤ ‖∇w` (〈w, x〉 , y)‖2 = β2

(〈w,x〉,y) ‖x‖
2
, ∀ {x, y} ∈ X × Y,

where X =
{
x ∈ Rd, ‖x‖ ≤ R

}
. Using x̂ = γ(w − w∗), γ ≥ 0, we have√

ζ1

(
` (〈w, γ(w − w∗)〉 , y)−min

w
` (〈w, γ(w − w∗)〉 , y)

)
≤ β(〈w,γ(w−w∗)〉,y)γ‖w − w∗‖.

We assume the loss function is always non-negative, i.e., ` (〈w, x〉 , y) ≥ 0. Therefore we have√
ζ1 (` (〈w, γ(w − w∗)〉 , y)) ≤ β(〈w,γ(w−w∗)〉,y)γ‖w − w∗‖.

Because ` (〈w, x〉 , y) is ζ-strongly convex w.r.t. w, it is also ζ2-strongly convex w.r.t. 〈w, x〉. Then we perform Taylor
expansion to ` (〈w, γ(w − w∗)〉 , y) w.r.t. 〈w, x〉 at the point 〈w∗, x〉 and obtain

` (〈w, γ(w − w∗)〉 , y) ≥ ` (〈w, γ(w∗ − w∗)〉 , y) +∇〈w,x〉` (〈w, γ(w∗ − w∗)〉 , y) (w − w∗)Tx+
ζ2
2
‖(w − w∗)Tx‖2

which leads to

` (〈w, γ(w − w∗)〉 , y) ≥ ζ2
2
γ2‖w − w∗‖4

Combining pieces, we have √
ζ1ζ2

2
γ‖w − w∗‖ ≤ β(〈w,γ(w−w∗)〉,y)γ.

Then if we set γ = min
{√

2
ζ1ζ2

1
‖w−w∗‖η ,

R
‖w−w∗‖

}
, we can have 1

η ≤ β(〈w,γ(w−w∗)〉,y)γ. Because ` (〈w, x〉 , y) is

Lipschitz smooth w.r.t. 〈w, x〉 with parameter L, we have∥∥β(〈w,x〉,y) − β(〈w∗,x〉,y)∥∥ ≤ LR ‖w − w∗‖
Because β(〈w∗,x〉,y) = 0, we have the following inequality:∥∥β(〈w,x〉,y)∥∥ ≤ LR ‖w − w∗‖
If we multiply both side with γ, we can have

β(〈w,x〉,y)γ ≤ LR ‖w − w∗‖ γ
By setting γ as 1

LRη‖w−w∗‖ , we arrive at β(〈w,x〉,y)γ < 1
η . Combining pieces, as long as we set

γ = min

{√
2

ζ1ζ2

1

η‖w − w∗‖
,

R

‖w − w∗‖
,

1

LRη ‖w − w∗‖

}
,

then we can have

0 < c ≤ β(〈w,γx̂〉,ŷ)γ ≤
1

η
.

where c is a non-zero positive constant. Therefore, we achieve the condition for the exponential synthesis-based teaching.

By the Proposition 5, the absolute loss and sqaure loss are exponentially teachable in synthesis-based case, and we can
obtain γ by plugging into the general form. We will tighten the γ up by analyzing absolute loss and square loss separately.
Besides that, we also show the commonly used loss functions for classification, e.g., hinge loss and logistic loss, are also
exponentially teachable in synthesis-based teaching if ‖w∗‖ can be bounded.

Proposition 9 Absolute loss is exponentially teachable in synthesis-based teaching.

Proof To show one loss function is exponentially teachable in synthesis-based case, we just need to find the appropriate γ
such that the learning intensity is bounded below and above, according to Theorem 4. For the absolute loss, i.e.,

` (〈w, x〉 , y) = |〈w, x〉 − y| ,
its sub-gradient is

∇w`(〈w, x〉 , y) = sign(〈w, x〉 − y)x,

and thus, the learning intensity β(〈w,x〉,y) = sign (〈w, x〉 − y). For w 6= w∗, plugging x̂ = γ (w − w∗) and
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ŷ = 〈w∗, γ (w − w∗)〉 into the learning intensity, we have

βγ〈w,x̂〉,ŷγ = sign
(
γ2 〈w − w∗, w − w∗〉

)
γ = γ.

Recall that γ 6= 0, |γ| ≤ R
‖wt−w∗‖ , ∀t ∈ N, we have

γ ≤ min
t∈N

R

‖wt − w∗‖
:= C.

Set γ = min{C, 1η}, we have ν = min{C, 1η}. Therefore, we obtain the exponential decay. In fact, since the ‖wt − w∗‖
decreases in every step, we have C = R

‖w0−w∗‖ . In following proof, we will follow the same argument to use this fact.

Proposition 10 Square loss is exponentially teachable in synthesis-based teaching.

Proof For square loss, i.e.,
` (〈w, x〉 , y) = (〈w, x〉 − y)

2
,

its gradient is
∇w` (〈w, x〉 , y) = 2 (〈w, x〉 − y)x,

and thus, the learning intensity β〈w,x〉,y = 2 (〈w, x〉 − y). For w 6= w∗, plugging x̂ = γ (w − w∗) and ŷ =
〈w∗, γ (w − w∗)〉 into the learning intensity, we have

β(〈w,x̂〉,ŷ)γ = 2γ2 ‖w − w∗‖2 .

Set γ = min
{

1√
2η‖wt−w∗‖ ,

R
‖wt−w∗‖

}
, we achieve the exponential teachable condition.

Proposition 11 Hinge loss is exponentially teachable in synthesis-based teaching if ‖w∗‖ ≤ 1.

Proof For hinge loss, i.e.,
` (〈w, x〉 , y) = max (1− y 〈w, x〉 , 0) ,

as long as 1− y 〈w, x〉 > 0, its subgradient will be

∇w` (〈w, x〉 , y) = −yx.
Denote x̂ = γ (w − w∗), we have β〈w,x̂〉,ŷ = −ŷ where ŷ ∈ {−1, 1}. To satisfy the exponential teachable condition, we
need to select ŷ and γ such that

1− ŷ 〈w, x̂〉 > 0

0 < −ŷγ ≤ 1
η

|γ| ≤ R
‖w−w∗‖

⇒


ŷγ 〈w,w − w∗〉 < 1

− 1
η ≤ ŷγ < 0

|γ| ≤ R
‖w−w∗‖

⇒


〈w,w − w∗〉 > −1

− 1
η ≤ ŷγ < 0

|γ| ≤ R
‖w−w∗‖

.

If ‖w∗‖ ≤ 1, we can show

〈w,w∗〉 ≤ ‖w‖ ‖w∗‖ ≤ ‖w‖ < 1 + ‖w‖2 ,
where the last inequality comes from the fact 1 + a2 − a > 0, and thus, we have 〈w,w − w∗〉 > −1. Therefore, we select
any configuration of ŷ and γ satisfying

−1

η
≤ ŷγ < 0, and |γ| ≤ R

‖w − w∗‖
.

Particularly, we set ŷ = −1 and γ = min
{

1
η ,

R
‖w0−w∗‖

}
.

Proposition 12 Logistic loss is exponentially teachable in synthesis-based teaching if ‖w∗‖ ≤ 1.

Proof For the logistic loss, i.e.,
` (〈w, x〉 , y) = log (1 + exp(−y 〈w, x〉)) ,
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its gradient is

∇w` (〈w, x〉 , y) = − yx

1 + exp(y 〈w, x〉)
.

Denote x̂ = γ (w − w∗), we have β〈w,x̂〉,ŷ = − ŷ
1+exp(ŷ〈w,x̂〉) where ŷ ∈ {−1, 1}. To satisfy the exponential teachable

condition, we need to select ŷ and γ such that{
0 < − ŷγ

1+exp(ŷ〈w,x̂〉) ≤
1
η

|γ| ≤ R
‖w−w∗‖

.

Particularly, we set ŷ = −1, we can fix the γ by

0 <
γ

1 + exp(γ)
<

γ

1 + exp(ŷ 〈w, x̂〉)
≤ γ ≤ 1

η
, and |γ| ≤ R

‖w − w∗‖
.

The γ
1+exp(γ) <

γ
1+exp(ŷ〈w,x̂〉) is obtained by the monotonicity of exp(·) and 〈w,w − w∗〉 > −1 when ‖w∗‖. Therefore,

we can choose γ = min
{

1
η ,

R
‖w0−w∗‖

}
, and thus, the lower bound ν = γ

1+exp(γ) .

Proof of Corollary 6 In each update, given the training sample x ∈ span (X ), we have wt+1 = wt − ηβ〈w,x〉,yx,
therefore, the ∆t+1w := wt+1 −w0 ∈ span (X ). If w0 −w∗ ∈ span (X ), wt+1 −w∗ ∈ span (X ), which means by linear
combination, we can construct γ̂

∑n
i=1 α

t
ixi = γ (wt − w∗). With the condition that the loss function is exponentially

synthesis-based teachable, we achieve the conclusion that the combination-based omniscient teacher will converge at least
exponentially with the same rate to the synthesis-based teaching.

Proof of Theorem 8 The proof is similar to the synthesis-based case. However, we introduce the consideration of the
effect of pool-based teaching. Specifically, we first obtain a virtual training sample in full space, and then, we generate the
sample from the candidate pool to mimic the virtual sample.

With the condition w0−v∗ ∈ span (D), as we discussed in the proof of Corollary 6, in every iteration, wt−v∗ ∈ span (D).
Therefore, we only need to consider in the space of span (D). Meanwhile, since the teacher can rescale the sample, without
loss of generality, we assume if x ∈ X , then −x ∈ X to make the rescaling is always positive.

At t-step, as the loss is exponentially synthesis-based teachable with γ, therefore, we have the virtually constructed sample
{xv, yv} where xv = γ (wt − w∗) with γ satisfying the condition of exponentially teachable in synthesis-based settings,
we first rescale the candidate pool X such that

∀x ∈ X , γx ‖x‖ = ‖xv‖ = γ
∥∥wt − w∗∥∥ .

We denote the rescaled candidate pool as Xt, under the condition of rescalable pool-based teachability, there is a sample
{x̂, ŷ} ∈ X × Y with scale factor γ̂ such that

min
(x,y)∈Xt×Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉

≤ η2β2
〈wt,γ̂x̂〉,ŷ ‖x̂‖

2 − 2ηβ〈wt,γ̂x̂〉,ŷ〈wt − w∗, γ̂x̂〉.

We decompose the γ̂x̂ = axv + xv⊥ with a = 〈γ̂x̂,xv〉
‖xv‖2

. and xv⊥ = γ̂x̂− axv . Then, we have

min
(x,y)∈Xt×Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉

≤ η2β2
〈wt,γ̂x̂〉,ŷ ‖x̂‖

2 − 2ηβ〈wt,γ̂x̂〉,ŷ〈wt − w∗, γ̂x̂〉

= η2β2
〈wt,γ̂x̂〉,ŷγ

2 ‖w − w∗‖2 − 2ηβ〈wt,γ̂x̂〉,ŷ〈wt − w∗, axv + xv⊥〉

= η2β2
〈wt,γ̂x̂〉,ŷγ

2 ‖w − w∗‖2 − 2ηβ〈wt,γ̂x̂〉,ŷγa
∥∥wt − w∗∥∥2 .

Under the condition

0 < γβ〈w,γ w−w∗
x̂ 〉,ŷ <

2V(X )

η
,

we denote ν (γ) = minw,x̂∈X ,ŷ∈Y γβ〈w,γ w−w∗
x̂ 〉,ŷ > 0 and µ (γ) = maxw,x̂∈X ,ŷ∈Y γβ〈w,γ w−w∗

x̂ 〉,ŷ <
2V(X )
η .
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we have the recursion ∥∥wt+1 − w∗
∥∥2
2
≤ r(η, γ)

∥∥wt − w∗∥∥2
2
,

with r(η, γ,V(X )) := max
{

1 + η2µ (γ)
2 − 2ηµ (γ)V(X ), 1 + η2ν (γ)

2 − 2ην (γ)V(X )
}

and 0 ≤ r(η, γ) < 1. There-
fore, the algorithm converges exponentially∥∥wt − w∗∥∥

2
≤ r (η, γ)

t/2 ∥∥w0 − w∗
∥∥
2
,

in other words, the student needs 2
(

log 1
r(η,γ,V(X ))

)−1
log ‖w

0−w∗‖
ε samples to achieve an ε-approximation of w∗. For

clearity, we define the constant term as Cη,γ,V(X )
2 = 2

(
log 1

r(η,γ,V(X ))

)−1
.
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B. Detailed Experimental Setting

Layer CNN-6 CNN-9 CNN-12
Conv1.x [3×3, 16]×2 [3×3, 16]×3 [3×3, 16]×4

Pool1 2×2 Max, Stride 2
Conv2.x [3×3, 32]×2 [3×3, 32]×3 [3×3, 32]×4

Pool2 2×2 Max, Stride 2
Conv3.x [3×3, 64]×2 [3×3, 64]×3 [3×3, 64]×4

Pool3 2×2 Max, Stride 2
FC1 32 32 32

Table 1. Our standard CNN architectures for CIFAR-10. Conv1.x, Conv2.x and Conv3.x denote convolution units that may contain
multiple convolution layers. E.g., [3×3, 16]×3 denotes 3 cascaded convolution layers with 16 filters of size 3×3. The CNNs learning
ends at 20K iterations with multi-step rate decay.

General Settings We have used three linear models in the experiments. In specific, the formulation of ridge regression
(RR) is

min
w∈Rd,b∈R

1

n

n∑
i=1

1

2
(wTxi + b− yi)2 +

λ

2
‖w‖2

The formulation of logistic regression (LR) is

min
w∈Rd,b∈R

1

n

n∑
i=1

log(1 + exp{−yi(wTxi + b)}) +
λ

2
‖w‖2

The formulation of support vector machine (SVM) is

min
w∈Rd,b∈R

1

n

n∑
i=1

max(1− yi(wTxi + b), 0) +
λ

2
‖w‖2

Comparison of different teaching strategies We use a linear regression model (ridge regression with λ = 0) for this
experiment. We set R as 1 and uniformly generate 30 data points as our knowledge pool for the teacher. In this first case,
we set the feature dimension as 2, while in the second case, feature dimension is 70. The learning rate is set as 0.0001 for
pool-based teaching, same as BGD and SGD.

Experiments on Gaussian data Specifically, RR is run on training data (xi, y) where each entry in xi is Gaussian
distributed and y = 〈w∗,xi〉+ ε. LR and SVM are run on {X1,+1} and {X2,−1} where xi ∈ X1 is Gaussian distributed
in each entry and +1,−1 are the labels. Specifically, we use the 10-dimension data that is Gaussian distributed with
(0.5, · · · , 0.5) (label +1) and (−0.5, · · · ,−0.5) (label−1) as mean and identity matrix as covariance matrix. We generate
1000 training data points for each class. Learning rate for the same feature space is 0.0001, while learning rate for different
feature spaces are 0.00001. λ is set as 0.00005.

Experiments on uniform spherical data We first generate the training data that are uniformly distributed on a unit
sphere ‖xi‖2 =1. Then we set the data points on half of the sphere ((0, π]) as label +1 and the other half ((π, 2π]) as label
−1. All the generated data points are 2D. For the scenario of different features, we use a random orthogonal projection
matrix to generate the teacher’s feature space from student’s. Learning rate for the same feature space is 0.001, while
learning rate for different feature spaces are 0.0001. λ is set as 0.00005.

Experiments on MNIST dataset We use 24D random features (projected by a random matrix R784×24) for the MNIST
dataset. The learning rate for all the compared methods are 0.001. Note that, we generate the teacher’s features using a
random projection matrix (R24×24) from the original 24D student’s features. λ is set as 0.00005.

Experiments on CIFAR-10 dataset The learning rate for all the compared methods are 0.001. λ is set as 0.00005. The
goal is to learn the R32×10 fully connected layer, which is also the classifiers for 10 classes. The three network we use in
the experiments are shown as follows:
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Experiments on infant ego-centric dataset We manually crop and label all the objects that the child is holding for this
experiments. For feature extraction, we use VGG-16 network that is pre-trained on Imagenet dataset. Then we use PCA
to reduce the 4096 dimension to 64 dimension. We train a multi-class logistic regression to classify the objects. Note that,
the omniscient teacher is also applied to train the logistic regression model. The learning rate is set to 0.001 for both SGD
and omniscient teacher.
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C. Comparison of different teaching strategies
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Figure 8. Comparison of different teaching strategies.

We first compare four different teaching strategies for the omniscient teacher. We consider two scenarios. One is that
the dimension of feature space is smaller than the number of samples (the given features are sufficient to represent the
entire feature), and the other is that the feature dimension is greater than the number of samples (the given features are not
sufficient to represent the entire feature). In these two scenarios, we find that synthesis-based teaching usually works the
best and always achieves exponential convergence. The combination-based teaching is exactly the same as the synthesis-
based teaching in the first scenario, but it is much worse than synthesis in the second scenario. Rescalable pool-based
teaching is also better than pool-based teaching. Empirically, the experiment verifies our theoretical findings: the more
flexible the teaching strategy is, the more convergence gain we may obtain.
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D. More experiments on MNIST dataset
We provide more experimental results on MNIST dataset. Fig. 9 shows the selected examples from 7/9 binary digit
classification. The results further verify the teacher models tend to select easy examples at first and gradually shift their
focuses to difficult examples, very much resembling the human learning. Fig. 10 shows the difference between the
current model parameter and the optimal model parameter over iterations. It also shows that our teachers achieve faster
convergence.

Iteration 1-40 Iteration 601-640 Iteration 1201-1240 Iteration 1-40 Iteration 601-640 Iteration 1201-1240
(a) Omniscient Teacher (b) Imitation Teacher

Figure 9. Selected training examples during iteration. (7/9 classification)
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Figure 10. Teaching logistic regression on MNIST dataset. Left column: 0/1 classification. Right column: 3/5 classification
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E. Teaching linear models on uniform spherical data
In this experiment, we use a different data distribution to further evaluate the teacher models. We will examine LR and
SVM by classifying uniform spherical data.

Teaching in the same feature space. From Fig. 11, one can observe that the convergence is consistently improved
while using omniscient teacher to provide examples to learners. We find that the significance of improvement is related
to the training data distribution and loss function, as indicated by our theoretical results. The surrogate teacher produces
less convergence gain in SVM, because the convexity lower bound becomes very loose in this case. Overall, omniscient
teacher still presents strong teaching capability. More interestingly, we use simple SGD run on the sample set selected by
the omniscient teacher and also get faster convergence, showing that the selected example set is better than the entire set in
terms of convergence.

Teaching in different feature spaces. While the teacher and student use different feature spaces, one can observe from
Fig. 11 that the surrogate teacher performs very poorly, even worse than the original SGD and BGD. The imitation teacher
works much better and achieves consistent and significant convergence speedup, showing its superiority while the teacher
and the student use different features.
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Figure 11. Convergence results on uniform spherical data.
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F. Object learning experiment on children’s ego-centric visual data
We experiment with a dataset capturing children and parents interacting with toys in a naturalistic setting (Yurovsky et al.,
2013). These interactions are recorded for around 10.5 minutes with a camera worn low on the child’s forehead. The head-
camera’s visual field was 90 degrees wide, providing a broad view of objects visible to the infant. The camera was attached
to a headband that was tightened so that it did not move once set on the child. To calibrate the camera, the experimenter
noted when the child focused on an object and adjusted the camera until the object was in the center of the image in the
control monitor.

For our experiments, we selected interactions of 4 one year old infants. For each parent-child dyad, we annotated the
bounding box location and category of the toy attended to by the infant at each frame. There are 10 objects in total: doll
(34 frames), toy (53 frames), duck (335 frames), frog (2108 frames), helicopter (169 frames), horse (42 frames), mickey
(472 frames), phone (394 frames), sheep (119 frames) and tiger (266 frames). We use a VGG-16 network that is pre-trained
on Imagenet dataset as our feature extraction. We first extract the 4096D features from these images and then use PCA to
reduce the dimension to 64D. Finally, we run our omniscient teacher on these ego-centric data.

One can observe from Fig. 12 that our omniscient teacher achieves faster convergence than the random teacher. Moreover,
we give part of the selected training examples of random teacher and omniscient teacher in Fig. 14 and Fig. 15, respectively.
We visualize the selected samples every 50 iterations from the first iteration to the 10000th iteration. Interestingly, we find
that the training samples that are selected by the omniscient teacher consist of contiguous bouts of experience with the
same object instance, unlike the random teacher. The adjacent samples are similar and the object changes in a smooth way.
These inputs are qualitatively similar in their ordering to the actual visual experiences of infants in our study, as illustrated
in Fig. 13. This can be seen as partial algorithmic confirmation of the desirable structural properties of children’s natural
learning environment, which emphasizes a smooth and continuous evolution of visual experience, in sharp contrast to
random sample selection.
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Figure 12. Convergence comparison on infant ego-centric visual data.

Figure 13. Training examples corresponding to the natural sequence of objects experienced by a single infant in our study.
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Figure 14. Training examples selected by the random teacher (Stochastic gradient descent).

Figure 15. Training examples selected by the omniscient teacher.




