Dual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization Supplementary File

A. Technical Proofs

A.1. Proof of Theorem 1

Proof. " \Leftarrow ": If the pair $(\bar{w}, \bar{\alpha})$ is a sparse saddle point for L, then from the definition of conjugate convexity and inequality (3) we have

$$
P(\bar{w})=\max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha) \leq L(\bar{w}, \bar{\alpha}) \leq \min _{\|w\|_{0} \leq k} L(w, \bar{\alpha})
$$

On the other hand, we know that for any $\|w\|_{0} \leq k$ and $\alpha \in \mathcal{F}^{N}$

$$
L(w, \alpha) \leq \max _{\alpha^{\prime} \in \mathcal{F}^{N}} L\left(w, \alpha^{\prime}\right)=P(w)
$$

By combining the preceding two inequalities we obtain

$$
P(\bar{w}) \leq \min _{\|w\|_{0} \leq k} L(w, \bar{\alpha}) \leq \min _{\|w\|_{0} \leq k} P(w) \leq P(\bar{w}) .
$$

Therefore $P(\bar{w})=\min _{\|w\|_{0} \leq k} P(w)$, i.e., \bar{w} solves the problem in (1), which proves the necessary condition (a). Moreover, the above arguments lead to

$$
P(\bar{w})=\max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha)=L(\bar{w}, \bar{\alpha}) .
$$

Then from the maximizing argument property of convex conjugate we know that $\bar{\alpha}_{i} \in \partial l_{i}\left(\bar{w}^{\top} x_{i}\right)$. Thus the necessary condition (b) holds. Note that

$$
\begin{equation*}
L(w, \bar{\alpha})=\frac{\lambda}{2}\left\|w+\frac{1}{N \lambda} \sum_{i=1}^{N} \bar{\alpha}_{i} x_{i}\right\|^{2}-\frac{1}{N} \sum_{i=1}^{N} l_{i}^{*}\left(\bar{\alpha}_{i}\right)+C, \tag{11}
\end{equation*}
$$

where C is a quantity not dependent on w. Let $\bar{F}=\operatorname{supp}(\bar{w})$. Since the above analysis implies $L(\bar{w}, \bar{\alpha})=$ $\min _{\|w\|_{0} \leq k} L(w, \bar{\alpha})$, it must hold that

$$
\bar{w}=\mathrm{H}_{\bar{F}}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \bar{\alpha}_{i} x_{i}\right)=\mathrm{H}_{k}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \bar{\alpha}_{i} x_{i}\right)
$$

This validates the necessary condition (c).
$" \Rightarrow "$ Conversely, let us assume that \bar{w} is a k-sparse solution to the problem (1) (i.e., conditio(a)) and let $\bar{\alpha}_{i} \in \partial l_{i}\left(\bar{w}^{\top} x_{i}\right)$ (i.e., condition (b)). Again from the maximizing argument property of convex conjugate we know that $l_{i}\left(\bar{w}^{\top} x_{i}\right)=$ $\bar{\alpha}_{i} \bar{w}^{\top} x_{i}-l_{i}^{*}\left(\bar{\alpha}_{i}\right)$. This leads to

$$
\begin{equation*}
L(\bar{w}, \alpha) \leq P(\bar{w})=\max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha)=L(\bar{w}, \bar{\alpha}) \tag{12}
\end{equation*}
$$

The sufficient condition (c) guarantees that \bar{F} contains the top k (in absolute value) entries of $-\frac{1}{N \lambda} \sum_{i=1}^{N} \bar{\alpha}_{i} x_{i}$. Then based on the expression in (11) we can see that the following holds for any k-sparse vector w

$$
\begin{equation*}
L(\bar{w}, \bar{\alpha}) \leq L(w, \bar{\alpha}) \tag{13}
\end{equation*}
$$

By combining the inequalities (12) and (13) we get that for any $\|w\|_{0} \leq k$ and $\alpha \in \mathcal{F}^{N}$,

$$
L(\bar{w}, \alpha) \leq L(\bar{w}, \bar{\alpha}) \leq L(w, \bar{\alpha})
$$

This shows that $(\bar{w}, \bar{\alpha})$ is a sparse saddle point of the Lagrangian L.

A.2. Proof of Theorem 2

Proof. " $\Rightarrow "$: Let $(\bar{w}, \bar{\alpha})$ be a saddle point for L. On one hand, note that the following holds for any k-sparse w^{\prime} and $\alpha^{\prime} \in \mathcal{F}^{N}$

$$
\min _{\|w\|_{0} \leq k} L\left(w, \alpha^{\prime}\right) \leq L\left(w^{\prime}, \alpha^{\prime}\right) \leq \max _{\alpha \in \mathcal{F}^{N}} L\left(w^{\prime}, \alpha\right)
$$

which implies

$$
\begin{equation*}
\max _{\alpha \in \mathcal{F}^{N}} \min _{\|w\|_{0} \leq k} L(w, \alpha) \leq \min _{\|w\|_{0} \leq k} \max _{\alpha \in \mathcal{F}^{N}} L(w, \alpha) \tag{14}
\end{equation*}
$$

On the other hand, since $(\bar{w}, \bar{\alpha})$ is a saddle point for L, the following is true:

$$
\begin{align*}
\min _{\|w\|_{0} \leq k} \max _{\alpha \in \mathcal{F}^{N}} L(w, \alpha) & \leq \max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha) \\
& \leq L(\bar{w}, \bar{\alpha}) \leq \min _{\|w\|_{0} \leq k} L(w, \bar{\alpha}) \tag{15}\\
& \leq \max _{\alpha \in \mathcal{F}^{N}} \min _{\|w\|_{0} \leq k} L(w, \alpha)
\end{align*}
$$

By combining (14) and (15) we prove the equality in (4).
" \Leftarrow ": Assume that the equality in (4) holds. Let us define \bar{w} and $\bar{\alpha}$ such that

$$
\begin{aligned}
& \max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha)=\min _{\|w\|_{0} \leq k} \max _{\alpha \in \mathcal{F}^{N}} L(w, \alpha) \\
& \min _{\|w\|_{0} \leq k} L(w, \bar{\alpha})=\max _{\alpha \in \mathcal{F}^{N}} \min _{\|w\|_{0} \leq k} L(w, \alpha)
\end{aligned}
$$

Then we can see that for any $\alpha \in \mathcal{F}^{N}$,

$$
L(\bar{w}, \bar{\alpha}) \geq \min _{\|w\|_{0} \leq k} L(w, \bar{\alpha})=\max _{\alpha^{\prime} \in \mathcal{F}^{N}} L\left(\bar{w}, \alpha^{\prime}\right) \geq L(\bar{w}, \alpha)
$$

where the " $=$ " is due to (4). In the meantime, for any $\|w\|_{0} \leq k$,

$$
L(\bar{w}, \bar{\alpha}) \leq \max _{\alpha \in \mathcal{F}^{N}} L(\bar{w}, \alpha)=\min _{\left\|w^{\prime}\right\|_{0} \leq k} L\left(w^{\prime}, \bar{\alpha}\right) \leq L(w, \bar{\alpha}) .
$$

This shows that $(\bar{w}, \bar{\alpha})$ is a sparse saddle point for L.

A.3. Proof of Lemma 1

Proof. For any fixed $\alpha \in \mathcal{F}^{N}$, then it is easy to verify that the k-sparse minimum of $L(w, \alpha)$ with respect to w is attained at the following point:

$$
w(\alpha)=\underset{\|w\|_{0} \leq k}{\arg \min } L(w, \alpha)=\mathrm{H}_{k}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i} x_{i}\right)
$$

Thus we have

$$
\begin{aligned}
D(\alpha) & =\min _{\|w\|_{0} \leq k} L(w, \alpha)=L(w(\alpha), \alpha) \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(\alpha_{i} w(\alpha)^{\top} x_{i}-l_{i}^{*}\left(\alpha_{i}\right)\right)+\frac{\lambda}{2}\|w(\alpha)\|^{2} \\
& \stackrel{\zeta_{1}}{=} \frac{1}{N} \sum_{i=1}^{N}-l_{i}^{*}\left(\alpha_{i}\right)-\frac{\lambda}{2}\|w(\alpha)\|^{2},
\end{aligned}
$$

where " ζ_{1} " follows from the above definition of $w(\alpha)$.
Now let us consider two arbitrary dual variables $\alpha^{\prime}, \alpha^{\prime \prime} \in \mathcal{F}^{N}$ and any $g\left(\alpha^{\prime \prime}\right) \in \frac{1}{N}\left[w\left(\alpha^{\prime \prime}\right)^{\top} x_{1}-\partial l_{1}^{*}\left(\alpha_{1}^{\prime \prime}\right), \ldots, w\left(\alpha^{\prime \prime}\right)^{\top} x_{N}-\right.$ $\left.\partial l_{N}^{*}\left(\alpha_{N}^{\prime \prime}\right)\right]$. From the definition of $D(\alpha)$ and the fact that $L(w, \alpha)$ is concave with respect to α at any fixed w we can derive that

$$
\begin{aligned}
D\left(\alpha^{\prime}\right) & =L\left(w\left(\alpha^{\prime}\right), \alpha^{\prime}\right) \\
& \leq L\left(w\left(\alpha^{\prime \prime}\right), \alpha^{\prime}\right) \\
& \leq L\left(w\left(\alpha^{\prime \prime}\right), \alpha^{\prime \prime}\right)+\left\langle g\left(\alpha^{\prime \prime}\right), \alpha^{\prime}-\alpha^{\prime \prime}\right\rangle .
\end{aligned}
$$

This shows that $D(\alpha)$ is a concave function and its super-differential is as given in the theorem.
If we further assume that $w(\alpha)$ is unique and $\left\{l_{i}^{*}\right\}_{i=1, \ldots, N}$ are differentiable at any α, then $\partial D(\alpha)=\frac{1}{N}\left[w(\alpha)^{\top} x_{1}-\right.$ $\left.\partial l_{1}^{*}\left(\alpha_{1}\right), \ldots, w(\alpha)^{\top} x_{N}-\partial l_{N}^{*}\left(\alpha_{N}\right)\right]$ becomes unique, which implies that $\partial D(\alpha)$ is the unique super-gradient of $D(\alpha)$.

A.4. Proof of Theorem 3

Proof. " \Rightarrow ": Given the conditions in the theorem, it can be known from Theorem 1 that the pair ($\bar{w}, \bar{\alpha}$) forms a sparse saddle point of L. Thus based on the definitions of sparse saddle point and dual function $D(\alpha)$ we can show that

$$
D(\bar{\alpha})=\min _{\|w\|_{0} \leq k} L(w, \bar{\alpha}) \geq L(\bar{w}, \bar{\alpha}) \geq L(\bar{w}, \alpha) \geq D(\alpha)
$$

This implies that $\bar{\alpha}$ solves the dual problem in (5). Furthermore, Theorem 2 guarantees the following

$$
D(\bar{\alpha})=\max _{\alpha \in \mathcal{F}^{N}} \min _{\|w\|_{0} \leq k} L(w, \alpha)=\min _{\|w\|_{0} \leq k} \max _{\alpha \in \mathcal{F}^{N}} L(w, \alpha)=P(\bar{w})
$$

This indicates that the primal and dual optimal values are equal to each other.
" \Leftarrow ": Assume that $\bar{\alpha}$ solves the dual problem in (5) and $D(\bar{\alpha})=P(\bar{w})$. Since $D(\bar{\alpha}) \leq P(w)$ holds for any $\|w\|_{0} \leq k, \bar{w}$ must be the sparse minimizer of $P(w)$. It follows that

$$
\max _{\alpha \in \mathcal{F}^{N}} \min _{\|w\|_{0} \leq k} L(w, \alpha)=D(\bar{\alpha})=P(\bar{w})=\min _{\|w\|_{0} \leq k} \max _{\alpha \in \mathcal{F}^{N}} L(w, \alpha)
$$

From the " \Leftarrow " argument in the proof of Theorem 2 and Corollary 1 we get that the conditions (a) $\sim($ c) in Theorem 1 should be satisfied for $(\bar{w}, \bar{\alpha})$.

A.5. Proof of Theorem 4

We need a series of technical lemmas to prove this theorem. The following lemmas shows that under proper conditions, $w(\alpha)$ is locally smooth around $\bar{w}=w(\bar{\alpha})$.
Lemma 2. Let $X=\left[x_{1}, \ldots, x_{N}\right] \in \mathbb{R}^{d \times N}$ be the data matrix. Assume that $\left\{l_{i}\right\}_{i=1, \ldots, N}$ are differentiable and

$$
\bar{\epsilon}:=\bar{w}_{\min }-\frac{1}{\lambda}\left\|P^{\prime}(\bar{w})\right\|_{\infty}>0
$$

If $\|\alpha-\bar{\alpha}\| \leq \frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}$, then $\operatorname{supp}(w(\alpha))=\operatorname{supp}(\bar{w})$ and

$$
\|w(\alpha)-\bar{w}\| \leq \frac{\sigma_{\max }(X, k)}{N \lambda}\|\alpha-\bar{\alpha}\|
$$

Proof. For any $\alpha \in \mathcal{F}^{N}$, let us define

$$
\tilde{w}(\alpha)=-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i} x_{i}
$$

Consider $\bar{F}=\operatorname{supp}(\bar{w})$. Given $\bar{\epsilon}>0$, it is known from Theorem 3 that $\bar{w}=\mathrm{H}_{\bar{F}}(\tilde{w}(\bar{\alpha}))$ and $\frac{P^{\prime}(\bar{w})}{\lambda}=\mathrm{H}_{\bar{F}^{c}}(-\tilde{w}(\bar{\alpha}))$. Then $\bar{\epsilon}>0$ implies \bar{F} is unique, i.e., the top k entries of $\tilde{w}(\bar{\alpha})$ is unique. Given that $\|\alpha-\bar{\alpha}\| \leq \frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}$, it can be shown that

$$
\|\tilde{w}(\alpha)-\tilde{w}(\bar{\alpha})\|=\frac{1}{N \lambda}\|X(\alpha-\bar{\alpha})\| \leq \frac{\sigma_{\max }(X)}{N \lambda}\|\alpha-\bar{\alpha}\| \leq \frac{\bar{\epsilon}}{2}
$$

This indicates that \bar{F} still contains the (unique) top k entries of $\tilde{w}(\alpha)$. Therefore,

$$
\operatorname{supp}(w(\alpha))=\bar{F}=\operatorname{supp}(\bar{w})
$$

Then it must hold that

$$
\begin{aligned}
\|w(\alpha)-w(\bar{\alpha})\| & =\left\|\mathrm{H}_{\bar{F}}(\tilde{w}(\alpha))-\mathrm{H}_{\bar{F}}(\tilde{w}(\bar{\alpha}))\right\| \\
& =\frac{1}{N \lambda}\left\|X_{\bar{F}}(\alpha-\bar{\alpha})\right\| \\
& \leq \frac{\sigma_{\max }(X, k)}{N \lambda}\|\alpha-\bar{\alpha}\|
\end{aligned}
$$

This proves the desired bound.

The following lemma bounds the estimation error $\|\alpha-\bar{\alpha}\|=O\left(\sqrt{\left\langle D^{\prime}(\alpha), \bar{\alpha}-\alpha\right\rangle}\right)$ when the primal loss $\left\{l_{i}\right\}_{i=1}^{N}$ are smooth.
Lemma 3. Assume that the primal loss functions $\left\{l_{i}(\cdot)\right\}_{i=1}^{N}$ are $1 / \mu$-smooth. Then the following inequality holds for any $\alpha, \alpha^{\prime \prime} \in \mathcal{F}$ and $g\left(\alpha^{\prime \prime}\right) \in \partial D\left(\alpha^{\prime \prime}\right):$

$$
D\left(\alpha^{\prime}\right) \leq D\left(\alpha^{\prime \prime}\right)+\left\langle g\left(\alpha^{\prime \prime}\right), \alpha^{\prime}-\alpha^{\prime \prime}\right\rangle-\frac{\lambda N \mu+\sigma_{\min }^{2}(X, k)}{2 \lambda N^{2}}\left\|\alpha^{\prime}-\alpha^{\prime \prime}\right\|^{2}
$$

Moreover, $\forall \alpha \in \mathcal{F}$ and $g(\alpha) \in \partial D(\alpha)$,

$$
\|\alpha-\bar{\alpha}\| \leq \sqrt{\frac{2 \lambda N^{2}\langle g(\alpha), \bar{\alpha}-\alpha\rangle}{\lambda N \mu+\sigma_{\min }^{2}(X, k)}}
$$

Proof. Recall that

$$
D(\alpha)=\frac{1}{N} \sum_{i=1}^{N}-l_{i}^{*}\left(\alpha_{i}\right)-\frac{\lambda}{2}\|w(\alpha)\|^{2}
$$

Now let us consider two arbitrary dual variables $\alpha^{\prime}, \alpha^{\prime \prime} \in \mathcal{F}$. The assumption of l_{i} being $1 / \mu$-smooth implies that its convex conjugate function l_{i}^{*} is μ-strongly-convex. Let $F^{\prime \prime}=\operatorname{supp}\left(w\left(\alpha^{\prime \prime}\right)\right)$. Then

$$
\begin{aligned}
D\left(\alpha^{\prime}\right)= & \frac{1}{N} \sum_{i=1}^{N}-l_{i}^{*}\left(\alpha_{i}^{\prime}\right)-\frac{\lambda}{2}\left\|w\left(\alpha^{\prime}\right)\right\|^{2} \\
= & \frac{1}{N} \sum_{i=1}^{N}-l_{i}^{*}\left(\alpha_{i}^{\prime}\right)-\frac{\lambda}{2}\left\|\mathrm{H}_{k}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i}^{\prime} x_{i}\right)\right\|^{2} \\
\leq & \frac{1}{N} \sum_{i=1}^{N}\left(-l_{i}^{*}\left(\alpha_{i}^{\prime \prime}\right)-l_{i}^{*^{\prime}}\left(\alpha_{i}^{\prime \prime}\right)\left(\alpha_{i}^{\prime}-\alpha_{i}^{\prime \prime}\right)-\frac{\mu}{2}\left(\alpha_{i}^{\prime}-\alpha_{i}^{\prime \prime}\right)^{2}\right)-\frac{\lambda}{2}\left\|\mathrm{H}_{F^{\prime \prime}}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i}^{\prime} x_{i}\right)\right\|^{2} \\
\leq & \frac{1}{N} \sum_{i=1}^{N}\left(-l_{i}^{*}\left(\alpha_{i}^{\prime \prime}\right)-l_{i}^{*^{\prime}}\left(\alpha_{i}^{\prime \prime}\right)\left(\alpha_{i}^{\prime}-\alpha_{i}^{\prime \prime}\right)-\frac{\mu}{2}\left(\alpha_{i}^{\prime}-\alpha_{i}^{\prime \prime}\right)^{2}\right)-\frac{\lambda}{2}\left\|w\left(\alpha^{\prime \prime}\right)\right\|^{2}+\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\top} w\left(\alpha^{\prime \prime}\right)\left(\alpha_{i}^{\prime}-\alpha_{i}^{\prime \prime}\right) \\
& -\frac{1}{2 \lambda N^{2}}\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)^{\top} X_{F^{\prime \prime}}^{\top} X_{F^{\prime \prime}}\left(\alpha^{\prime}-\alpha^{\prime \prime}\right) \\
\leq & D\left(\alpha^{\prime \prime}\right)+\left\langle g\left(\alpha^{\prime \prime}\right), \alpha^{\prime}-\alpha^{\prime \prime}\right\rangle-\frac{\lambda N \mu+\sigma_{\min }^{2}(X, k)}{2 \lambda N^{2}}\left\|\alpha^{\prime}-\alpha^{\prime \prime}\right\|^{2}
\end{aligned}
$$

This proves the first desirable inequality in the lemma. By invoking the above inequality and using the fact $D(\alpha) \leq D(\bar{\alpha})$ we get that

$$
\begin{aligned}
D(\bar{\alpha}) & \leq D(\alpha)+\langle g(\alpha), \bar{\alpha}-\alpha\rangle-\frac{\lambda N \mu+\sigma_{\min }^{2}(X, k)}{2 \lambda N^{2}}\|\alpha-\bar{\alpha}\|^{2} \\
& \leq D(\bar{\alpha})+\langle g(\alpha), \bar{\alpha}-\alpha\rangle-\frac{\lambda N \mu+\sigma_{\min }^{2}(X, k)}{2 \lambda N^{2}}\|\alpha-\bar{\alpha}\|^{2}
\end{aligned}
$$

which leads to the second desired bound.

The following lemma gives a simple expression of the gap for properly related primal-dual pairs.
Lemma 4. Given a dual variable $\alpha \in \mathcal{F}^{N}$ and the related primal variable

$$
w=\mathrm{H}_{k}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i} x_{i}\right)
$$

The primal-dual gap $\epsilon_{P D}(w, \alpha)$ can be expressed as:

$$
\epsilon_{P D}(w, \alpha)=\frac{1}{N} \sum_{i=1}^{N}\left(l_{i}\left(w^{\top} x_{i}\right)+l_{i}^{*}\left(\alpha_{i}\right)-\alpha_{i} w^{\top} x_{i}\right)
$$

Proof. It is directly to know from the definitions of $P(w)$ and $D(\alpha)$ that

$$
\begin{aligned}
& P(w)-D(\alpha) \\
= & \frac{1}{N} \sum_{i=1}^{N} l_{i}\left(w^{\top} x_{i}\right)+\frac{\lambda}{2}\|w\|^{2}-\left(\frac{1}{N} \sum_{i=1}^{N}\left(\alpha_{i} w^{\top} x_{i}-l_{i}^{*}\left(\alpha_{i}\right)\right)+\frac{\lambda}{2}\|w\|^{2}\right) \\
= & \frac{1}{N} \sum_{i=1}^{N}\left(l_{i}\left(w^{\top} x_{i}\right)+l_{i}^{*}\left(\alpha_{i}\right)-\alpha_{i} w^{\top} x_{i}\right)
\end{aligned}
$$

This shows the desired expression.
Based on Lemma 4, we can derive the following lemma which establishes a bound on the primal-dual gap.
Lemma 5. Consider a primal-dual pair (w, α) satisfying

$$
w=\mathrm{H}_{k}\left(-\frac{1}{N \lambda} \sum_{i=1}^{N} \alpha_{i} x_{i}\right)
$$

Then the following inequality holds for any $g(\alpha) \in \partial D(\alpha)$ and $\beta \in\left[\partial l_{1}\left(w^{\top} x_{1}\right), \ldots, \partial l_{N}\left(w^{\top} x_{N}\right)\right]$:

$$
P(w)-D(\alpha) \leq\langle g(\alpha), \beta-\alpha\rangle
$$

Proof. For any $i \in[1, \ldots, N]$, from the maximizing argument property of convex conjugate we have

$$
l_{i}\left(w^{\top} x_{i}\right)=w^{\top} x_{i} l_{i}^{\prime}\left(w^{\top} x_{i}\right)-l_{i}^{*}\left(l_{i}^{\prime}\left(w^{\top} x_{i}\right)\right)
$$

and

$$
l_{i}^{*}\left(\alpha_{i}\right)=\alpha_{i} l_{i}^{*^{\prime}}\left(\alpha_{i}\right)-l_{i}\left(l_{i}^{*^{\prime}}\left(\alpha_{i}\right)\right)
$$

By summing both sides of above two equalities we get

$$
\begin{align*}
& l_{i}\left(w^{\top} x_{i}\right)+l_{i}^{*}\left(\alpha_{i}\right) \\
= & w^{\top} x_{i} l_{i}^{\prime}\left(w^{\top} x_{i}\right)+\alpha_{i} l_{i}^{*^{\prime}}\left(\alpha_{i}\right)-\left(l_{i}\left(l_{i}^{*^{\prime}}\left(\alpha_{i}\right)\right)+l_{i}^{*}\left(l_{i}^{\prime}\left(w^{\top} x_{i}\right)\right)\right) \tag{16}\\
\zeta_{1} & w^{\top} x_{i} l_{i}^{\prime}\left(w^{\top} x_{i}\right)+\alpha_{i} l_{i}^{*^{\prime}}\left(\alpha_{i}\right)-l_{i}^{*^{\prime}}\left(\alpha_{i}\right) l_{i}^{\prime}\left(w^{\top} x_{i}\right)
\end{align*}
$$

where " ζ_{1} " follows from Fenchel-Young inequality. Therefore

$$
\begin{aligned}
&\langle g(\alpha), \beta-\alpha\rangle \\
&= \frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} x_{i}-l_{i}^{*^{\prime}}\left(\alpha_{i}\right)\right)\left(l_{i}^{\prime}\left(w^{\top} x_{i}\right)-\alpha_{i}\right) \\
&= \frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} x_{i} l_{i}^{\prime}\left(w^{\top} x_{i}\right)-l_{i}^{*^{\prime}}\left(\alpha_{i}\right) l_{i}^{\prime}\left(w^{\top} x_{i}\right)-\alpha_{i} w^{\top} x_{i}+\alpha_{i} l_{i}^{*^{\prime}}\left(\alpha_{i}\right)\right) \\
& \stackrel{\zeta_{2}}{\geq} \frac{1}{N} \sum_{i=1}^{N}\left(l_{i}\left(w^{\top} x_{i}\right)+\alpha_{i} l_{i}^{*}\left(\alpha_{i}\right)-w^{\top} x_{i}\right) \\
& \stackrel{\zeta_{3}}{=} P(w)-D(\alpha)
\end{aligned}
$$

where " ζ_{2} " follows from (16) and " ζ_{3} " follows from Lemma 4. This proves the desired bound.
The following simple result is also needed in our iteration complexity analysis.
Lemma 6. For any $\epsilon>0$,

$$
\frac{1}{t}+\frac{\ln t}{t} \leq \epsilon
$$

holds when $t \geq \max \left\{\frac{3}{\epsilon} \ln \frac{3}{\epsilon}, 1\right\}$.

Proof. Obviously, the inequality $\frac{1}{t}+\frac{\ln t}{t} \leq \epsilon$ holds for $\epsilon \geq 1$. When $\epsilon<1$, it holds that $\ln \left(\frac{3}{\epsilon}\right) \geq 1$. Then the condition on t implies that $\frac{1}{t} \leq \frac{\epsilon}{3}$. Also, we have

$$
\frac{\ln t}{t} \leq \frac{\ln \left(\frac{3}{\epsilon} \ln \frac{3}{\epsilon}\right)}{\frac{3}{\epsilon} \ln \frac{3}{\epsilon}} \leq \frac{\ln \left(\frac{3}{\epsilon}\right)^{2}}{\frac{3}{\epsilon} \ln \frac{3}{\epsilon}}=\frac{2 \epsilon}{3}
$$

where the first " \leq " follows the fact that $\ln t / t$ is decreasing when $t \geq 1$ while the second " \leq " follows $\ln x<x$ for all $x>0$. Therefore we have $\frac{1}{t}+\frac{\ln t}{t} \leq \epsilon$.

We are now in the position to prove the main theorem.
of Theorem 4. Part(a): Let us consider $g^{(t)} \in \partial D\left(\alpha^{(t)}\right)$ with $g_{i}^{(t)}=\frac{1}{N}\left(x_{i}^{\top} w^{(t)}-l_{i}^{*^{\prime}}\left(\alpha_{i}^{(t)}\right)\right)$. From the expression of $w^{(t)}$ we can verify that $\left\|w^{(t)}\right\| \leq r / \lambda$. Therefore we have

$$
\left\|g^{(t)}\right\| \leq c_{0}=\frac{r+\lambda \rho}{\lambda \sqrt{N}}
$$

Let $h^{(t)}=\left\|\alpha^{(t)}-\bar{\alpha}\right\|$ and $v^{(t)}=\left\langle g^{(t)}, \bar{\alpha}-\alpha^{(t)}\right\rangle$. The concavity of D implies $v^{(t)} \geq 0$. From Lemma 3 we know that $h^{(t)} \leq \sqrt{2 \lambda N^{2} v^{(t)} /\left(\lambda N \mu+\sigma_{\min }(X, k)\right)}$. Then

$$
\begin{aligned}
\left(h^{(t)}\right)^{2} & =\left\|\mathrm{P}_{\mathcal{F N}}\left(\alpha^{(t-1)}+\eta^{(t-1)} g^{(t-1)}\right)-\bar{\alpha}\right\|^{2} \\
& \leq\left\|\alpha^{(t-1)}+\eta^{(t-1)} g^{(t-1)}-\bar{\alpha}\right\|^{2} \\
& =\left(h^{(t-1)}\right)^{2}-2 \eta^{(t-1)} v^{(t-1)}+\left(\eta^{(t-1)}\right)^{2}\left\|g^{(t-1)}\right\|^{2} \\
& \leq\left(h^{(t-1)}\right)^{2}-\frac{\eta^{(t-1)}\left(\lambda N \mu+\sigma_{\min }(X, k)\right)}{\lambda N^{2}}\left(h^{(t-1)}\right)^{2}+\left(\eta^{(t-1)}\right)^{2} c_{0}^{2}
\end{aligned}
$$

Let $\eta^{(t)}=\frac{\lambda N^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)(t+1)}$. Then we obtain

$$
\left(h^{(t)}\right)^{2} \leq\left(1-\frac{1}{t}\right)\left(h^{(t-1)}\right)^{2}+\frac{\lambda^{2} N^{4} c_{0}^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)^{2} t^{2}}
$$

By recursively applying the above inequality we get

$$
\left(h^{(t)}\right)^{2} \leq \frac{\lambda^{2} N^{4} c_{0}^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)^{2}}\left(\frac{1}{t}+\frac{\ln t}{t}\right)=c_{1}\left(\frac{1}{t}+\frac{\ln t}{t}\right)
$$

This proves the desired bound in part(a).
$\operatorname{Part}(\mathbf{b}):$ Let us consider $\epsilon=\frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}$. From part(a) and Lemma 6 we obtain

$$
\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \epsilon
$$

after $t \geq t_{0}=\frac{3 c_{1}}{\epsilon^{2}} \ln \frac{3 c_{1}}{\epsilon^{2}}$. It follows from Lemma 2 that $\operatorname{supp}\left(w^{(t)}\right)=\operatorname{supp}(\bar{w})$.
Let $\beta^{(t)}:=\left[l_{1}^{\prime}\left(\left(w^{(t)}\right)^{\top} x_{1}\right), \ldots, l_{N}^{\prime}\left(\left(w^{(t)}\right)^{\top} x_{N}\right)\right]$. According to Lemma 5 we have

$$
\begin{aligned}
\epsilon_{P D}^{(t)} & =P\left(w^{(t)}\right)-D\left(\alpha^{(t)}\right) \\
& \leq\left\langle g^{(t)}, \beta^{(t)}-\alpha^{(t)}\right\rangle \\
& \leq\left\|g^{(t)}\right\|\left(\left\|\beta^{(t)}-\bar{\alpha}\right\|+\left\|\bar{\alpha}-\alpha^{(t)}\right\|\right)
\end{aligned}
$$

Since $\bar{\epsilon}=\bar{w}_{\text {min }}-\frac{1}{\lambda}\left\|P^{\prime}(\bar{w})\right\|_{\infty}>0$, it follows from Theorem 2 that $\bar{\alpha}=\left[l_{1}^{\prime}\left(\bar{w}^{\top} x_{1}\right), \ldots, l_{N}^{\prime}\left(\bar{w}^{\top} x_{N}\right)\right]$. Given that $t \geq t_{0}$, from the smoothness of l_{i} and Lemma 2 we get

$$
\left\|\beta^{(t)}-\bar{\alpha}\right\| \leq \frac{1}{\mu}\left\|w^{(t)}-\bar{w}\right\| \leq \frac{\sigma_{\max }(X, k)}{\mu \lambda N}\left\|\alpha^{(t)}-\bar{\alpha}\right\|,
$$

where in the first " \leq " we have used $\left\|x_{i}\right\| \leq 1$. Therefore, the following is valid when $t \geq t_{0}$:

$$
\begin{aligned}
\epsilon_{P D}^{(t)} & \leq\left\|g^{(t)}\right\|\left(\left\|\beta^{(t)}-\bar{\alpha}\right\|+\left\|\bar{\alpha}-\alpha^{(t)}\right\|\right) \\
& \leq c_{0}\left(1+\frac{\sigma_{\max }(X, k)}{\mu \lambda N}\right)\left\|\alpha^{(t)}-\bar{\alpha}\right\| .
\end{aligned}
$$

Since $t \geq t_{1}$, from part(a) and Lemma 6 we get $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \frac{\epsilon}{c_{0}\left(1+\frac{\left.\sigma_{\max (X, k)}^{\mu \lambda N}\right)}{\mu \lambda}\right.}$, which according to the above inequality implies $\epsilon_{P D}^{(t)} \leq \epsilon$. This proves the desired bound.

A.6. Proof of Theorem 5

Proof. Part(a): Let us consider $g^{(t)}$ with $g_{j}^{(t)}=\frac{1}{N}\left(x_{j}^{\top} w^{(t)}-l_{j}^{*^{\prime}}\left(\alpha_{i}^{(t)}\right)\right)$. Let $h^{(t)}=\left\|\alpha^{(t)}-\bar{\alpha}\right\|$ and $v^{(t)}=\left\langle g^{(t)}, \bar{\alpha}-\alpha^{(t)}\right\rangle$. The concavity of D implies $v^{(t)} \geq 0$. From Lemma 3 we know that $h^{(t)} \leq \sqrt{2 \lambda N^{2} v^{(t)} /\left(\lambda N \mu+\sigma_{\min }(X, k)\right)}$. Let $g_{B_{i}}^{(t)}:=\mathrm{H}_{B_{i}^{(t)}}\left(g^{(t)}\right)$ and $v_{B_{i}}^{(t)}:=\left\langle g_{B_{i}}^{(t)}, \bar{\alpha}-\alpha^{(t)}\right\rangle$ Then

$$
\begin{aligned}
\left(h^{(t)}\right)^{2} & =\left\|\mathrm{P}_{\mathcal{F N}}\left(\alpha^{(t-1)}+\eta^{(t-1)} g_{B_{i}}^{(t-1)}\right)-\bar{\alpha}\right\|^{2} \\
& \leq\left\|\alpha^{(t-1)}+\eta^{(t-1)} g_{B_{i}}^{(t-1)}-\bar{\alpha}\right\|^{2} \\
& =\left(h^{(t-1)}\right)^{2}-2 \eta^{(t-1)} v_{B_{i}}^{(t-1)}+\left(\eta^{(t-1)}\right)^{2}\left\|g_{B_{i}}^{(t-1)}\right\|^{2} .
\end{aligned}
$$

By taking conditional expectation (with respect to uniform random block selection, conditioned on $\alpha^{(t-1)}$) on both sides of the above inequality we get

$$
\begin{aligned}
& \mathbb{E}\left[\left(h^{(t)}\right)^{2} \mid \alpha^{(t-1)}\right] \\
\leq & \left(h^{(t-1)}\right)^{2}-\frac{1}{m} \sum_{i=1}^{m} 2 \eta^{(t-1)} v_{B_{i}}^{(t-1)}+\frac{1}{m} \sum_{i=1}^{m}\left(\eta^{(t-1)}\right)^{2}\left\|g_{B_{i}}^{(t-1)}\right\|^{2} \\
= & \left(h^{(t-1)}\right)^{2}-\frac{2 \eta^{(t-1)}}{m} v^{(t-1)}+\frac{\left(\eta^{(t-1)}\right)^{2}}{m}\left\|g^{(t-1)}\right\|^{2} \\
\leq & \left(h^{(t-1)}\right)^{2}-\frac{\eta^{(t-1)}\left(\lambda N \mu+\sigma_{\min }(X, k)\right)}{\lambda m N^{2}}\left(h^{(t-1)}\right)^{2}+\frac{\left(\eta^{(t-1)}\right)^{2}}{m} c_{0}^{2} .
\end{aligned}
$$

Let $\eta^{(t)}=\frac{\lambda m N^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)(t+1)}$. Then we obtain

$$
\mathbb{E}\left[\left(h^{(t)}\right)^{2} \mid \alpha^{(t-1)}\right] \leq\left(1-\frac{1}{t}\right)\left(h^{(t-1)}\right)^{2}+\frac{\lambda^{2} m N^{4} c_{0}^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)^{2} t^{2}}
$$

By taking expectation on both sides of the above over $\alpha^{(t-1)}$, we further get

$$
\mathbb{E}\left[\left(h^{(t)}\right)^{2}\right] \leq\left(1-\frac{1}{t}\right) \mathbb{E}\left[\left(h^{(t-1)}\right)^{2}\right]+\frac{\lambda^{2} m N^{4} c_{0}^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)^{2} t^{2}}
$$

This recursive inequality leads to

$$
\mathbb{E}\left[\left(h^{(t)}\right)^{2}\right] \leq \frac{\lambda^{2} m N^{4} c_{0}^{2}}{\left(\lambda N \mu+\sigma_{\min }(X, k)\right)^{2}}\left(\frac{1}{t}+\frac{\ln t}{t}\right)=c_{2}\left(\frac{1}{t}+\frac{\ln t}{t}\right)
$$

This proves the desired bound in part(a).
$\operatorname{Part}(\mathbf{b}):$ Let us consider $\epsilon=\frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}$. From part(a) and Lemma 6 we obtain

$$
\mathbb{E}\left[\left\|\alpha^{(t)}-\bar{\alpha}\right\|\right] \leq \delta \epsilon
$$

after $t \geq t_{2}=\frac{3 c_{2}}{\delta^{2} \epsilon^{2}} \ln \frac{3 c_{2}}{\delta^{2} \epsilon^{2}}$. Then from Markov inequality we know that $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \mathbb{E}\left[\left\|\alpha^{(t)}-\bar{\alpha}\right\|\right] / \delta \leq \epsilon$ holds with probability at least $1-\delta$. Lemma 2 shows that $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \epsilon \operatorname{implies} \operatorname{supp}\left(w^{(t)}\right)=\operatorname{supp}(\bar{w})$. Therefore when $t \geq t_{2}$, the event $\operatorname{supp}\left(w^{(t)}\right)=\operatorname{supp}(\bar{w})$ occurs with probability at least $1-\delta$.

Similar to the proof arguments of Theorem 4(b) we can further show that when $t \geq 4 t_{2}$, with probability at least $1-\delta / 2$

$$
\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}
$$

which then leads to

$$
\epsilon_{P D}^{(t)} \leq c_{0}\left(1+\frac{\sigma_{\max }(X, k)}{\mu \lambda N}\right)\left\|\alpha^{(t)}-\bar{\alpha}\right\|
$$

Since $t \geq t_{3}$, from the arguments in part(a) and Lemma 6 we get that $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \frac{\epsilon}{c_{0}\left(1+\frac{\left.\sigma_{\max (X, k)}\right)}{\mu \lambda N}\right)}$ holds with probability at least $1-\delta / 2$. Let us consider the following events:

- \mathcal{A} : the event of $\epsilon_{P D}^{(t)} \leq \epsilon$;
- \mathcal{B} : the event of $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \frac{\lambda N \bar{\epsilon}}{2 \sigma_{\max }(X)}$;
- \mathcal{C} : the event of $\left\|\alpha^{(t)}-\bar{\alpha}\right\| \leq \frac{\epsilon}{c_{0}\left(1+\frac{\left.\sigma_{\max (X, k)}\right)}{\mu \lambda N}\right)}$.

When $t \geq \max \left\{4 t_{2}, t_{3}\right\}$, we have the following holds:

$$
\mathbb{P}(\mathcal{A}) \geq \mathbb{P}(\mathcal{A} \mid \mathcal{B}) \mathbb{P}(\mathcal{B}) \geq \mathbb{P}(\mathcal{C} \mid \mathcal{B}) \mathbb{P}(\mathcal{B}) \geq(1-\delta / 2)^{2} \geq 1-\delta
$$

This proves the desired bound.

