
Global optimization of Lipschitz functions

Appendix A. Preliminary results

We provide here two geometric results (Corollary 26 and Lemma 27) and a stochastic result
(Proposition 28) that are used repeatidly in the computations. We start with the definition
of covering numbers.

Definition 24 (Covering number and ε-cover) For any compact and convex set X ⊂
Rd and any ε > 0, we say that a sequence x1, . . . , xn of n points in X defines an ε-cover of
X if and only if X ⊆

⋃n
i=1B(xi, ε). The covering number Nε(X ) of X is then defined as the

minimal size of a sequence defining an ε-cover of X , i.e.

Nε(X ) := inf
{
n ∈ N? : ∃(x1, . . . , xn) ∈ X n s.t. X ⊆

n⋃
i=1

B(xi, ε)
}
.

The next result provides an upper bound on the covering numbers of hypercubes.

Proposition 25 (Covering number of hypercubes) Let [0, R]d be an hypercube of
dimensionality d ≥ 1 whose side has length R > 0. Then, for all ε > 0, we have that

Nε([0, R]d) ≤ (
√
dR/2ε)d ∨ 1.

Proof Observe first that since [0, R]d ⊆ B(c,
√
dR/2) where c denotes the center of the

hypercube, then the result trivially holds for any ε ≥
√
dR/2. Fix any ε <

√
dR/2, set

Nε = d
√
dR/2εe and define for all I ∈ {0, . . . , Nε−1}d the series HI = I×R/Nε+[0, R/Nε]d

of Nd
ε hypercubes which cover [0, R]d :=

⋃
I∈{0,...,Nε−1}d HI . Dentoting by cI the center of

HI and since maxx∈HI ‖x− cI‖2 ≤ ε, it necessarily follows that HI ⊆ B(cI , ε) which implies
that [0, R]d ⊆

⋃
I∈{0,...,Nε−1}d B(cI , ε) and proves that Nε([0, R]d) ≤ Nd

ε ≤ (
√
dR/2ε)d. �

This result can be extended to any compact and convex set of Rd as shown below.

Corollary 26 (Covering number of a convex set) For any bounded compact and
convex set X ⊂ Rd, we have that ∀ε > 0,

Nε(X ) ≤ (
√
ddiam(X ) /ε)d ∨ 1.

Proof First, we show that Nε(X ) ≤ Nε([0, 2 diam(X )]d) and then, we use the bound of
Proposition 25 to conclude the proof. By definition of diam(X ), we know that there exists
some x ∈ Rd such that X ⊆ x+ [0, 2 diam(X )]d. Hence, we know from Proposition 25 that
there exists a sequence c1, . . . , cNε of Nε ≤ Nε([0, 2 diam(X )]d) points in [0, 2 diam(X )]d
forming an ε-cover of X :

X ⊆ [0, 2 diam(X )]d ⊆
Nε⋃
i=1

B(ci, ε). (1)

However, we do not have the guarantee at this point that the centers c1, . . . cNε belong to
X . To build an ε-cover of X , we project each of those centers on X . More precisely, we
show that X ⊆

⋃Nε
i=1B(ΠX (ci), ε) where ΠX : x ∈ Rd 7→ arg minx′∈X ‖x− x′‖2 ∈ X denotes
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the projection over the compact and convex set X . Starting from (1), it sufficient to show
that B(ci, ε) ∩ X ⊆ B(ΠX (ci), ε), for all i ∈ {1, . . . , Nε} to prove that

X ⊆
Nε⋃
i=1

B(ci, ε) ∩ X ⊆
Nε⋃
i=1

B(ΠX (ci), ε).

Pick any c ∈ {c1, . . . , cNε} and consider the following cases on the distance ‖c−ΠX (c)‖2
between the center and its projection: (i) if ‖c−ΠX (c)‖2 = 0, then c = ΠX (c) and we
have B(c, ε)∩X ⊆ B(ΠX (c), ε), (ii) If ‖c−ΠX (c)‖2 > ε, then X ∩B(c, ε) = ∅, and we have
X∩B(c, ε) ⊆ B(ΠX (c), ε). We now consider the non-trivial case where ‖c−ΠX (c)‖2 ∈ (0, ε).
Pick any x ∈ B(c, ε) ∩ X and note that since x ∈ B(c, ε), then

ε2 ≥ ‖x− c‖22
= ‖x−ΠX (c) + ΠX (c)− c‖22
= ‖x−ΠX (c)‖22 + ‖c−ΠX (c)‖22 + 2 · 〈x−ΠX (c),ΠX (c)− c〉

which combined with the fact that ‖c−ΠX (c)‖22 ≥ 0 gives

‖x−ΠX (c)‖22 ≤ ε
2 − 2 · 〈x−ΠX (c),ΠX (c)− c〉. (2)

We will simply show that the inner product 〈x−ΠX (c),ΠX (c)−c〉 cannot be stricly negative
to prove that ‖x−ΠX (c)‖2 ≤ ε. Assume by contradiction that 〈x−ΠX (c),ΠX (c)− c〉 < 0.
Since ΠX (c) ∈ X and x ∈ X , it follows the convexity of X implies that ∀λ ∈ [0, 1],
xλ = ΠX (c) + λ · (x−ΠX (c)) ∈ X . However, for all λ ∈ (0, 1) we have that

‖xλ − c‖22 = ‖ΠX (c)− c+ λ · (x−ΠX (c))‖22
= ‖ΠX (c)− c‖22 + λ2 ‖x−ΠX (c)‖22 + 2λ · 〈ΠX (c)− c, x−ΠX (c)〉
= ‖ΠX (c)− c‖22 + λ · (λ ‖x−ΠX (c)‖22 + 2 · 〈ΠX (c)− c, x−ΠX (c)〉).

Therefore, taking any 0 < λ? < |〈ΠX (c) − c, x − ΠX (c)〉)|/ ‖ΠX (c)− c‖22 ∧ 1 so that the
second term of the right hand term of the previous equation is strictly negative gives
that ‖xλ? − c‖22 < ‖ΠX (c)− c‖22 leads us to the following contradiction minx∈X ‖x− c‖2 ≤
‖xλ? − c‖2 < ‖ΠX (c)− c‖2 = minx∈X ‖x− c‖2 . Hence, 〈x− ΠX (c),ΠX (c)− c〉 ≥ 0 and we
deduce from (2) that X ∩B(c, ε) ⊆ B(ΠX (c), ε), which completes the proof. �

The next inequality will be useful to bound to bound volume of the intersection of a ball
and a convex set.

Lemma 27 (From Zabinsky and Smith (1992), see Appendix Section therein). For any
compact and convex set X ⊂ Rd with non-empty interior, we have that for any x? ∈ X and
ε ∈ (0, diam(X )),

µ(B(x?, ε) ∩ X )
µ(X ) ≥

(
ε

diam(X )

)d
.

Proof We point out that a detailed proof of this result can be found in the Appendix
Section of (Zabinsky and Smith (1992)). Nonetheless, we provide here a proof with less
details for completeness. Introduce the similarity transformation S : Rd → Rd defined by

S : x 7→ x? + r

diam(X )(x− x?)
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and let S(X ) := {S(x) : x ∈ X} be the image of X by S. Since x? ∈ X and
maxx∈X ‖x− x?‖2 ≤ diam(X ) by definition, it follows from the convexity of X that
S(X ) ⊆ B(x?, r) ∩ X which implies that µ(B(x?, r) ∩ X ) ≥ µ(S(X )). However, as S is
a similarity transformation conserves the ratios of the volumes before/after transformation,
we thus deduce that

µ(B(x?, r) ∩ X )
µ(X ) ≥ µ(S(X ))

µ(X ) = µ(S(B(x?,diam(X ))))
µ(B(x?,diam(X ))) = µ(B(x?, r))

µ(B(x?,diam(X )))

and the result follows using the fact that ∀r ≥ 0, µ(B(x?, r)) = πd/2rd/Γ(d/2 + 1) where
Γ(·) stands for the standard gamma function. �

Proposition 28 (Pure Random Search) Let X ⊂ Rd be a compact and convex set with
non-empty interior and let f ∈ Lip(k) be a k-Lipschitz functions defined on X for some
k ≥ 0. Then, for any n ∈ N? and δ ∈ (0, 1), we have with probability at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ k · diam(X ) ·
( ln(1/δ)

n

) 1
d

where X1, . . . , Xn denotes a sequence of n independent copies of X ∼ U(X ).

Proof Fix any n ∈ N? and δ ∈ (0, 1), let ε = k diam(X ) (ln(1/δ)/n)1/d be the value of the
upper bound and Xε = {x ∈ X : f(x) ≥ maxx∈X f(x)− ε} the corresponding level set. As
the result trivially holds whenever n ≤ ln(1/δ), we consider that n > ln(1/δ). Observe now
that since f ∈ Lip(k), then for any x? ∈ arg maxx∈X f(x), we have that X ∩B(x?, ε/k) ⊆ Xε
since |f(x) − f(x?)| ≤ k · ‖x− x?‖2 = ε for all x ∈ B(x?, ε/k) ∩ X . Therefore, by picking
any x? ∈ arg maxx∈X f(x), one gets

P
(

max
i=1...n

f(Xi) ≥ max
x∈X

f(x)− ε
)

= P
(

n⋃
i=1
{Xi ∈ Xε}

)
(def. of Xε)

= 1− P (X1 /∈ Xε)n (i.i.d. r.v.)
≥ 1− P(X1 /∈ X ∩B(x?, ε/k))n (X ∩B(x?, ε/k) ⊆ Xε)

= 1−
(

1−
(
µ(X ∩B(x?, ε/k))

µ(X )

)d)n
(X1 ∼ U(X ))

≥ 1−
(

1−
(

ε

k diam(X )

)d)n
(Lemma 27)

= 1−
(

1− ln(1/δ)
n

)n
(def. of ε)

≥ 1− δ. (1 + x ≤ ex)

�
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Appendix B. Proofs of Section 3

In this section, we provide the proofs of Propositions 3, 5, 6 and Example 4.

Proof of proposition 3. (⇐) Let A be any global optimization algorithm such that
∀f ∈

⋃
k≥0 Lip(k), supx∈X mini=1...n ‖Xi − x‖2

p−→ 0. Pick any ε > 0, any f ∈
⋃
k≥0 Lip(k)

and let Xε = {x ∈ X : f(x) ≥ maxx∈X f(x) − ε} be the corresponding level set. As Xε is
non-empty, there necessarily exists some xε ∈ X and rε > 0 such that B(xε, rε) ∩ X ⊆ Xε.
Thus, if X1, . . . , Xn denotes a sequence a sequence of n evaluation points generated by A
over f , we directly obtain from the convergence in probability of the mesh grid that

P
(

max
x∈X

f(x)− max
i=1...n

f(Xi) > ε

)
= P

(
n⋂
i=1
{Xi /∈ Xε}

)

≤ P
(

n⋂
i=1
{Xi /∈ B(xε, rε)}

)

= P
(

min
i=1...n

‖Xi − xε‖2 > rε

)
≤ P

(
sup
x∈X

min
i=1...n

‖Xi − x‖2 > rε

)
−−−→
n→∞

0.

(⇒) Let A be any global optimization algorithm consistent over the set of Lipschitz
functions and assume by contradiction that there exists some f? ∈

⋃
k≥0 Lip(k) such that

supx∈X mini=1...n ‖x−Xi‖2
p9 0. The implication is proved in two steps: first, we show

that there exists a ball B(c?, ε) for some c? ∈ X which is almost never hit by the al-
gorithm and second, we build a Lipschitz function which admits its maximum over this ball.

First step. Let {Xi}i∈N? be a sequence of evaluation points generated by A over f?. Observe
first that since for all ε > 0, the series n ∈ N? 7→ P(supx∈X mini=1...n ‖x−Xi‖2 > ε) is non-
increasing, then the contradiction assumption necessarily implies that

∃ε1, ε2 > 0 such that ∀n ∈ N?, P
(

sup
x∈X

min
i=1...n

‖x−Xi‖2 > ε1

)
> ε2. (3)

Consider now any sequence c1, . . . , cN1 of N1 = Nε1(X ) points in X defining an ε1-cover of
X and suppose by contradiction that

∀c ∈ {c1, . . . , cN1}, ∃nc ∈ N? such that P
(
nc⋂
i=1
{Xi /∈ B(c, ε1) ∩ X}

)
≤ ε2

2N1

which gives by setting N2 = maxc∈{c1,··· ,cN1} nc that

∀c ∈ {c1, . . . , cN1}, P

N2⋂
i=1
{Xi /∈ B(c, ε) ∩ X}

 ≤ ε2
2N1

.

4



Global optimization of Lipschitz functions

However, as c1, . . . , cN1 form an ε1-cover of X , it follows that

P
(

sup
x∈X

min
i=1...N2

‖x−Xi‖2 ≤ ε1

)
≥ P

N1⋂
j=1

N2⋃
i=1
{Xi ∈ B(cj , ε1) ∩ X}


= 1− P

N1⋃
j=1

N2⋂
i=1
{Xi /∈ B(cj , ε1) ∩ X}


≥ 1−

N1∑
j=1

P

N2⋂
i=1
{Xi /∈ B(cj , ε) ∩ X}


≥ 1−N1 ×

ε2
2N1

= 1− ε2
2

which contradicts (3). Hence, we deduce that

∃c? ∈ {c1, . . . , cNε} such that ∀n ∈ N?, P
(

n⋂
i=1
{Xi /∈ B(c?, ε1) ∩ X}

)
≥ ε2

2N1
.

Second Step. Based on this center c? ∈ X , one can introduce the function f̃ : X 7→ R
defined for all x ∈ X by

f̃(x) =

f?(x) + 3
(
1− ‖c

?−x‖2
ε1

)
× (maxx∈X f?(x)−minx∈X f?(x)) if x ∈ B(c?, ε1)

f?(x) otherwise

which is maximized over B(c?, ε1) and Lipschitz continuous as both f? and x 7→ ‖c? − x‖2
are Lipschitz. However, since f̃ and f? can not be distinguished over X/B(c, ε1), we have
that ∀n ∈ N?,

P
(

max
x∈X

f̃(x)− max
i=1...n

f̃(X ′i) > max
x∈X

f(x)
)
≥ P

(
n⋂
i=1
{X ′i /∈ B(c, ε2) ∩ X}

)

= P
(

n⋂
i=1
{Xi /∈ B(c, ε2) ∩ X}

)
≥ ε2/(2N1)
> 0

where X ′1, . . . , X ′n denotes a sequence of evaluation points generated by A over f̃ , and we
deduce that there exists f̃ ∈

⋃
k≥0 Lip(k) such that maxi=1...n f̃(X ′i)

p9 maxx∈X f̃(x). Hence,
it contradicts the fact that A is consistent over

⋃
k≥0 Lip(k) and we deduce that, necessarily,

supx∈X mini=1...n ‖Xi − x‖
p→ 0 for all f ∈

⋃
k≥0 Lip(k). �

Proof of Example 4. Fix any n ∈ N?, set δ ∈ (0, 1), define ε = diam(X ) ·
((ln(n/δ) + d ln(d))/n)1/d and let X1, . . . , Xn be a sequence of n independent copies of
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X ∼ U(X ). Since the result trivially holds whenever (ln(n/δ) + d ln(d))/n ≥ 1, we consider
the case where (ln(n/δ) + d ln(d))/n < 1. From Proposition 26, we know that there exists
a sequence x1, . . . , xNε of Nε = Nε(X ) points in X such that X ⊆

⋃Nε
j=1B(xj , ε). Therefore,

using the bound on the covering number Nε(X ) of Corollary 26, we obtain that

P
(

sup
x∈X

min
i=1...n

‖x−Xi‖2 ≤ ε
)
≥ P

 Nε⋂
j=1

n⋃
i=1
{Xi ∈ B(xj , ε) ∩ X}


= 1− P

 Nε⋃
j=1

n⋂
i=1
{Xi /∈ B(xj , ε) ∩ X}


≥ 1−

Nε∑
j=1

P
(

n⋂
i=1
{Xi /∈ B(xj , ε) ∩ X}

)
≥ 1−Nε × max

j=1...Nε
P(X1 /∈ B(xj , ε) ∩ X )n

= 1−Nε × max
j=1...Nε

(
1− µ(X ∩B(xj , ε))

µ(X )

)n
≥ 1−Nε ×

(
1−

(
ε

diam(X )

)d)n

≥ 1−
(√

d diam(X )
ε

)d
×
(

1−
(

ε

diam(X )

)d)n
≥ 1− δ

and the proof is complete. �

Proof of Proposition 5. The proof heavily builds upon the arguments used in the proof
of the Theorem 1 in (Bull (2011)). Pick any algorithm A ∈ A and any constant C > 0.
Fix any n ∈ N? and δ ∈ (0, 1) and set Nδ = d(n/δ)1/de. By definition of rad(X ), we
know there exists some x ∈ X such that x + [0, 2 rad(X ) /

√
d]d ⊆ X . One can then define

for all I ∈ {1, . . . , Nδ}d, the centers cI of the hypercubes HI whose side are equal to
D = 2 rad(X ) /(

√
dNδ) and cover X , i.e.,

⋃
I HI = x + [0, 2 rad(X ) /

√
d]d ⊆ X . Now, let

X1, . . . , Xn be a sequence of n evaluation points generated by the algorithm A over the
constant function f0 : x ∈ X 7→ 0 and define for all I ∈ {1, . . . , Nδ}d the event

EI =
n⋂
i=1
{Xi /∈ Int(HI)} .

As the interiors of the Nd
δ hypercubes are disjoint and we have n points, it necessarily

follows that

Nd
δ ×max

I
P(EI) ≥

∑
I

P(EI) = E
[∑
I

I{EI}
]
≥ Nd

δ − n.

6
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Hence, there exsits some fixed I? only depending on A which maximizes the above proba-
bility and thus satisfies

P(EI?) ≥
Nd
δ − n
Nd
δ

= 1− n

d(n/δ)1/ded
≥ 1− δ.

Now, using the center cI? of the hypercube HI? , one can then introduce the function f̃ ∈⋃
k≥0 Lip(k) defined for all x ∈ X by

f̃(x) =
{
C × (1− 2 ‖cI? − x‖2 /D) if ‖cI? − x‖2 ≤ D/2
0 otherwise.

However, since the functions f̃ and f0 can not be distinguished over X/HI? , we have that

P
(

max
x∈X

f̃(x)− max
i=1...n

f̃(X ′i) ≥ C
)
≥ P

(
n⋂
i=1
{X ′i /∈ Int(HI?)}

)
= P(EI?) ≥ 1− δ

where X ′1, . . . , X ′n denotes a sequence of evaluation points generated by A over f̃ , which
proves the result. �

Proof of Proposition 6. (Lower bound). Pick any n ∈ N? and set D =
2 rad(X ) /(

√
dd(2n)1/de). It can easily be shown by reproducing the same steps as in the

proof of Proposition 5 with δ set to 1/2, that for any global optimization algorithm A, there
exists a function f̃A ∈ Lip(k) defined by

f̃A(x) =
{
kD/2− k · ‖cA − x‖2 if ‖cA − x‖2 ≤ D/2
0 otherwise,

for some center cA ∈ X only depending on A, for which we have P(maxx∈X f̃A(x) −
maxi=1...n f̃A(Xi) ≥ k ·D/2) ≥ 1/2 where X1, . . . , Xn is a sequence of n evaluation points
generated by A over f̃A. Therefore, using the definition of the supremum and Markov’s
inequality gives that ∀A ∈ A:

sup
f∈Lip(k)

E
[
max
x∈X

f(x)− max
i=1...n

f(Xi)
]
≥ E

[
max
x∈X

f̃A(x)− max
i=1...n

f̃A(Xi)
]

≥ kD

2 × P
(

max
x∈X

f̃A(x)− max
i=1...n

f̃A(Xi) ≥ k ·
D

2

)
≥ k · rad(X )

8
√
d
· n−

1
d .

As the previous inequaliy holds true for any algorithm A, the proof is complete.

(Upper bound). Sequentially using the fact that (i) the infinimum minimax loss taken
over all algorithms is necessarily upper bounded by the loss suffered by a Pure Random
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Search, (ii) for any positive random variable, E [X] =
∫∞
t=0 P(X ≥ t)dt, (iii) Proposition 28

and (iv) the change of variable u = n(t/diam(X ))1/d, we obtain that

inf
A∈A

sup
f∈Lip(k)

E
[
max
x∈X

f(x)− max
i=1...n

f(Xi)
]
≤ sup

f∈Lip(k)
E
[
max
x∈X

f(x)− max
i=1...n

f(X ′i)
]

≤
∫ ∞

0
exp

{
−n(t/k · diam(X ))1/d

}
dt

= k · diam(X ) · n−d · d ·
∫ ∞

0
ud−1e−udu

= k · diam(X ) · n−d · d · Γ(d)

where X ′1, . . . , X ′n denotes a sequence of n independent copies of X ′ ∼ U(X ) and Γ(·) the
Euler’s Gamma function. Recalling that Γ(d) = (d− 1)! for all d ∈ N? completes the proof.
�

Appendix C. Proofs of Section 3

In this section, we provide the proofs for Lemma 9, Proposition 11, Proposition 12,
Corollary 13, Proposition 14, Theorem 15 and Theorem 16.

Proof of Lemma 9. The first implication (⇒) is a direct consequence of the definition of
Xk,t. Noticing that the function f̂ : x 7→ min(maxi=1...t f(Xi),mini=1...t f(Xi)+k ‖x−Xi‖2)
belongs to Fk,t and that arg maxx∈X f̂(x) = {x ∈ X : mini=1...t f(Xi) + k ‖x−Xi‖2 ≥
maxi=1...t f(Xi)} proves the second implication. �

Proof of Proposition 11. Fix any f ∈ Lip(k), pick any n ∈ N?, set ε > 0 and let
Xε = {x ∈ X : f(x) ≥ maxx∈X f(x) − ε} be the corresponding level set. Denoting by
X ′1, . . . , X

′
n a sequence of n random variable uniformly distributed over X and observing

that µ(Xε) > 0, we directly obtain from Proposition 12 that

P
(

max
x∈X

f(x)− max
i=1...n

f(Xi) > ε

)
≤ P

(
max
x∈X

f(x)− max
i=1...n

f(X ′i) > ε

)
= P

(
n⋂
i=1
{X ′i /∈ Xε}

)

≤
(

1− µ(Xε)
µ(X )

)n
−−−→
n→∞

0.

�

Proof of Proposition 12. The proof is similar to the one of Proposition 12 in (Malherbe
and Vayatis (2016)). �

Proof of Corollary 13. Combining Proposition 12 and Proposition 28 stated at the
begining of the Appendix Section gives the result. �

Proof of Proposition 14. Fix any δ ∈ (0, 1), set n ∈ N? and let rδ,n = rad(X ) (δ/n)
1
d be
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the value of the lower bound divided by k. As rad(X ) > 0, there necessarily exists some
point x? ∈ X such that B(x?, rad(X )) ⊆ X . Based on this point, one can then introduce
the function f̃ ∈ Lip(k) defined for all x ∈ X by

f̃(x) =
{
k · rδ,n − k · ‖x− x?‖2 if x ∈ B(x?, rδ,n)
0 otherwise.

Denoting now by X1, . . . , Xn a sequence of n evaluation points generated by LIPO tuned
with a parameter k over f̃ and observing that (i) X1 is uniformly distributed over X and
(ii) Xi+1 is also uniformly distributed over X for i ≥ 1 as soon as only constant evaluations
have been recorded (i.e. Xk,i+1 = X on the event

⋂
t≤i{Xt /∈ B(x?, rδ,n)}), we have that

P
(

max
x∈X

f̃(x)− max
i=1...n

f̃(Xi) ≥ k · rδ,n
)
≥ P

(
n⋂
i=1
{Xi /∈ B(x?, rδ,n)}

)

=
[
P(X1 /∈ B(x?, rδ,n))×

n−1∏
i=1

P
(
Xi+1 /∈ B(x?, rδ,n) |

i⋂
t=1
{Xt /∈ B(x?, rδ,n)}

)]

=
(

1− µ(B(x?, rδ,n) ∩ X )
µ(X )

)n
≥
(

1−
(

rδ,n
rad(X )

)d)n
=
(

1− δ

n

)n
≥ 1− δ.

�

Proof of Theorem 15. Pick any n ∈ N?, fix any δ ∈ (0, 1) and let X1, . . . , Xn be a
sequence of n evaluation points generated by the LIPO algorithm over f after n iterations.
To clarify the proof, we set some specific notations: let D = maxx∈X ‖x− x?‖2, set

M =



⌊( cκ
8k
)d · n

ln(n/δ)+2(2
√
d)d

⌋
if κ = 1

⌊
1

ln(2)d(κ−1) ln
(

1 +
(
cκDκ

8kD

)d n(2d(κ−1)−1)
ln(n/δ)+2(2

√
d)d

)⌋
otherwise,

define for all m ∈ {1 . . .M} the series of integers:

Nm :=
⌈√

d ·
( 8kD
cκDκ

)
· 2m(κ−1)

⌉d
and N ′m :=

⌈
ln(M/δ) ·

( 8kD
cκDκ

)d
· 2md(κ−1)

⌉

9
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and let τ0, . . . , τM be the series of stopping times initialized by τ0 = 0 and defined for all
m ≥ 1 by

τm := inf

t ≥ τm−1 |
t∑

i=τm−1+1
I
{
Xi ∈ B(x?, 2 ·D · 2−m)

}
= N ′m

 .
The stopping time τm correspond to the time after τm−1 where we have recorded at least
N ′m random evaluation points inside the ball B(x?, 2 · D · 2−m). To prove the result, we
show that each of the following events:

Em :=
{

max
i=1...τm

f(Xi) ≥ max
x∈X

f(x)− cκ
2 ·

(
D

2m
)κ}

∩
{
τm ≤ N ′1 +

m−1∑
l=1

(
N ′l+1 +Nl

)}
.

holds true with probability at least 1− δ/M on the event
⋂m−1
l=1 El for all m ∈ {2, . . . ,M}

so that:

P (EM ) ≥ P(E1)×
M−1∏
m=1

P
(
Em+1|

m⋂
l=1

El

)
≥
(

1− δ

M

)M
≥ 1− δ (4)

that will leads us to the result by analyzing EM .

Analysis of P(E1). Observe first that since X ⊆ B(x?, D), then τ1 = N ′1. Using now the
fact that (i) the algorithm is faster than a Pure Random Search (Proposition 12) and (ii)
the bound of Proposition 28, we directly get that with probability at least 1− δ/M ,

max
x∈X

f(x)− max
i=1...τ1

f(Xi) ≤ k · 2D ·
( ln(M/δ)

N ′1

) 1
d

≤ k · 2D ·
(

ln(M/δ)
ln(M/δ)2d(κ−1)

(
cκD

κ

8kD

)d) 1
d

= cκ
2 ·

(
D

2

)κ
which proves that P(E1) ≥ 1− δ/M .

Analysis of P(Em+1| ∩ml=1 El). To bound this term, we use (i) a deterministic cov-
ering argument to control the stopping time τm+1 (Lemma 29 and Corollary 30) and
(ii) a stochastic argument to bound the maximum maxi=1...τm+1 f(Xi) (Lemma 31 and
Corollary 32). The following lemma states that after τm and on the event Em there will
be at most Nm evaluation points that will fall inside the area B(x?, 2D·2−m)/B(x?, D·2−m).

Lemma 29 For all m ∈ {1, . . . ,M − 1}, we have on the event Em,

n∑
t=τm+1

I
{
Xt ∈ B(x?, 2D · 2−m)/B(x?, D · 2−m)

}
≤ Nm.

10
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Proof Fix m ∈ {1, . . . ,M−1} and assume that Em = {maxi=1...τm f(Xi) ≥ maxx∈X f(x)−
ck/2 · (D/2m)κ} holds true. Setting N = d

√
d8kD2m(κ−1)/(ckDκ)e and observing that

B(x?, 2D · 2−m) ⊆ x? + 2D · 2−m · [−1,+1]d, one can then introduce the sequence HI , with
I ∈ {1, . . . , N}d, of the Nd = Nm hypercubes whose side have length 4D ·2−m/N and cover
x? + 2D · 2−m × [−1,+1]d, so that

B(x?, 2D · 2−m)/B(x?, D · 2−m) ⊆ x? + 2D · 2−m · [−1,+1]d =
⋃
I

HI .

Based on these hypercubes, one can define the set

It = {I ∈ {1, . . . , N}d : HI ∩B(x?, 2D · 2−m)/B(x?, 2D · 2−m) ∩ Xk,t 6= ∅}

which contains the indexes of the hypercubes that still intersect the set of potential max-
imizers Xk,t at time t and the target area B(x?, 2D · 2−m)/B(x?, 2D · 2−m). We show by
contradiction that there cannot be more than Nd = Nm evaluation points falling inside this
area, otherwise it would be empty. Suppose that, after τm, there exists a sequence

τm < t1 < t2 < · · · < tNd+1 ≤ n

of Nd + 1 strictly increasing indexes for which the evaluation points Xtj , j ≥ 1, belong to
the target area, i.e,

∀j ∈ {1, . . . , Nd + 1}, Xtj ∈ B(x?, 2D · 2−m)/B(x?, D · 2−m).

Fix any j ≥ 1 and observe that since Xtj /∈ B(x?, D · 2−m), then we have from Condi-
tion 1 that (i) f(Xtj ) < maxx∈X f(x) − ck · (D · 2−m)κ. Moreover, as Xtj ∈ Xk,tj−1 ∩
B(x?, 2D · 2−m)/B(x?, D · 2−m), it necessarily follows from the definition of the algorithm
that (ii) there exists an index I? ∈ Itj−1 such that Xtj ∈ HI? . Therefore, combining (i) and
(ii) with Em, gives that ∀x ∈ HI? :

f(x) ≤ f(Xtj ) + k ·
∥∥∥Xtj − x

∥∥∥
2

(f ∈ Lip(k))

≤ f(Xtj ) + k · max
(x,x′)∈H2

I

∥∥x− x′∥∥2 ((Xtj , x) ∈ H2
I )

= f(Xtj ) + k ·
√
d · 4D · 2−m/N (def. of HI)

≤ f(Xtj ) + ck
2 · (D · 2

−m)κ (def. of N)

< max
x∈X

f(x)− cκ · (D · 2−m)κ + ck
2 · (D · 2

−m)κ (i)

≤ max
i=1...τm

f(Xi) (E1)

≤ max
i=1...tj

f(Xi). (tj > τm)

It has been shown that if Xtj belongs to the target area then f(x) < maxi=1...tj f(Xi) for all
x ∈ HI? , which combined with the definition of the set of potential maximizers Xk,tj at time
tj implies that HI? /∈ Xτj . Hence, once an evaluation has been made in HI? , there will not be

11
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any future evaluation point falling inside this cube. We thus deduce that |Itj | ≤ |Itj−1| − 1
for all j ≥ 1 which leads us to the following contradiction:

0 ≤ |It
Nd+1
| = |Iτm |+

t
Nd+1∑

j=τm+1
|Itj | − |Itj−1 | ≤ |Iτm | − (Nd + 1) ≤ Nd − (Nd + 1) < 0

and proves the statement. �

Based on this lemma, one might then derive a bound on the stopping time τm+1.

Corollary 30 For all m ∈ {1, . . . ,M − 1}, we have on the event
⋂m
l=1El that

τm+1 ≤ N ′1 +
m∑
l=1

(
N ′l+1 +Nl

)
.

Proof The result is proved by induction. We start with the case where m = 1. Assuming
that E1 holds true and observing that (i) τ1 = N ′1 and (ii) X ⊆ B(x?, D) = B(x?, D/2) ∪
B(x?, D)/B(x?, D/2), one can then write:

τ2 = τ1 +
τ2∑

i=τ1+1
I{Xi ∈ B(x?, D)}

= N ′1 +
τ2∑

i=τ1+1
I{Xi ∈ B(x?, D/2)}+

τ2∑
i=τ1+1

I{Xi ∈ B(x?, D)/B(x?, D/2)} .

However, since (i)
∑τ2
i=τ1+1 I{Xi ∈ B(x?, D/2)} = N ′2 by definition of τ2 and (ii)∑τ2

i=τ1+1 I{Xi ∈ B(x?, D)/B(x?, D/2)} ≤ N1 by Lemma 29, the result holds true for m = 1.
Consider now any m ≥ 2 and assume that the statement holds true for all l < m. Again,
observing that X ⊆ B(x?, D · 2−m) ∪

⋃m
l=1B(x?, D · 2−(l−1))/B(x?, D · 2−l) and keeping in

mind that the stopping times are bounded by the induction assumption, one can write

τm+1 = τm +
τm+1∑
i=τm+1

I
{
Xi ∈ B(x?, D · 2−m)

}

+
τm+1∑
i=τm+1

m∑
l=1

I
{
Xi ∈ B(x?, D · 2−(l−1))/B(x?, D · 2−l)

}
.

Now, combining the telescopic representation τm+1 = τ1 +
∑m
l=1(τl+1−τl) with the previous

decomposition gives that

τm+1 = τ1 +
m∑
l=1

τl+1∑
τl+1

I
{
Xi ∈ B(x?, D · 2−l)

}

+
m∑
l=1

τm+1∑
i=τl+1

I
{
Xi ∈ B(x?, D · 2−(l−1))/B(x?, D · 2−l)

}
.

12
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However, since (i) τ1 = N ′1, (ii)
∑τl+1
τl+1 I

{
Xi ∈ B(x?, D · 2−l)

}
= N ′l+1, for all l ≥ 1 by

definition of the stopping times and (iii)
∑τm+1
i=τl+1 I

{
Xi ∈ B(x?, 2−(l−1))/B(x?, 2−l)

}
≤ Nl,

for all l ≥ 1 on the event
⋂m
l=1El, from Lemma 29, we finally get that

τm+1 ≤ N ′1 +
m∑
l=1

(N ′l+1 +Nl).

�

As Corollary 30 gives the desired bound on τm+1, it remains to control the maximum
maxi=1...τm+1 f(Xi). The next lemma shows that i.i.d. results can actually be used to bound
this term.

Lemma 31 For all m ∈ {1, . . . ,M − 1}, we have that ∀y ∈ Im(f),

P
(

max
i=1...τm+1

f(Xi) ≥ y |
m⋂
l=1

El

)
≥ P

(
max

i=1...N ′m+1

f(X ′i) ≥ y
)
.

where X ′1 . . . X ′N ′m+1
denotes a sequence N ′m+1 i.i.d. copies of X ′ ∼ U(X ∩B(x?, D · 2−m)).

Proof From Corollary 30, we know that on the event
⋂m
l=1El the stopping time τm+1 is

finite. Moreover, as
∑τm+1
i=τm+1 I{Xi ∈ B(x?, D · 2−m)} = N ′m+1 by definition of τm+1, it can

then easily be shown by reproducing the same steps as in the proof of Proposition 12 with
the evaluations points falling into B(x?, D · 2−m) after τm that the algorithm is faster than
a Pure Random Search performed over the subspace X ∩B(x?, D · 2−m), which proves the
result. �

As a direct consequence of this lemma, one can get the desired bound on the maxima as
shown in the next corollary.

Corollary 32 For all m ∈ {1, . . . ,M − 1}, we have that

P
(

max
i=1...τm+1

f(Xi) ≥ max
x∈X

f(x)− ck
2 ·

(
D

2m+1

)κ
|

m⋂
l=1

El

)
≥ 1− δ/M.

Proof Omitting the conditionning upon
⋂m
l=1El, we obtain from the combination of Lemma

31 and Proposition 28 that with probability at least 1− δ/M :

max
x∈X

f(x)− max
i=1...τm+1

f(Xi) ≤ k · 2D · 2−m ·
(

ln(M/δ)
N ′m+1

) 1
d

≤ k · 2D · 2−m ·
(

ln(M/δ)
ln(M/δ)2d(m+1)(κ−1)

(
cκD

κ

8kD

)d) 1
d

= cκ
2 ·

(
D

2m+1

)κ
.
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�

At this point, we know from the combination of Corollary 30 and Corollary 32 that

∀m ∈ {1, . . . ,M − 1}, P
(
Em+1|

m⋂
l=1

El

)
≥ 1− δ/M

which proves from (4) that P(EM ) ≥ 1− δ.

Analysis of EM . As maxi=1...τM f(Xi) ≥ maxx∈X f(x) − cκ
2 ·D

κ · 2−Mκ and τM ≤ N ′1 +∑M−1
l=1

(
N ′l+1 +Nl

)
on the event EM , it remains to show that N ′1 +

∑M−1
l=1

(
N ′l+1 +Nl

)
≤ n

to conclude the proof. Consider first the case κ = 1. Setting C = (8k/cκ)d and observing
that (i) N ′l ≤ ln(M/δ)C + 1, (ii) Nl ≤ 2 ·C · (2

√
d)d − 1 for all l ≤M and (iii) M ≤ n, one

gets:

N ′1 +
M−1∑
l=1

(
N ′l+1 +Nl

)
≤ C ·M

(
ln(M/δ) + 2(2

√
d)d
)

≤ n · ln(M/δ) + 2(2
√
d)d

ln(n/δ) + 2(2
√
d)d

≤ n.

For κ > 1, since (i) M was chosen so that 2d(κ−1)M−1
2d(κ−1)−1 ≤

n
C ·

1
ln(n/δ)+2(2

√
d)d and (ii) M ≤ n,

we obtain:

N ′1 +
M−1∑
l=1

(
N ′l+1 +Nl

)
≤ C ·

(
ln(M/δ) + 2(2

√
d)d
) M∑
l=1

(2d(κ−1))l

≤ C ·
(
ln(M/δ) + 2(2

√
d)d
)
· 2d(κ−1)M − 1

2d(κ−1) − 1
≤ n.

Finally, using the elementary inequality bxc ≥ x − 1 over M and the inequality cκD
κ ≤

k diam(X ) (by Condition 1) leads to the desired result and completes the proof. �

Proof of Theorem 16. (Lower bound) Pick any n ∈ N? and δ ∈ (0, 1), set ε =
cκ rad(X )κ δκ/d exp(−κ(n−

√
2n ln(1/δ))/d), let Xε = {x ∈ X : f(x) ≥ maxx∈X f(x)−ε} be

the corresponding level set. Observe first that since (i) Xε = {x ∈ X : ε ≥ f(x?)− f(x)} ⊆
{x ∈ X : ε ≥ cκ ‖x? − x‖κ2} = X ∩ B(x?, (ε/cκ)1/κ and (ii) there exists x ∈ X such that
B(x, rad(X )) ⊆ X , then µ(Xε)/µ(X ) ≤ ((ε/cκ)1/κ/ rad(X ))d = δe−n−

√
2n ln(1/δ). It can

then easily be shown by reproducing the same steps as in the proof of the Lower bound of
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Theorem 17 in (Malherbe and Vayatis (2016)) that

P
(

max
i=1...n

f(Xi) ≥ max
x∈X

f(x)− ε
)

= P

µ({x ∈ X : f(x) ≥ max
i=1...n

f(Xi)})

µ(X ) ≤ µ(Xε)
µ(X )


≤ P

(
n∏
i=1

Ui ≤
µ(Xε)
µ(X )

)

≤ P
(

n∏
i=1

Ui ≤ δ · e−n−
√

2n ln(1/δ)
)

= P
(

n∑
i=1
− ln(Ui) > n+

√
2n ln(1/δ) + ln(1/δ)

)
≤ δ

where U1, . . . , Un denotes a sequence of n i.i.d. copies of U ∼ U([0, 1]). We point out that a
concentration results for gamma random variable was used on the last line (see Lemma 37
and Lemma 38 in (Malherbe and Vayatis (2016)) for more details). �

Appendix D. Analysis of AdaLipOpt (proofs of Section 4)

Proof of Proposition 18. Pick any t ≥ 2, consider any non-constant f ∈
⋃
k≥0 Lip(k)

and set i? = min{i ∈ Z : f ∈ Lip(ki)}. To prove the result, we decorelate the sample and
use the fact that (X1, Xbt/2c+1), . . . , (Xbt/2c, X2bt/2c) forms a sequence of bt/2c i.i.d. copies
of (X,X ′) ∼ U(X × X ):

P
(
f ∈ Lip(k̂t)

)
= P

(
k̂t = ki?

)
= P

 t⋃
i 6=j

{
|f(Xi)− f(Xj)| > ki?−1 · ‖Xi −Xj‖2

}
≥ P

bt/2c⋃
i=1

{∣∣∣f(Xi)− f(Xbt/2c+i)
∣∣∣ > ki?−1 ·

∥∥∥Xi −Xbt/2c+i
∥∥∥

2

}
= 1− P

(
|f(X1)− f(X2)|
‖X1 −X2‖2

≤ ki?−1

)bt/2c
= 1− (1− Γ(f, ki?−1))bt/2c .

It remains to show that Γ(f, ki?−1) > 0. Observe first that since f ∈ Lip(ki?), then the
function F : (x, x′) 7→ |f(x)− f(x′)| − ki?−1 · ‖x− x′‖2 is also continuous. However, as
f /∈Lip(ki?−1), we know that there exists some (x1, x2) ∈ X × X such that F (x1, x2) > 0.
Hence, it follows from the continuity of F that there necessarily exists some ε > 0 such that
∀(x, x′) ∈ B(x1, ε) ∩ X ×B(x2, ε) ∩ X , F (x, x′) > 0 which proves the proof. �

Proof of Proposition 21. Combining the consistency equivalence of Proposition 3 with
the upper bound on the covering rate obtained in Example 4 gives the result. �
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Proof of Proposition 22. Fix any δ ∈ (0, 1), set N1 = 2 + d2 ln(δ/3)/ ln(1− Γ(f, ki? 1))e
and N2 = d((

√
ln(3/δ)/2 + 4N1p −

√
ln(3/δ)/2)/2p)2e. Considering any n > N2, we prove

the result in three steps.
Step 1. As the constant N1 and N2 were chosen so that Hoeffding’s inequality ensures
that P

(∑N2
i=1Bi ≥ N1

)
≥ 1 − δ/3, we know that after N2 iterations and with probability

1− δ/3 we have collected at least N1 evaluation points randomly and uniformly distributed
over X due to the exploration step.

Step 2. Using Proposition 18 and the fist N1 evaluation points which have been sampled
independently and uniformly over X , we know that after N2 iterations and on the event
{
∑N2
i=1Bi ≥ N1} the Lipschtz constant ki? has been estimated with probability at least

1− δ/3, i.e., P
(
∀t ≥ N2 + 1, k̂t = ki? |

∑N2
i=1Bi ≥ N1

)
≥ 1− δ/3.

Step 3. Finally, as the Lipschtz constant estimate k̂t satisfies f ∈ Lip(k̂t) for all t ≥ N2 + 1
on the above event, one can easily show by reproducing the same steps as in Proposition 12
that contionned upon the event {∀t ≥ N2 + 1, k̂t = ki?} ∩ {

∑N2
i=1Bi ≥ N1} the algorithm

is always faster or equal to a Pure Random Search ran with n − N2 i.i.d. copies of X ′ ∼
U(X ). Therefore, using (i) the bound of Proposition 28, (ii) the elementaries inequalities
dxe ≤ x+ 1, bxc ≥ x− 1,

√
x+ y −

√
x ≤ √y and (iv) the definition of N2 < n, we obtain

that with probability at least (1− δ/3)3 ≥ 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ ki? · diam(X ) ·
( ln(3/δ)
n−N2

) 1
d

= ki? · diam(X ) ·
(

n

n−N2

) 1
d

·
( ln(3/δ)

n

) 1
d

≤ ki? · diam(X ) · (1 +N2)
1
d

( ln(3/δ)
n

) 1
d

≤ ki? · diam(X ) ·
(5
p

+ 2 ln(δ/3)
p ln(1− Γ(f, ki? 1))

) 1
d

·
( ln(3/δ)

n

) 1
d

.

The result is extended to the case where n ≤ N2 by noticing that the bound is superior to
ki? · diam(X ) in that case, and thus trivial. �

Proof of Theorem 23. Fix δ ∈ (0, 1), set N1 = 2 + d2 ln(4/δ)/ ln(1 − Γ)e and
N2 = d((

√
ln(4/δ)/2 + 4N1p −

√
ln(4/δ)/2)/2p)2e and let N3 = N2 + d2 ln(4/δ)/(1 − p)2e.

Picking any n > N3, we proceed similarly as in the proof of Proposition 22 in four steps:

Steps 1 & 2. As in the above prove, by definition of N1 and N2 and due to Hoeffding’s
inequality and Proposition 18, we know that the following event: {∀t ≥ N2 + 1, k̂t =
ki?} ∩ {

∑N2
i=1Bi ≥ N1} holds true with probability at least (1− δ/4)2.

Step 3. Again, using Hoeffding’s inequality and the definition of N2 and N3, we know
that after the iteration N2 + 1 we have collected with probability at least 1 − δ/4 at least
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(1− p)(n−N3)/2 exploitative evaluation points:

n∑
i=N2+1

I{Bi = 0} ≥ (1− p)(n−N2)−

√
(n−N2) ln(4/δ)

2 ≥ 1− p
2 · (n−N3).

Step 4. Reproducing the same steps as in the proof of the fast rate of Theorem 15 with the
(1− p) · (n−N3)/2 previous exploitative points and putting the previous results altogether
gives that with proability at least (1− δ/4)4 ≥ 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ ki? × diam(X )×



exp
{
− Ck,κ ·

(1− p)(n−N3) ln(2)
2 ln(4n/δ) + 4(2

√
d)d

}
, κ = 1

2κ

2

(
1 + Ck,κ ·

(1− p)(n−N3)(2d(κ 1) − 1)
2 ln(4n/δ) + 4(2

√
d)d

)− κ
d(κ−1)

, κ > 1.

We now take out the term N3. Since Cki? ,κ(1− p) ≤ 1, when κ = 1, we have

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ ki? ·diam(X ) · exp(5N3/2) exp
{
− Ck,κ ·

(1− p)n ln(2)
2 ln(4n/δ) + 4(2

√
d)d

}
.

For κ > 1, setting C = Cki?,κ(1 − p)/(2 ln(4n/δ) + 4(2
√
d)d) and using the decomposition

n = (n−N3) +N3, we bound the ratio:

(
1 + Cn(2d(κ−1 − 1)

1 + C(n−N3)(2d(κ−1) − 1)

) κ
d(κ−1)

≤
(

1 + CN3(2d(κ−1) − 1)
1 + C(2d(κ−1) − 1)

) κ
d(κ−1)

.

In the case where κ/d(κ− 1) ≤ 1, one directly obtains

(
1 + CN3(2d(κ−1) − 1)

1 + C(2d(κ−1) − 1)

) κ
d(κ−1)

≤ (1 +N3)
κ

d(κ−1) ≤ (1 +N3) ≤ eN3

Considering the case where κ/d(κ−1) > 1 and setting κ = 1+ε/d with ε ∈ (0, 1), we obtain
from the inequalities (i) κ ≤ 1 + 1/d ≤ 2, (ii) ∀ε ∈ (0, 1), 2ε − 1 ≤ ε and (iii) C ≤ 1/2 that

(
1 + CN3(2d(κ−1) − 1)

1 + C(2d(κ−1) − 1)

) κ
d(κ−1)

≤ (1 + CN3(2ε − 1))
2
ε ≤ (1 + CN3ε)

2
ε ≤ e2CN3 ≤ eN3

Finally, using standard bounds on N3 and noticing that the previous bound is superior to
ki? diam(X ) whenever n ≤ N3, the previous result remains valid for any n ∈ N?. �
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