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The supplementary material consists of three parts. In Sec-

tion A, we present formal proofs for the results given in

Section 3 of the main text. In Section B we show that in the

Poisson model, Ω(n) comparison outcomes are necessary to

discriminate between two neighboring items. In Section C,

we present figures that complement the ones presented in

the experimental evaluation (Section 4 of the main text).

A Proofs

Section A.1 contains the proofs of Lemmas 2 and 3. Sec-

tion A.2 presents the proof for our result on the displacement

of the output of a single call to Quicksort (Theorem 1), and

Section A.3 that of our result on the displacement of the

Copeland aggregation of multiple outputs.

A.1 Lemmas 2 and 3

We start by briefly presenting a result from graph theory

that will be useful in the proof of Lemma 2. A tournament

is a directed graph obtained by assigning a direction to

every edge of a complete graph. The score sequence of a

tournament is defined as the nondecreasing sequence of the

vertices’ outdegrees. The following proposition is due to

Landau (1953).

Proposition 1. Let (s1, . . . , sn) with 0 ≤ s1 ≤ · · · ≤ sn
be the score sequence of a tournament on n vertices. Then,

k − 1

2
≤ sk ≤

n+ k − 2

2
∀ k ∈ [n].

We use a tournament on n vertices to represent the outcome

of a comparison between each pair of items. In particular,

we represent the outcome i ≺ j by an edge (i, j). In this

case, the outdegree of a vertex i corresponds to the number

of items which “won” in a comparison against i. Note that

the comparison outcomes do not need to be transitive, i.e.,

the tournament can contain cycles.
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The proof of Lemma 2 is adapted from standard results on

Quicksort, see, e.g., Dubhashi & Panconesi (2009, Section

3.3.3). These results are based on the fact that it is likely

that the random choice of pivot leads to a well-balanced

partition into subsets L and R. In our setting, the comparison

outcomes do not need to be consistent with an ordering of

the items, therefore we cannot use the standard argument

based on the pivot’s rank. Instead, we use the tournament

representation of the comparison outcomes and analyze the

pivot’s out-degree (using Proposition 1) to ensure that the

partition is balanced often enough.

Proof of Lemma 2. We show that the maximum call depth

of Quicksort is at most ⌈48 log n⌉ with high probability. The

statement follows by noticing that at most n comparisons

are used at each level of the call tree.

By Lemma 1, Quicksort samples a comparison outcome

for each pair of items at most once. Therefore, we can rep-

resent these (a priori unobserved) pairwise outcomes as a

tournament T = ([n], A). At each step of the recursion, we

select a pivot p uniformly at random in the set V (line 3),

and compare it to the rest of the items in the set (line 5). Let

TV denote the subgraph of T induced by V . Given that the

comparison outcomes follow from the edges of the tourna-

ment, L is equal to the set of incoming neighbors of p in

TV . (Correspondingly, R is equal to the set of the outgoing

neighbors.) Hence, the outdegree of p in TV determines how

balanced the partition is. The probability that the outdegree

of p lies in the middle half of the score sequence is 1/2, and

if it does, Proposition 1 tells us that

|V | − 7

8
≤ outdeg(p) ≤

7|V | − 5

8
.

In this case, at the end of the partition |L| and |R| are of

size at most 7|V |/8, and in at most log8/7(n) ≤ 8 log n
such partitions we get to a subset of size one and match the

terminating case. Even though we do not select the pivot

in the middle half every time, it is unlikely that more than

c · 8 log n recursions are needed (for some small constant c)

to select the pivot in the middle range at least 8 log n times.

Let zd i.i.d ∼ Bern(1/2) be the indicator variable for the

event “the pivot is selected in the middle half at level of
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recursion d”. Using a Chernoff bound, we have

P





⌈48 logn⌉
∑

d=1

zd ≤ 8 log n



 ≤
1

n2
,

i.e., the depth of a leaf in the call tree is at most ⌈48 log n⌉
with probability at least 1 − 1/n2. As there are at most n
leaves in the tree, the maximum depth is bounded by the

same value with probability at least 1− 1/n.

In order to prove Lemma 3, we introduce some additional

notation. For any σ ∈ Sn and V ⊆ [n], let σV : V →
{1, . . . , |V |} be the ordering induced by σ on V . We gener-

alize the definition of displacement as

∆V (σ, τ) =
∑

i∈V

|σV (i)− τV (i)|.

For conciseness, we use the shorthand ∆V (σ)
.
= ∆V (σ, id),

where id is the identity permutation.

Proof of Lemma 3. Denote by V the collection of working

sets that were used as input to one of the recursive calls to

Quicksort. For V ∈ V , let EV be the set of pairs sampled by

Quicksort to partition V and which results in an error. Note

that EV ∩ EV ′ = ∅ for V 6= V ′, and that
⋃

V EV = E.

We will show that for all V ∈ V ,

∆V (σ) ≤ ∆L(σ) + ∆R(σ) + 2
∑

(i,j)∈EV

|i− j|, (1)

where L and R are the two sets obtained at the end of the

partition operation. The lemma follows by taking V = [n]
and recursively bounding ∆L(σ) and ∆R(σ).

Consider the partition operation on V , with pivot p, resulting

in partitions L and R. Let σ̃ be the ordering on V that

a) ranks L at the bottom, p in the middle and R at the top,

and b) matches the identity permutation on L and R, i.e.,

∆L(σ̃) = ∆R(σ̃) = 0. In a sense, σ̃ is the ordering that

would be obtained if there were no further errors in the

remaining recursive calls. Using the triangle inequality, we

have that

∆V (σ) ≤ ∆V (σ, σ̃) + ∆V (σ̃). (2)

By definition of σ̃, we have that

∆V (σ, σ̃) = ∆L(σ, σ̃) + ∆R(σ, σ̃)

= ∆L(σ) + ∆R(σ),
(3)

where the first equality follows from a), and the second

follows from b).

Finally, we bound ∆V (σ̃). Let E−
V = {(p, i) ∈ EV : i <

p}, and similarly E+
V = {(p, i) ∈ EV : i > p}. Without

∆V (σ̃)

1 2 3 4 5 6 7 8 9

1 2 4 6 5 3 7 8 9

1 4 6 8 5 2 3 7 9

1 4 6 8 9 5 2 3 7

t = 0

t = 1

t = 2

t = 3

∆V (σ̃)

∆V (σ̃)

∆V (σ̃)

0 0 0 0 0 0 0 0 0 → 0

0 0 1 2 0 3 0 0 0 → 6

0 2 3 4 0 4 4 1 0 → 18

0 2 3 4 4 1 5 5 1 → 25

Figure 4. Illustration of the decomposition of ∆V (σ̃) into contribu-

tions of individual errors over a sequence of steps. In this example,

V = {1, . . . , 9}, p = 5 and there are five errors. At step t = 1, we

process the errors (5, 3) and (5, 6); at step t = 2, we process the

errors (5, 2) and (5, 8), and finally, at step t = 3, we process the

error (5, 9). The shifts caused by an error are highlighted in red and

green. In this example, ∆V (σ̃) = 25 < 2
∑

(i,j)∈EV
|i−j| = 26.

loss of generality, we can assume that V consists of con-

secutive integers, and that κ
.
= |E−

V | ≤ |E+
V |. We proceed

as follows: starting from the ranking idV , we progressively

incorporate errors into the ranking, ending with σ̃ once all

errors have been treated. To understand the impact of each

error on ∆V (σ̃), we look at errors in the following specific

sequence.

1. At steps t = 1, . . . , κ, we consider the t-th “smallest”

errors in E−
V and E+

V . That is, we process (p, i) ∈
E−

V and (p, i′) ∈ E+
V such that |p − i| and |p − i′|,

respectively, are smallest among errors not yet treated.

2. At steps t = κ+1, . . . , |E+
V |, we process the remaining

errors in E+
V , once again in increasing order of distance

to p.

Figure 4 illustrates the state of the ranking at different steps

on a concrete example. We start with the first case, i.e.,

t ≤ κ. The effect of the errors (p, i) and (p, i′) on ∆V (σ̃)
is as follows.

• All items j < i and j > i′ are not affected by the two

errors: their position remains the same.

• The position of the pivot p remains the same, as the

two errors balance out.

• Item i is shifted by |p − i| + 1 positions to the right,

just right of p. Similary, item i′ is shifted by |p− i′|+1
positions to the left, just left of p.

• The |p − i| − 1 items that are between p (excluded)

and i are shifted by 1 position to the left. Similarly, the
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|p− i′| − 1 items that are between p and i′ are shifted

by 1 position to the right.

Hence, the two errors contribute 2(|p− i|+ |p− i′|) towards

∆V (σ̃). Now consider the second case, when t > κ. The

effect of an error (p, i) is as follows.

• All items j > i and all the items on the left of p are not

affected by the error: their position remains the same.

• The (at most) |p−i| items that are between p (included)

and i are shifted by 1 position to the right.

• Item i is shifted by at most |p− i| positions to the left,

just left of p.

As a result, the error contributes at most 2|p − i| to the

displacement. Adding up the contributions of all the errors,

it follows that

∆V (σ̃) ≤ 2
∑

(i,j)∈EV

|i− j|. (4)

Combining (3) and (4) using (2) we obtain (1), which con-

cludes the proof.

A.2 Theorem 1

From now on, we focus on parameters drawn from a Poisson

process of rate λ, as described in (1) in the main text. We

consider a worst-case scenario and assume that Quicksort

samples a comparison outcome for every pair of items. Let

zij be the indicator random variable of the event “the com-

parison between i and j resulted in an error”. By Lemma 3,

we have

∆(σ) ≤ 2
∑

i<j

|i− j|zij (5)

In the following, we will bound some of the statistical prop-

erties of the random variables {zij}. We start with a lemma

that bounds their mean.

Lemma 4. For any 1 ≤ i < j ≤ n,

E [zij ] ≤

(

λ

λ+ 1

)j−i

.

Proof. Let dij = θi − θj be the (random) distance be-

tween items i and j. This distance is a sum of k = j − i
independent exponential random variables, and therefore

dij ∼ Gamma(k, λ). The comparison outcome is gener-

ated as per the BT model; conditioned on the distance dij ,

the random variable zij is a Bernoulli trial with probability

[1 + exp(dij)]
−1. Therefore, we have that

E [zij ] ≤ E [exp(−dij)] =

(

λ

λ+ 1

)k

Next, we bound their covariance. Note that the random vari-

ables {zij} are in general not unconditionally independent.

They become independent only when conditioned on θ.

Lemma 5. For any 1 ≤ i < j ≤ n and any 1 ≤ u < v ≤ n,

let A = {i .. j−1} and B = {u .. v−1}.

Cov [zij , zuv] ≤































0 if A ∩B = ∅,
(

λ

λ+ 1

)j−i

if A = B,

(

λ+ 1

λ+ 2

)j−i+v−u

otherwise.

Proof. If A and B are disjoint, the distances dij and duv are

independent random variables. Conditioned on the distances,

the comparison outcomes are independent Bernoulli trials,

and we conclude that zij and zuv are independent. In the two

remaining cases, we bound E [zijzuv] ≥ Cov [zij , zuv]. If

A = B, then zij = zuv and we have

E [zijzuv] = E
[

z2ij
]

= E [zij ]

and we apply Lemma 4. Finally, if A and B are neither

equivalent nor disjoint, the two comparison outcomes are

independent Bernoulli trials conditioned on the distances

dij and duv , but the distances are not independent. Consider

the case where i < u < j < v. Even though dij and duv
are dependent, the distances diu, duj , djv are independent

Gamma random variables of rate λ and shape u− i, j − u
and v − j, respectively, and

E [zijzuv] ≤ E [exp{−(diu + duj)− (duj + djv)}]

=

(

λ

λ+ 1

)u−i (
λ

λ+ 2

)j−u (
λ

λ+ 1

)v−j

≤

(

λ+ 1

λ+ 2

)j−i+v−u

The other cases are treated analogously.

Lemmas 4 and 5 will be useful in proving the first part

of Theorem 1. For the second part, we need a result from

Ailon (2008), which characterizes the pairwise marginals

of the distribution over rankings induced by Quicksort with

comparisons sampled from a BT model.

Theorem 3 (Ailon, 2008, Theorem 4.1). Let σ be the out-

put of Quicksort using comparison outcomes sampled from

BT(θ). Then, for any i, j ∈ [n],

P [σ(i) < σ(j) | θ] = p(i ≺ j | θ)

Note that the result is non-trivial as i and j might not have

been directly compared to each other: their relative position

might have been deduced by transitivity from other compar-

ison outcomes. We are now ready to prove Theorem 1.
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Proof of Theorem 1. We begin with the first part of the the-

orem, which bounds the displacement ∆(σ). For clarity

of exposition, we use the notation zi→k instead of zij if

j = i + k. Using (5) and Lemma 4, we can bound the

expected displacement as

E [∆] ≤
n−1
∑

i=1

n−i
∑

k=1

2kE [zi→k]

≤ n

∞
∑

k=1

2k

(

λ

λ+ 1

)k

= 2nλ(λ+ 1).

In a similar way, using Lemma 5, we can bound the variance

of the displacement as

Var [∆] ≤

n−1
∑

i=1

n−i
∑

k=1

4k2Var [zi→k]

+ 2

n−1
∑

i=1

n−i
∑

k=1

2k

i+k
∑

u=i+1

n−u
∑

ℓ=1

2ℓCov [zi→k, zu→ℓ]

≤ n

∞
∑

k=1

4k2
(

λ

λ+ 1

)k

+ 2n

∞
∑

k=1

2k2
(

λ+ 1

λ+ 2

)k

·

∞
∑

ℓ=1

2ℓ

(

λ+ 1

λ+ 2

)ℓ

≤ 1500n(λ5 + 1).

Combining the bounds for the mean and the variance with

Chebyshev’s inequality, we have that

P
[

∆(σ) ≥ 50n(λ2 + 1)
]

≤ λ/n,

which concludes the proof of the first part of the claim.

The second part of the theorem bounds the maximum dis-

placement for any single item. We start by showing that

with high probability, there is no pair of items separated by

at least O(λ log n) positions that is “flipped” in the output

of Quicksort. Let i and j be two items such that i < j and

let k = |i − j|. Then dij ∼ Gamma(k, λ), and using a

Chernoff bound we obtain

P [dij ≤ k/(eλ)] ≤ exp(−k/e).

If k ≥ 3(λ+ 1)e log n, we find that

P [dij ≤ k/(eλ)] ≤ P [dij ≤ 3 log n] ≤ n−3. (6)

Using the fact that the pairwise marginals of Quicksort

match the pairwise comparison outcome probabilities (The-

orem 3), we find

P [σ(j) < σ(i)] = p(j ≺ i)

≤ exp(−3 log n) = n−3.
(7)

Combining (6) and (7), and using a union bound over the
(

n
k

)

pairs, we see that with probability 1− 1/n there is no

pairs of items (i, j) separated by at least 3(λ + 1)e log n
position with i < j but σ(j) < σ(i). Finally, suppose that

there is an i such |σ(i)− i| = k. Without loss of generality,

we can assume that i < σ(i). This means that there are k
items larger than i that are on the left of i in σ. In particular,

there is an item j > i such that |i− j| ≥ k and σ(j) < σ(i).
This concludes the proof.

A.3 Theorem 2

In order to prove Theorem 2, we first need a basic result

on the order statistics of exponential random variables. Let

x1, . . . , xn, be i.i.d. exponential random variables of rate λ.

Let x(1), . . . , x(n) be their order statistics, i.e., the random

variables arranged in increasing order. Then,

x(i) =

i
∑

j=1

1

n− j + 1
yj , (8)

where y1, . . . , yn are i.i.d. exponential random variables of

rate λ (see, e.g., Arnold et al., 2008, Section 4.6).

Proof of Theorem 2. We consider the order statistics of the

n − 1 i.i.d. exponential random variables x1, . . . , xn−1

which define the distances between neighboring items. Let

n̂ = ⌈n/ log2 n⌉, and denote by B ⊂ [n] the set of items

at both ends of x(1), . . . , x(n̂−1). These “bad” items are

close to their nearest neighbor, and we simply invoke Theo-

rem 1 to claim that each of these items is shifted by at most

O(λ log n) positions with high probability. Consider now

the “good” items, i.e., those in G = [n] \B. Using (8) and

for n large enough,

P
[

x(n̂) ≤ 1/(eλ log2 n)
]

≤ P





n̂
∑

j=1

yj/n ≤ 1/(eλ log2 n)





≤ exp(−n̂/e) ≤ 1/n.

The second-to-last inequality follows from a Chernoff bound

similar to that used in the proof of Theorem 1. Therefore,

with high probability all items in G are at distance larger

than c/(λ log2 n) from their nearest neighbor.

We will now show that after m = O(λ2 log5 n) runs of

Quicksort, σ̂(i) = i with high probability for all i ∈ G.

Let i ∈ G, j ∈ [n] be a pair of items, and without loss

of generality assume that i < j. Let tk be the indicator

random variable for the event “σ(i) < σ(j) in the k-th

run of Quicksort”, and let p = P [tk = 1]. Then, using
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Theorem 3,

p−
1

2
= p(i ≺ j)−

1

2
=

1− exp(−dij)

2[1 + exp(−dij)]

≥
1− exp[−1/(eλ log2 n)]

4

≥
1

8eλ log2 n

with high probability. In the last inequality, we used the

fact that 1 − e−x ≥ x/2 for x ∈ [0, 1]. The random vari-

ables t1, . . . , tm are independent Bernoulli trials, and using

a Chernoff bound we obtain

P [σ̂(j) < σ̂(i)] = P

[

m
∑

k=1

tk ≤ n/2

]

≤ exp[−2m(p− 1/2)2] ≤ exp

[

−
m

32e2λ2 log4 n

]

.

With m = 96e2λ2 log5 n, we have P [σ̂(j) < σ̂(i)] ≤ n−3,

and using a union bound we see that with probability 1 −
1/n we have σ̂(i) = i for all i ∈ G. Therefore, the total

displacement is

∆(σ̂) =
∑

i∈B

|σ̂(i)− i| ≤ |B| · 3(λ+ 1)e log n

= O(λn/ log n).

This concludes the proof.

B Discriminating the Closest Items

The distance between the two closest items is dmin =
mini|θi+i − θi| = mini xi, i.e., the minimum of n − 1
independent exponential random variables of rate λ. There-

fore, dmin ∼ Exp((n−1)λ), and for n ≥ 2 with probability

at least 1 − e−1/2 ≈ 0.39 we have dmin ≤ (λn)−1. Sup-

pose that we compare the two closest items m times, and

let zi be the indicator random variable for the event “the

outcome of the i-th comparison is incorrect”. Assuming that

dmin ≤ (λn)−1 and that λn ≥ 1/2,

P [zi = 0] ≤
1

1 + exp[−1/(λn)]
≤

1

2− 1/(λn)

=
1

2
·

(

1 +
1

2λn− 1

)

≤
1

2
exp

[

1

2λn− 1

]

,

where we used the inequality ex ≥ 1+x twice. Given the m
comparison outcomes, we use a majority vote to decide the

relative order of the two items. The probability of making
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Figure 5. Results on the GIFGIF dataset. The experiment is re-

peated 10 times, and we report the mean and the standard deviation.

The variant of uncertainty sampling performs extremely poorly.

the correct decision is

P

[

m
∑

i=1

zi ≤ m/2

]

≤

m/2
∑

k=1

(

m

k

)

P [zi = 0]
m

≤ exp

[

m

2λn− 1

]

· 2−m

m/2
∑

k=1

(

m

k

)

=
1

2
exp

[

m

2λn− 1

]

.

Therefore, if m = o(λn) the probability of making a mis-

take is bounded from below by a positive constant.

C Additional Figures

In this section, we present a few additional figures that

complement the ones presented in Section 4 of the main

text.

Figure 5 presents the results on the GIFGIF dataset including

a variant of uncertainty sampling. This variant samples, at

each iteration, n − 1 comparisons consisting of adjacent

pairs in the ranking θ̂. This strategy performs surprisingly

poorly.

Figure 6 presents results on synthetic datasets with n = 200
and λ ∈ {1, 2, 5, 10}. For the reader’s convenience, we

plot every graph on both a linear and a logarithmic scale.

Unsurprisingly, the gains of adaptive sampling are greater

when the noise is smaller.
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Figure 6. Results on synthetic datasets for n = 200 and increasing values of λ. Every experiment is repeated 10 times, and we report the

mean and the standard deviation.
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