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The supplementary material consists of three parts. In Sec-

tion A, we present a generalization of the network choice

model, and we prove a) the minimal sufficiency of per-node

traffic statistics and b) the well-posedness of MAP inference.

In Section B, we deepen our discussion of the ML estimator.

Finally, in Section C, we revisit the ChoiceRank algorithm.

We give the modifications needed for the generalized net-

work choice model, prove the convergence of the algorithm,

and give an alternative derivation based on the expectation

maximization perspective.

Notations. The notation follows the conventions adopted

in the main text. To simplify some expressions, we use

κ1, κ2, . . . to denote constants that do not depend on the

parameter vector λ.

A Extensions and Proofs

In this section, we start by generalizing the network choice

model to account for edge weights. Then, we present formal

proofs for a) the (minimal) sufficiency of marginal counts

and b) the well-posedness of MAP inference in the general-

ized weighted network choice model.

A.1 Generalization of the Model

Let G = (V,E) be a weighted, directed graph with edge

weights wij > 0 for all (i, j) ∈ E. Kumar et al. (2015)

propose the following generalization of Luce’s choice model.

Given a parameter vector λ ∈ R
n
>0, they define the choice

probabilities as

pij =
wijλj

∑

k∈N+
i
wikλk

, j ∈ N+
i . (1)

We refer to this model as the weighted network choice model.

Intuitively, the strength of each alternative is weighted by

the corresponding edge’s weight; Luce’s original choice

1School of Computer and Communication Sciences, EPFL,
Lausanne, Switzerland. Correspondence to: Lucas Maystre <lu-
cas.maystre@epfl.ch>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

model is obtained by setting wij = constant. In this general

model, the log-likelihood becomes

ℓ(λ;D) =
∑

(i,j)∈E

cij

[

logwijλj − log
∑

k∈N
+
i

wikλk

]

=
∑

(i,j)∈E

cij

[

log λj − log
∑

k∈N
+
i

wikλk

]

+
∑

(i,j)∈E

cij logwij ,

=
n
∑

i=1

[

c−i log λi − c+i log
∑

k∈N+
i

wikλk

]

+ κ1,

(2)

where c−i =
∑

j∈N−

i
cji and c+i =

∑

j∈N+
i
cij is the ag-

gregate number of transitions arriving in and originating

from i, respectively. Note that for every i, the weights

{wij | j ∈ N+
i } are equivalent up to rescaling.

This generalization is relevant in situations where the cur-

rent context modulates the alternatives’ strength. For exam-

ple, this could be used to take into account the position or

prominence of a link on a page in a hyperlink graph, or the

distance between two locations in a mobility network.

A.2 Minimal Sufficiency of Marginal Counts

Recall that cij denotes the number of times we observe a

transition from i to j. We set out to prove the following

theorem for the weighted network choice model.

Theorem 4. Let c−i =
∑

j∈N
−

i
cji and c+i =

∑

j∈N
+
i
cij

be the aggregate number of transitions arriving in and orig-

inating from i, respectively. Then, {(c−i , c
+
i ) | i ∈ V } is

a minimally sufficient statistic for the parameter λ in the

weighted network choice model.

Proof. Let f({cij} | λ) be the discrete probability den-

sity function of the data under the model with parameters

λ. Theorem 6.2.13 in Casella & Berger (2002) states that

{(c−i , c
+
i )} is a minimally sufficient statistic for λ if and
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only if, for any {cij} and {dij} in the support of f ,

f({cij} | λ)

f({dij} | λ)
is independent of λ

⇐⇒ (c−i , c
+
i ) = (d−i , d

+
i ) ∀i.

(3)

Taking the log of the ratio on the left-hand side and using (2),

we find that

log
f({cij} | λ)

f({dij} | λ)
=

n
∑

i=1

[

(c−i −d
−
i ) log λi

−(c+i −d
+
i ) log

∑

k∈N+
i

wikλk

]

+ κ2.

From this, it is easy to see that the ratio of densities is

independent of λ if and only if c−i = d−i and c+i = d+i ,

which verifies (3).

A.3 Well-Posedness of MAP Inference

Using a Gamma(α, β) prior for each parameter, the log-

posterior of the weighted network choice model can be

written as

log p(λ | D) =

n
∑

i=1

[

(c−i + α− 1) log λi

− c+i log

(

∑

k∈N+
i

wikλk

)

− βλi

]

+ κ3.

(4)

We prove a theorem that guarantees that MAP estimation

is well-posed in this generalized model; the proof of Theo-

rem 2 follows trivially.

Theorem 5. If i.i.d. λ1, . . . , λn ∼ Gamma(α, β) with α >
1, then there exists a unique maximizer λ⋆ ∈ R

n
>0 of the

weighted network choice model’s log-posterior (4).

Proof. The log-posterior (4) is not concave in λ, but it can

be made concave using the simple reparametrization λi =
eθi . Under this reparametrization, the log-prior and the log-

likelihood become

log p(θ) =

n
∑

i=1

[

(α− 1)θi − βeθi
]

+ κ4,

ℓ(θ;D) =

n
∑

i=1

[

c−i θi − c+i log
∑

k∈N+
i

wike
θk

]

+ κ5.

It is easy to see that the log-likelihood is concave and the

log-prior strictly concave in θ. As a result, the log-posterior

is strictly concave in θ, which ensures that there exists at

most one maximizer.

Now consider any transition counts {cij} that satisfy c−i =
∑

j∈N−

i
cji and c+i =

∑

j∈N+
i
cij . The log-posterior can

be written as

log p(θ | D) =

n
∑

i=1

∑

j∈N
+
i

cij

[

θj − log
∑

k∈N
+
i

wike
θk

]

+
n
∑

i=1

[

(α− 1)θi − βeθi
]

+ κ3

≤ −n2 ·max
i,j

logwij

+

n
∑

i

[

(α− 1)θi − βeθi
]

+ κ3.

For α > 1, it follows that lim‖θ‖→∞ log p(θ | D) = −∞,

which ensures that there is at least one maximizer.

Note that Theorem 5 can easily be extended to inde-

pendent but non-identical Gamma priors, where λi ∼
Gamma(αi, βi) and αi 6= αj , βi 6= βj in general.

B Maximum-Likelihood Estimation

In this section, we go into the analysis of the ML estimator

in depth. From the definition of choice probabilities in (1),

it is clear that the likelihood is invariant to a rescaling of

the parameters, i.e., ℓ(λ;D) = ℓ(sλ;D) for any s > 0. We

will therefore identify parameters up to rescaling.

B.1 Necessary and Sufficient Conditions

In order to provide a data-dependent, necessary and suf-

ficient condition that guarantees that the ML estimate is

well-defined, we extend the definition of comparison hyper-

graph presented in Section 4.3.

Definition (Comparison graph). Let G = (V,E) be a di-

rected graph and {aij | (i, j) ∈ E} be non-negative num-

bers. The comparison graph induced by {aij} is the directed

graph H = (V,E′), where (i, j) ∈ E′ if and only if there

is a node k such that i, j ∈ N+
k and akj > 0.

The numbers {aij} can be loosely interpreted as transition

counts (although they do not need to be integer). Intuitively,

there is an edge (i, j) in the comparison graph whenever

there is at least one instance in which i and j were among

the alternatives and j was selected. If aij > 0 for all edges,

then the comparison graph is equivalent to its hypergraph

counterpart, in that every hyperedge induces a clique in the

comparison graph. As shown by the next theorem, the notion

of (data-dependent) comparison graph leads to a precise

characterization of whether the ML estimate is well-defined

or not.

Theorem 6. Let G = (V,E) be a directed graph and

{(c−i , c
+
i )} be the aggregate number of transitions arriv-

ing in and originating from i, respectively. Let {aij} be any
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set of non-negative real numbers that satisfy

∑

j∈N
−

i

aji = c−i ,
∑

j∈N
+
i

aij = c+i .

Then, the maximizer of the log-likelihood (2) exists and is

unique (up to rescaling) if and only if the comparison graph

induced by {aij} is strongly connected.

The proof borrows from Hunter (2004), in particular from

the proofs of Lemmas 1 and 2.

Proof. The log-likelihood (2) is not concave in λ, but it can

be made concave using the reparametrization λi = eθi . We

can rewrite the reparametrized log-likelihood using {aij}
as

ℓ(θ) =

n
∑

i=1

∑

j∈N+
i

aij

[

θj − log
∑

k∈N+
i

wike
θk

]

,

and, without loss of generality, we can assume that
∑

i θi =
0 and minij wij = 1.

First, we shall prove that the super-level set {θ | ℓ(θ) ≥ c}
is bounded and compact for any c, if and only if the com-

parison graph is strongly connected. The compactness of all

super-level sets ensures that there is at least one maximizer.

Pick any unit vector u such that
∑

i ui = 0, and let θ = su
When s → ∞, then eθi > 0 and eθj → 0 for some i and

j. As the comparison graph is strongly connected, there is

a path from i to j, and along this path there must be two

consecutive nodes i′, j′ such that eθi′ > 0 and eθj′ → 0.

The existence of the edge (i′, j′) in the comparison graph

means that there is a k such that i′, j′ ∈ N+
k and akj′ > 0.

Therefore, the log-likelihood can be bounded as

ℓ(θ) ≤ akj′

[

θj′ − log
∑

q∈N+
k

wkqe
θq

]

≤ akj′
[

θj′ − log(eθj′ + eθi′ )
]

,

and lims→∞ ℓ(θ) = −∞. Conversely, suppose that the

comparison graph is not strongly connected and partition

the vertices into two non-empty subsets S and T such that

there is no edge from S to T . Let c > 0 be any positive

constant, and take θ̃i = θi + c if i ∈ S and θ̃i = θi if

i ∈ T (renormalize such that
∑

i θ̃i = 0). Clearly, ℓ(θ̃) ≥
ℓ(θ), and by repeating this procedure ‖θ‖ may be driven to

infinity without decreasing the likelihood.

Second, we shall prove that if the comparison graph is

strongly connected, the log-likelihood is strictly concave (in

θ). In particular, for any p ∈ (0, 1),

ℓ [pθ + (1− p)η] ≥ pℓ(θ) + (1− p)ℓ(η), (5)

with equality if and only if θ ≡ η up to a constant shift.

Strict concavity ensures that there is at most one maximizer

of log-likelihood. We start with Hölder’s inequality, which

implies that, for positive {xk} and {yk}, and p ∈ (0, 1),

log
∑

k

xp
ky

1−p
k ≤ p log

∑

k

xk + (1− p) log
∑

k

yk.

with equality if and only xk = cyk for some c > 0. Letting

xk = wike
θk and yk = wike

ηk , we find that for all i

log
∑

k∈N+
i

wike
pθk+(1−p)ηk

≤ p log
∑

k∈N+
i

wike
θk + (1− p) log

∑

k∈N+
i

wike
ηk ,

(6)

with equality if and only if there exists c ∈ R such that

θk = ηk + c for all k ∈ N+
i . Multiplying by aij and

summing over i and j on both sides of (6) shows that the

log-likelihood is concave in θ. Now, consider any partition

of the vertices into two non-empty subsets S and T . Because

the comparison graph is strongly connected, there is always

k ∈ V , i ∈ S and j ∈ T such that i, j ∈ N+
k and aki > 0.

Therefore, the left and right side of (5) are equal if and only

if θ ≡ η up to a constant shift.

Bounded super-level sets and strict concavity form necessary

and sufficient conditions for the existence and uniqueness

of the maximizer.

We now give a proof for Theorem 1, presented in the main

body of text.

Proof of Theorem 1. If the comparison hypergraph is dis-

connected, then for any data D, the (data-induced) compari-

son graph is disconnected too. Furthermore, the connected

components of the comparison graph are subsets of those

of the hypergraph. Partition the vertices into two non-empty

subsets S and T such that there is no hyperedge between S
to T in the comparison hypergraph. Let A = {i | N+

i ⊂ S}
and B = {i | N+

i ⊂ T}. By construction of the comparison

hypergraph, A∩B = ∅ and A∪B = V . The log-likelihood

can be therefore be rewritten as

ℓ(θ) =
∑

i∈A

∑

j∈N+
i

aij

[

log λj − log
∑

k∈N+
i

wikλk

]

+
∑

i∈B

∑

j∈N+
i

aij

[

log λj − log
∑

k∈N+
i

wikλk

]

.

The sum over A involves only parameters related to nodes

in S, while the sum over B involves only parameters re-

lated to nodes in T . Because the likelihood is invariant to

a rescaling of the parameters, it is easy to see that we can

arbitrarily rescale the parameters of the vertices in either S
or T without affecting the likelihood.
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Figure 1. An innocent-looking example where the ML estimate does not exist. The network structure, aggregate traffic data and compatible

transitions are shown on the left. While the comparison hypergraph is connected, the (data-dependent) comparison graph is not strongly

connected.

Verifying the condition of Theorem 6. In order to verify

the necessary and sufficient condition given {(c−i , c
+
i )}, one

has to find a non-negative solution {aij} to the system of

equations

∑

j∈N−

i

aji = c−i ,

∑

j∈N+
i

aij = c+i .

Dines (1926) presents a remarkably simple algorithm to find

such a non-negative solution. Alternatively, Kumar et al.

(2015) suggest recasting the problem as one of maximum

flow in a network. However, the computational cost of run-

ning Dines’ or max-flow algorithms is significantly greater

than that of running ChoiceRank.

B.2 Example

To conclude our discussion, we provide an innocuous-

looking example that highlights the difficulty of dealing

with the ML estimate. Consider the network structure and

traffic data depicted in Figure 1. The network is strongly con-

nected, and its comparison hypergraph is connected as well;

as such, the network satisfies the necessary condition stated

in Theorem 1 in the main text. Nevertheless, the condition

is not sufficient for the ML-estimate to be well-defined. In

this example, the (data-dependent) comparison graph is not

strongly connected, and it is easy to see that the likelihood

can always be increased by increasing λ1, λ2 and λ4. Hence,

the ML estimate does not exist.

In this simple example, we indicate the edge transitions that

generated the observed marginal traffic in bold. Given this

information, the comparison graph is easy to find, and the

necessary and sufficient conditions of Theorem 6 are easy

to check. But in general, finding a set of transitions that

is compatible with given marginal per-node traffic data is

computationally expensive (see discussion above).

C ChoiceRank Algorithm

In this section, we start by generalizing the ChoiceRank

algorithm to the weighted network choice model. We then

prove the convergence of this generalized algorithm. Finally,

we show how the same algorithm can be obtained from an

EM viewpoint by introducing suitable latent variables.

C.1 Algorithm for the Generalized Model

Using the same linear upper-bound on the logarithm as in

Section 5 of the main text, we can lower-bound the log-

posterior (4) in the weighted model by

f (t)(λ) = κ2 +
n
∑

i=1

[

(c−i + α− 1) log λi − βλi

− c+i

(

log
∑

k∈N+
i

wikλ
(t)
k +

∑

k∈N+
i
wikλk

∑

k∈N+
i
wikλ

(t)
k

− 1

)]

,

(7)

with equality if and only if λ = λ(t). Starting with an arbi-

trary λ(0) ∈ R
n
>0, we repeatedly maximize the lower-bound

f (t). This surrogate optimization problem has a closed form

solution, obtained by setting ∇f (t) to 0:

λ
(t+1)
i =

c−i + α− 1
∑

j∈N−

i
wjiγ

(t)
j + β

, (8)

where

γ
(t)
j =

c+j
∑

k∈N+
j
wjkλ

(t)
k

.
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The iterates provably converge to the maximizer of (4), as

shown by the following theorem.

Theorem 7. Let λ⋆ be the unique maximum a-posteriori

estimate. Then for any initial λ(0) ∈ R
n
>0 the sequence of

iterates defined by (8) converges to λ⋆.

The proof follows that of Hunter’s Theorem 1 (2004).

Proof. Let M : R
n
>0 → R

n
>0 be the (continuous) map

implicitly defined by one iteration of the algorithm. For con-

ciseness, let g(λ)
.
= log p(λ | D). As g has a unique maxi-

mizer and is concave using the reparametrization λi = eθi ,
it follows that g has a single stationary point. First, observe

that the minorization-maximization property guarantees that

g [M(λ)] ≥ g(λ). Combined with the strict concavity of

g, this ensures that limt→∞ g(λ(t)) exists and is unique

for any λ(0). Second, g [M(λ)] = g(λ) if and only if λ

is a stationary point of g, because the minorizing func-

tion is tangent to g at the current iterate. It follows that

limt→∞ λ(t) = λ⋆.

Theorem 3 of the main text follows directly by setting wij ≡
1. For completeness, the edge-streaming implementation

adapted to the weighted model is given in Algorithm 2. The

only changes with respect to Algorithm 1 (presented in the

main text) are in lines 4 and 7: Every message γi or λj

flowing through an edge (i, j) is multiplied by the edge

weight wij .

Algorithm 2 ChoiceRank for the weighted model

Require: graph G = (V,E), counts {(c−i , c
+
i )}

1: λ← [1, . . . , 1]
2: repeat

3: z ← 0n ⊲ Recompute γ

4: for (i, j) ∈ E do zi ← zi + wijλj

5: for i ∈ V do γi ← c+i /zi
6: z ← 0n ⊲ Recompute λ

7: for (i, j) ∈ E do zj ← zj + wijγi
8: for i ∈ V do λi ← (c−i + α− 1)/(zi + β)
9: until λ has converged

C.2 EM Viewpoint

The MM algorithm can be seen from an EM viewpoint,

following the ideas of Caron & Doucet (2012). We introduce

n independent random variables Z = {Zi | i = 1, . . . , n},
where

Zi ∼ Gamma

(

c+i ,
∑

j∈N+
i

wijλj

)

.

With the addition of these latent random variables the com-

plete log-likelihood becomes

ℓ(λ;D,Z) = ℓ(λ,D) +

n
∑

i=1

log p(zi | D,λ)

=

n
∑

i=1

[

c−i log λi − c+i log
∑

k∈N+
i

wikλk

]

+
n
∑

i=1

[

c+i log
∑

k∈N
+
i

wikλk − zi
∑

k∈N
+
i

wikλk

]

+ κ6

=

n
∑

i=1

[

c−i log λi − zi
∑

k∈N+
i

wikλk

]

+ κ6.

Using a Gamma(α, β) prior for each parameter, the ex-

pected value of the log-posterior with respect to the condi-

tional Z | D under the estimate λ(t) is

Q(λ,λ(t)) = EZ|D,λ(t) [ℓ(λ;D,Z)] + log p(λ)

=

n
∑

i=1

[

c−i log λi − c+i

∑

k∈N
+
i
wikλk

∑

k∈N
+
i
wikλ

(t)
k

]

+

n
∑

i=1

[

(α− 1) log λi − βλi

]

+ κ7

The EM algorithm starts with an initial λ(0) and iteratively

refines the estimate by solving the optimization problem

λ(t+1) = argmaxλ Q(λ,λ(t)). It is not difficult to see that

for a given λ(t), maximizing Q(λ,λ(t)) is equivalent to

maximizing the minorizing function f (t)(λ) defined in (7).

Hence, the MM and the EM viewpoint lead to the exact

same sequence of iterates.

The EM formulation leads to a Gibbs sampler in a relatively

straightforward way (Caron & Doucet, 2012). We leave a

systematic treatment of Bayesian inference in the network

choice model for future work.
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