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Abstract

Understanding how users navigate in a network

is of high interest in many applications. We con-

sider a setting where only aggregate node-level

traffic is observed and tackle the task of learn-

ing edge transition probabilities. We cast it as

a preference learning problem, and we study a

model where choices follow Luce’s axiom. In

this case, the O(n) marginal counts of node visits

are a sufficient statistic for the O(n2) transition

probabilities. We show how to make the inference

problem well-posed regardless of the network’s

structure, and we present ChoiceRank, an iterative

algorithm that scales to networks that contains bil-

lions of nodes and edges. We apply the model to

two clickstream datasets and show that it success-

fully recovers the transition probabilities using

only the network structure and marginal (node-

level) traffic data. Finally, we also consider an

application to mobility networks and apply the

model to one year of rides on New York City’s

bicycle-sharing system.

1 Introduction

Consider the problem of estimating click probabilities for

links between pages of a website, given a hyperlink graph

and aggregate statistics on the number of times each page

has been visited. Naively, one might expect that the prob-

ability of clicking on a particular link should be roughly

proportional to the traffic of the link’s target. However, this

neglects important structural effects: a page’s traffic is influ-

enced by a) the number of incoming links, b) the traffic at

the pages that link to it, and c) the traffic absorbed by com-

peting links. In order to successfully infer click probabilities,

it is therefore necessary to disentangle the preference for

a page (i.e., the intrinsic propensity of a user to click on a

link pointing to it) from the page’s visibility (the exposure
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it gets from pages linking to it). Building upon recent work

by Kumar et al. (2015), we present a statistical framework

that tackles a general formulation of the problem: given a

network (representing possible transitions between nodes)

and the marginal traffic at each node, recover the transition

probabilities. This problem is relevant to a number of sce-

narios (in social, information or transportation networks)

where transition data is not available due to, e.g., privacy

concerns or monitoring costs.

We begin by postulating the following model of traffic. Users

navigate from node to node along the edges of the network

by making a choice between adjacent nodes at each step,

reminiscent of the random-surfer model introduced by Brin

& Page (1998). Choices are assumed to be independent and

generated according to Luce’s model (Luce, 1959): each

node in the network is chararacterized by a latent strength

parameter, and (stochastic) choice outcomes tend to favor

nodes with greater strengths. In this model, estimating the

transition probabilities amounts to estimating the strength

parameters. Unlike the setting in which choice models are

traditionally studied (Train, 2009; Maystre & Grossglauser,

2015; Vojnovic & Yun, 2016), we do not observe distinct

choices among well-identified sets of alternatives. Instead,

we only have access to aggregate, marginal statistics about

the traffic at each node in the network. In this setting, we

make the following contributions.

1. We observe that marginal per-node traffic is a sufficient

statistic for the strength parameters. That is, the param-

eters can be inferred from marginal traffic data without

any loss of information.

2. We show that if the parameters are endowed with a

prior distribution, the inference problem becomes well-

posed regardless of the network structure. This is a

crucial step in making the framework applicable to

real-world datasets.

3. We show that model inference can scale to very

large datasets. We present an iterative EM-type in-

ference algorithm that enables a remarkably efficient

implementation—each iteration requires the computa-

tional equivalent of two iterations of PageRank.

We evaluate two aspects of our framework using real-world

networks. We begin by demonstrating that local preferences
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can indeed be inferred from global traffic: we investigate

the accuracy of the transition probabilities recovered by our

model on three datasets for which we have ground-truth

transition data. First, we consider two hyperlink graphs,

representing the English Wikipedia (over two million nodes)

and a Hungarian news portal (approximately 40 000 nodes),

respectively. We model clickstream data as a sequence of

independent choices over the links available at each page.

Given only the structure of the graph and the marginal traffic

at every node, we estimate the number of transitions between

nodes, and we find that our estimate matches ground-truth

edge-level transitions accurately in both instances. Second,

we consider the network of New York City’s bicycle-sharing

service. For a given ride, given a pick-up station, we model

the drop-off station as a choice out of a set of locations.

Our model yields promising results, suggesting that our

method can be useful beyond clickstream data. Next, we

test the scalability of the inference algorithm. We show that

the algorithm is able to process a snapshot of the WWW

hyperlink graph containing over a hundred billion edges

using a single machine.

Organization of the paper. In Section 2, we formalize the

network choice model. In Section 3, we briefly review re-

lated literature. In Section 4, we present salient statistical

properties of the model and its maximum-likelihood esti-

mator, and we propose a prior distribution that makes the

inference problem well-posed. In Section 5, we describe

an inference algorithm that enables an efficient implemen-

tation. We evaluate the model and the inference algorithm

in Section 6, before concluding in Section 7. In the supple-

mentary material, we provide a more in-depth discussion of

our model and algorithm, and we present proofs for all the

theorems stated in the main text.

2 Network Choice Model

Let G = (V,E) be a directed graph on n nodes (correspond-

ing to items) and m edges. We denote the out-neighborhood

of node i by N+
i and its in-neighborhood by N−

i . We con-

sider the following choice process on G. A user starts at a

node i and is faced with alternatives N+
i . The user chooses

item j and moves to the corresponding node. At node j, the

user is faced with alternatives N+
j and chooses k, and so on.

At any time, the user can stop. Figure 1 gives an example of

a graph and the alternatives available at a step of the process.

To define the transition probabilities, we posit Luce’s well-

known choice axiom that states that the odds of choosing

item j over item j′ do not depend on the rest of the alterna-

tives (Luce, 1959). This axiom leads to a unique probabilis-

tic model of choice. For every node i and every j ∈ N+
i ,

the probability that j is selected among alternatives N+
i can
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Figure 1. An illustration of one step of the process. The user is at

node 6 and can reach nodes N+

6 = {1, 2, 5, 7}.

be written as

pij =
λj

∑

k∈N
+

i
λk

(1)

for some parameter vector λ =
[

λ1 · · · λn

]⊤
∈ R

n
>0.

Intuitively, the parameter λi can be interpreted as the

strength (or utility) of item i. Note that pij depends only on

the out-neighborhood of node i. As such, the choice pro-

cess satisfies the Markov property, and we can think of the

sequence of choices as a trajectory in a Markov chain. In

the context of this model, we can formulate the inference

problem as follows. Given a directed graph G = (V,E) and

data on the aggregate traffic at each node, find a parameter

vector λ that fits the data.

3 Related Work

A variant of the network choice model was recently intro-

duced by Kumar et al. (2015), in an article that lays much

of the groundwork for the present paper. Their generative

model of traffic and the parametrization of transition proba-

bilities based on Luce’s axiom form the basis of our work.

Kumar et al. define the steady-state inversion problem as

follows: Given a graph G and a target stationary distribution,

find transition probabilities that lead to the desired stationary

distribution. This problem formulation assumes that G satis-

fies restrictive structural properties (strong-connectedness,

aperiodicity) and is valid only asymptotically, when the

sequences of choices made by users are very long. Our

formulation is, in contrast, more general. In particular, we

eliminate any assumptions about the structure of G and cope

with finite data in a principled way—in fact, our derivations

are valid for choice sequences of any length. One of our

contributions is to explain the steady-state inversion prob-

lem in terms of (asymptotic) maximum-likelihood inference

in the network choice model. Furthermore, the statistical

viewpoint that we develop also leads to a) a robust regu-

larization scheme, and b) a simple and efficient EM-type
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inference algorithm. These important extensions make the

model easier to apply to real-world data.

Luce’s choice axiom. The general problem of estimating

parameters of models based on Luce’s axiom has received

considerable attention. Several decades before Luce’s semi-

nal book (Luce, 1959), Zermelo (1928) proposed a model

and an algorithm that estimates the strengths of chess players

based on pairwise comparison outcomes (his model would

later be rediscovered by Bradley & Terry (1952)). More

recently, Hunter (2004) explained Zermelo’s algorithm from

the perspective of the minorization-maximization (MM)

method. This method is easily generalized to other mod-

els that are based on Luce’s axiom, and it yields simple,

provably convergent algorithms for maximum-likelihood

(ML) or maximum-a-posteriori point estimates. Caron &

Doucet (2012) observe that these MM algorithms can be

further recast as expectation-maximization (EM) algorithms

by introducing suitable latent variables. They use this obser-

vation to derive Gibbs samplers for a wide family of models.

We take advantage of this long line of work in Section 5

when developing an inference algorithm for the network

choice model. In recent years, several authors have also ana-

lyzed the sample complexity of the ML estimate in Luce’s

choice model (Hajek et al., 2014; Vojnovic & Yun, 2016)

and investigated alternative spectral inference methods (Ne-

gahban et al., 2012; Azari Soufiani et al., 2013; Maystre

& Grossglauser, 2015). Some of these results could be ap-

plied to our setting, but in general they require observing

choices among well-identified sets of alternatives. Finally,

we note that models based on Luce’s axiom have been suc-

cessfully applied to problems ranging from ranking players

based on game outcomes (Zermelo, 1928; Elo, 1978) to

understanding consumer behavior based on discrete choices

(McFadden, 1973), and to discriminating among multiple

classes based on the output of pairwise classifiers (Hastie &

Tibshirani, 1998).

Network analysis. Understanding the preferences of users

in networks is of significant interest in many domains. For

brevity, we focus on literature related to hyperlink graphs.

A method that has undoubtedly had a tremendous impact

in this context is PageRank (Brin & Page, 1998). PageRank

computes a set of scores that are proportional to the amount

of time a surfer, who clicks on links randomly and uniformly,

spends at each node. These scores are based only on the

structure of the graph. The network choice model presented

in this paper appears similar at first, but tackles a different

problem. In addition to the structure of the graph, it uses

the traffic at each page, and computes a set of scores that re-

flect the (non-uniform) probability of clicking on each link.

Nevertheless, there are striking similarities in the implemen-

tation of the respective inference algorithms (see Section 6).

The HOTness method proposed by Tomlin (2003) is some-

what related, but tries to tackle a harder problem. It attempts

to estimate jointly the traffic and the probability of clicking

on each link, by using a maximum-entropy approach. At the

other end of the spectrum, BrowseRank (Liu et al., 2008)

uses detailed data collected in users’ browsers to improve

on PageRank. Our method uses only marginal traffic data

that can be obtained without tracking users.

4 Statistical Properties

In this section, we describe some important statistical prop-

erties of the network choice model. We begin by observing

that O(n) values summarizing the traffic at each node is a

sufficient statistic for the O(n2) entries of the Markov-chain

transition matrix. We then connect our statistical model to

the steady-state inversion problem defined by Kumar et al.

(2015). Guided by this connection, we study the maximum-

likelihood (ML) estimate of model parameters, but find that

the estimate is likely to be ill-defined in many scenarios of

practical interest. Lastly, we study how to overcome this

issue by introducing a prior distribution on the parameters

λ; the prior guarantees that the inference problem is well-

posed.

For simplicity of exposition, we present our results for

Luce’s standard choice model defined in (1). Our devel-

opments extend to the model variant proposed by Kumar

et al. (2015), where choice probabilities can be modulated

by edge weights. In the supplementary material, we describe

this variant and give the necessary adjustments to our devel-

opments.

4.1 Aggregate Traffic Is a Sufficient Statistic

Let cij denote the number of transitions that occurred along

edge (i, j) ∈ E. Starting from the transition probability

defined in (1), we can write the log-likelihood of λ given

data D = {cij | (i, j) ∈ E} as

ℓ(λ;D) =
∑

(i,j)∈E

cij

[

log λj − log
∑

k∈N
+

i

λk

]

=

n
∑

j=1

∑

i∈N
−

j

cij log λj −

n
∑

i=1

∑

j∈N
+

i

cij log
∑

k∈N
+

i

λk

=

n
∑

i=1

[

c−i log λi − c+i log
∑

k∈N
+

i

λk

]

, (2)

where c−i =
∑

j∈N
−

i
cji and c+i =

∑

j∈N
+

i
cij is the ag-

gregate number of transitions arriving in and originating

from i, respectively. This formulation of the log-likelihood

exhibits a key feature of the model: the set of 2n counts

{(c−i , c
+
i ) | i ∈ V } is a sufficient statistic of the O(n2)

counts {cij | (i, j) ∈ E} for the parameters λ. (In the sup-

plementary material, we show that it is in fact minimally

sufficient.) In other words, it is enough to observe marginal
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information about the number of arrivals and departures

at each node—we collectively call this data the traffic at

a node—and no additional information can be gained by

observing the full choice process. This makes the model par-

ticularly attractive, because it means that it is unnecessary to

track users across nodes. In several applications of practical

interest, tracking users is undesirable, difficult, or outright

impossible, due to a) privacy reasons, b) monitoring costs,

or c) lack of data in existing datasets.

Note that if we make the additional assumption that the

flow in the network is conserved, then c−i = c+i . If users’

typical trajectories consist of many hops, it is reasonable to

approximate c−i or c+i using that assumption, should one of

the two quantities be missing.

4.2 Connection to the Steady-State Inversion

Problem

In recent work, Kumar et al. (2015) define the problem

of steady-state inversion as follows: Given a strongly-

connected directed graph G = (V,E) and a target distri-

bution over the nodes π, find a Markov chain on G with

stationary distribution π. As there are m = O(n2) degrees

of freedom (the transition probabilities) for n constraints

(the stationary distribution), the problem is in most cases

underdetermined. Following Luce’s ideas, the transition

probabilities are constrained to be proportional to a latent

score of the destination node as per (1), thus reducing the

number of parameters from m to n. Denote by P (s) the

Markov-chain transition matrix parametrized with scores s.

The score vector s is a solution for the steady-state inversion

problem if and only if π = πP (s), or equivalently

πi =
∑

j∈N
−

i

si
∑

k∈N
+

j
sk

πj ∀i. (3)

In order to formalize the connection between Kumar et al.’s

work and ours, we now express the steady-state inversion

problem as that of asymptotic maximum-likelihood estima-

tion in the network choice model. Suppose that we observe

node-level traffic data D = {(c−i , c
+
i ) | i ∈ V } about

a trajectory of length T starting at an arbitrary node. We

want to obtain an estimate of the parameters λ⋆ by maxi-

mizing the average log-likelihood ℓ̂(λ) = 1
T
ℓ(λ;D). From

standard convergence results for Markov chains (Kemeny

& Snell, 1976), it follows that as G is strongly connected,

limT→∞ c−i /T = limT→∞ c+i /T = πi. Therefore,

ℓ̂(λ) =

n
∑

i=1

[

c−i
T

log λi −
c+i
T

log
∑

k∈N
+

i

λk

]

T→∞
−−−−→

n
∑

i=1

πi

[

log λi − log
∑

k∈N
+

i

λk

]

.

Let λ⋆ be a maximizer of the average log-likelihood. When

T →∞, the optimality condition ∇ℓ̂(λ⋆) = 0 implies

∂ℓ̂(λ)

∂λi

∣

∣

∣

∣

λ=λ⋆

=
πi

λ⋆
i

−
∑

j∈N
−

i

πj
∑

k∈N
+

j
λ⋆
k

= 0

⇐⇒ πi =
∑

j∈N
−

i

λ⋆
i

∑

k∈N
+

j
λ⋆
k

πj ∀i. (4)

Comparing (4) to (3), it is clear that λ⋆ is a solution of

the steady-state inversion problem. As such, the network

choice model presented in this paper can be viewed as a

principled extension of the steady-state inversion problem

to the finite-data case.

4.3 Maximum-Likelihood Estimate

The log-likelihood (2) is not concave in λ, but it can be

made concave using the simple reparametrization λi = eθi .
Therefore, any local minimum of the likelihood is a global

minimum. Unfortunately, it turns out that the conditions

guaranteeing that the ML estimate is well-defined (i.e., that

it exists and is unique) are restrictive and impractical. We

illustrate this by providing a necessary condition, and for

brevity we defer the comprehensive analysis of the ML

estimate to the supplementary material. We begin with a

definition that uses the notion of hypergraph, a generalized

graph where edges may be any non-empty subset of nodes.

Definition (Comparison hypergraph). Given a directed

graph G = (V,E), the comparison hypergraph is the hyper-

graph H = (V,A), with A = {N+
i | i ∈ V }.

Intuitively, H is the hypergraph induced by the sets of alter-

natives available at each node. Figure 2 provides an exam-

ple of a graph and of its associated comparison hypergraph.

Equipped with this definition, we can state the following

theorem that is a reformulation of a well-known result for

Luce’s choice model (Hunter, 2004).

Theorem 1. If the comparison hypergraph is not connected,

then for any data D there are λ and µ such that λ 6= cµ
for any c ∈ R>0 and ℓ(λ;D) = ℓ(µ;D).

In short, the proof shows that rescaling all the parameters

in one of the connected components does not change the

value of the likelihood function. The network of Figure 1

illustrates an instance where the condition fails: although the

graph G is strongly connected, its associated comparison

hypergraph H (depicted in Figure 2) is disconnected, and

no matter what the data D is, the ML estimate will never be

uniquely defined. In fact, in the supplementary material, we

demonstrate that Theorem 1 is just the tip of the iceberg. We

provide an example where the ML estimate does not exist

even though the comparison hypergraph is connected, and

we explain that verifying a necessary and sufficient condi-
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Figure 2. The comparison hypergraph associated to the network

of Fig. 1. The hyperedge associated to N+

6 is highlighted in red.

Note that the component {3, 4} is disconnected from the rest of

the hypergraph.

tion for the existence of the ML estimate is computationally

more expensive than solving the inference problem itself.

4.4 Well-Posed Inference

Following the ideas of Caron & Doucet (2012), we introduce

an independent Gamma prior on each parameter, i.e., i.i.d.

λ1, . . . , λn ∼ Gamma(α, β). Adding the log-prior to the

log-likelihood, we can write the log-posterior as

log p(λ | D) =
n
∑

i=1

[

(c−i + α− 1) log λi

− c+i log
∑

k∈N
+

i

λk − βλi

]

+ κ,

(5)

where κ is a constant that is independent of λ. The Gamma

prior translates into a form of regularization that makes the

inference problem well-posed, as shown by the following

theorem.

Theorem 2. If i.i.d. λ1, . . . , λn ∼ Gamma(α, β) with α >
1, then the log-posterior (5) always has a unique maximizer

λ⋆ ∈ R
n
>0.

The condition α > 1 ensures that the prior has a nonzero

mode. In short, the proof of Theorem 2 shows that as a result

of the Gamma prior, the log-posterior can be reparametrized

into a strictly concave function with bounded super-level

sets (if α > 1). This guarantees that the log-posterior will

always have exactly one maximizer. Unlike the results that

we derive for the ML estimate, Theorem 2 does not impose

any condition on the graph G for the estimate to be well-

defined.

Remark. Note that varying the rate β in the Gamma prior

simply rescales the parameters λ. Furthermore, it is clear

from (1) that such a rescaling affects neither the likelihood

of the observed data nor the prediction of future transitions.

As a consequence, we may assume that β = 1 without loss

of generality.

5 Inference Algorithm

The maximizer of the log-posterior does not have a closed-

form solution. In the spirit of the algorithms of Hunter

(2004) for variants of Luce’s choice model, we develop

a minorization-maximization (MM) algorithm. Simply put,

the algorithm iteratively refines an estimate of the maximizer

by solving a sequence of surrogates of the log-posterior. Us-

ing the inequality log x ≤ log x̃+ x/x̃− 1 (with equality if

and only if x = x̃), we can lower-bound the log-posterior (5)

by

f (t)(λ) =

n
∑

i=1

[

(c−i + α− 1) log λi

− c+i

(

log
∑

k∈N
+

i

λ
(t)
k +

∑

k∈N
+

i
λk

∑

k∈N
+

i
λ
(t)
k

− 1

)

− βλi

]

+ κ,

with equality if and only if λ = λ(t). Starting with an

arbitrary λ(0) ∈ R
n
>0, we repeatedly solve the optimization

problem

λ(t+1) = argmax
λ

f (t)(λ).

Unlike the maximization of the log-posterior, the surrogate

optimization problem has a closed-form solution, obtained

by setting ∇f (t) to 0:

λ
(t+1)
i =

c−i + α− 1
∑

j∈N
−

i
γ
(t)
j + β

, γ
(t)
j =

c+j
∑

k∈N
+

j
λ
(t)
k

. (6)

The iterates provably converge to the maximizer of (5), as

shown by the following theorem.

Theorem 3. Let λ⋆ be the unique maximum a-posteriori

estimate. Then for any initial λ(0) ∈ R
n
>0 the sequence of

iterates defined by (6) converges to λ⋆.

Theorem 3 follows from a standard result on the conver-

gence of MM algorithms and uses the fact that the log-

posterior increases after each iteration. Furthermore, it is

known that MM algorithms exhibit geometric convergence

in a neighborhood of the maximizer (Lange et al., 2000). A

thorough investigation of the convergence properties is left

for future work.

The structure of the updates in (6) leads to an extremely

simple and efficient implementation, given in Algorithm 1:

we call it ChoiceRank. A graphical representation of an

iteration from the perspective of a single node is given in

Figure 3. Each iteration consists of two phases of message
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Algorithm 1 ChoiceRank

Require: graph G = (V,E), counts {(c−i , c
+
i )}

1: λ← [1, . . . , 1]
2: repeat

3: z ← 0n ⊲ Recompute γ

4: for (i, j) ∈ E do zi ← zi + λj

5: for i ∈ V do γi ← c+i /zi
6: z ← 0n ⊲ Recompute λ

7: for (i, j) ∈ E do zj ← zj + γi
8: for i ∈ V do λi ← (c−i + α− 1)/(zi + β)
9: until λ has converged

1

2

3

4

λ
(t+1)
2 =

c−2 + α− 1

γ
(t)
3 + γ

(t)
4 + β

γ
(t)
2 =

c+2

λ
(t)
1 + λ

(t)
3

γ2

γ3

γ4
λ1

λ3

λ2

λ2

γ2

Figure 3. One iteration of ChoiceRank from the perspective of

node 2. Messages flow in both directions along the edges of the

graph G, first in the reverse direction (in dotted) then in the forward

direction (in solid).

passing, with γi flowing towards in-neighbors N−

i , then λi

flowing towards out-neighbors N+
i . The updates to a node’s

state are a function of the sum of the messages. As the algo-

rithm does two passes over the edges and two passes over the

vertices, an iteration takes O(m+n) time. The edges can be

processed in any order, and the algorithm maintains a state

over only O(n) values associated with the vertices. Further-

more, the algorithm can be conveniently expressed in the

well-known vertex-centric programming model (Malewicz

et al., 2010). This makes it easy to implement ChoiceRank

inside scalable, optimized graph-processing systems such

as Apache Spark (Gonzalez et al., 2014).

EM viewpoint. The update (6) can also be explained from

an expectation-maximization (EM) viewpoint, by introduc-

ing suitable latent variables (Caron & Doucet, 2012). This

viewpoint enables a Gibbs sampler that can be used for

Bayesian inference. We present the EM derivation in the

supplementary material, but leave a study of fully Bayesian

inference in the network choice model for future work.

6 Experimental Evaluation

In this section, we investigate a) the ability of the network

choice model to accurately recover transitions in real-world

scenarios, and b) the potential of ChoiceRank to scale to

very large networks.

6.1 Accuracy on Real-World Data

We evaluate the network choice model on three datasets that

are representative of two distinct application domains. Each

dataset can be represented as a set of transition counts {cij}
on a directed graph G = (V,E). We aggregate the transi-

tion counts into marginal traffic data {(c−i , c
+
i ) | i ∈ V }

and fit a network choice model by using ChoiceRank. We

set α = 2.0 and β = 1.0 (these small values simply guar-

antee the convergence of the algorithm) and declare con-

vergence when ‖λ(t) − λ(t−1)‖1/n < 10−8. Given λ, we

estimate transition probabilities using pij ∝ λj as given by

(1). To the best of our knowledge, there is no other published

method tackling the problem of estimating transition proba-

bilities from marginal traffic data. Therefore, we compare

our method to three baselines based on simple heuristics.

Traffic Transitions probabilities are proportional to the traf-

fic of the target node: qTij ∝ c−j .

PageRank Transition probabilities are proportional to the

PageRank score of the target node: qPij ∝ PRj .

Uniform Any transition is equiprobable: qUij ∝ 1.

The four estimates are compared against ground-truth tran-

sition probabilities derived from the edge traffic data: p⋆ij ∝
cij . We emphasize that although per-edge transition counts

{cij} are needed to evaluate the accuracy of the network

choice model (and the baselines), these counts are not nec-

essary for learning the model—per-node marginal counts

are sufficient.

Given a node i, we measure the accuracy of a distribution

qi over outgoing transitions using two error metrics, the

KL-divergence and the (normalized) rank displacement:

DKL(p
⋆
i , qi) =

∑

j∈N
+

i

p⋆ij log
p⋆ij
qij

,

DFR(p
⋆
i , qi) =

1

|N+
i |

2

∑

j∈N
+

i

|σ⋆
i (j)− σ̂i(j)|,

where σ⋆
i (respectively σ̂i) is the ranking of elements in N+

i

by decreasing order of p⋆ij (respectively qij). We report the

distribution of errors “over choices”, i.e., the error at each

node i is weighted by the number of outgoing transitions

c+i .

6.1.1 CLICKSTREAM DATA

Wikipedia The Wikimedia Foundation has a long history

of publicly sharing aggregate, page-level web traffic data1.

1See: https://stats.wikimedia.org/.

https://stats.wikimedia.org/
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Recently, it also released clickstream data from the English

version of Wikipedia (Wulczyn & Taraborelli, 2016), provid-

ing us with essential ground-truth transition-level data. We

consider a dataset that contains information, extracted from

the server logs, about the traffic each page of the English

Wikipedia received during the month of March 2016. Each

page’s incoming traffic is grouped by HTTP referrer, i.e., by

the page visited prior to the request. We ignore the traffic

generated by external Web sites such as search engines and

keep only the internal traffic (18% of the total traffic in the

dataset). In summary, we obtain counts of transitions on the

hyperlink graph of English Wikipedia articles. The graph

contains n = 2316 032 nodes and m = 13 181 698 edges,

and we consider slightly over 1.2 billion transitions over

the edges. On this dataset, ChoiceRank converges after 795
iterations.

Kosarak We also consider a second clickstream dataset

from a Hungarian online news portal2. The data consists

of 7 029 013 transitions on a graph containing n = 41001
nodes and m = 974 560 edges. ChoiceRank converges after

625 iterations.

The four leftmost plots of Figure 4 show the error distri-

butions. ChoiceRank significantly improves on the base-

lines, both in terms of KL-divergence and rank displacement.

These results give compelling evidence that transitions do

not occur proportionally with the target’s page traffic: in

terms of KL-divergence, ChoiceRank improves on Traf-

fic by a factor 3× and 2×, respectively. PageRank scores,

while reflecting some notion of importance of a page, are

not designed to estimate transitions, and understandably the

corresponding baseline performs poorly. Uniform (perhaps

the simplest of our baselines) is (by design) unable to distin-

guish among transitions, resulting in a large displacement

error. We believe that its comparatively better performance

in terms of KL-divergence (for Wikipedia) is mostly an ar-

tifact of the metric, which encourages “prudent” estimates.

Finally, in Figure 5 we observe that ChoiceRank seems

to perform comparatively better as the number of possible

transition increases.

6.1.2 NYC BICYCLE-SHARING DATA

Next, we consider trip data from Citi Bike, New York City’s

bicycle-sharing system3. For each ride on the system made

during the year 2015, we extract the pick-up and drop-off

stations and the duration of the ride. Because we want to fo-

cus on direct trips, we exclude rides that last more than one

hour. We also exclude source-destinations pairs which have

less than 1 ride per day on average (a majority of source-

2The data is publicly available at http://fimi.ua.ac.
be/data/.

3The data is available at https://www.citibikenyc.
com/system-data.

destination pairs appears at least once in the dataset). The

resulting data consists of 3.4 million rides on a graph con-

taining n = 497 nodes and m = 5209 edges. ChoiceRank

converges after 7508 iterations. We compute the error distri-

bution in the same way as for the clickstream datasets.

The two rightmost plots of Figure 4 display the results. The

observations made on the clickstream datasets carry over to

this mobility dataset, albeit to a lesser degree. A significant

difference between clicking a link and taking a bicycle trip

is that in the latter case, there is a non-uniform “cost” of a

transition due to the distance between source and target. In

future work, one might consider incorporating edge weights

and using the weighted network choice model presented in

the supplementary material.

6.2 Scaling ChoiceRank to Billions of Nodes

To demonstrate ChoiceRank’s scalability, we develop a

simple implementation in the Rust programming language,

based on the ideas of COST (McSherry et al., 2015). Our

code is publicly available online4. The implementation re-

peatedly streams edges from disk and keeps four floating-

point values per node in memory: the counts c−i and c+i , the

sum of messages zi, and either γi or λi (depending on the

stage in the iteration). As edges can be processed in any

order, it can be beneficial to reorder the edges in a way that

accelerates the computation. For this reason, our implemen-

tation preprocesses the list of edges and reorders them in

Hilbert curve order5. This results in better cache locality

and yields a significant speedup.

We test our implementation on a hyperlink graph extracted

from the 2012 Common Crawl web corpus6 that contains

over 3.5 billion nodes and 128 billion edges (Meusel et al.,

2014). The edge list alone requires about 1 TB of uncom-

pressed storage. There is no publicly available information

on the traffic at each page, therefore we generate a value

ci for every node i randomly and uniformly between 100
and 500, and set both c−i and c+i to ci. As such, this experi-

ment does not attempt to measure the validity of the model

(unlike the experiments of Section 6.1). Instead, it focuses

on testing the algorithm’s potential to scale to to very large

networks.

Results. We run 20 iterations of ChoiceRank on a dual Intel

Xeon E5-2680 v3 machine, with 256 GB of RAM and 6
HDDs configured in RAID 0. We arbitrarily set α = 2.0
and β = 1.0 (but this choice has no impact on the results).

Only about 65 GB of memory is used, all to store the nodes’

4See: http://lucas.maystre.ch/choicerank.
5A Hilbert space-filling curve visits all the entries of the adja-

cency matrix of the graph, in a way that preserves locality of both
source and destination of the edges.

6 The data is available at http://webdatacommons.
org/hyperlinkgraph/.

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
https://www.citibikenyc.com/system-data
https://www.citibikenyc.com/system-data
http://lucas.maystre.ch/choicerank
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
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Figure 4. Error distributions of the network choice model and three baselines for the Wikipedia (WP) and Citi Bike (CB) datasets. The

boxes show the interquartile range, the whiskers show the 5
th and 95

th percentiles, the red horizontal bars show the median and the red

squares show the mean.
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Figure 5. Average KL-divergence as a function of the number of

possible transitions for the Wikipedia dataset. ChoiceRank per-

forms comparatively better in the case where a node’s out-degree

is large.

state (4× 4 bytes per node). The algorithm takes a little less

than 39 minutes per iteration on average. Collectively, these

results validate the feasibility of model inference for very

large datasets.

It is worth noting that despite tackling different problems,

the ChoiceRank algorithm exhibits interesting similarities

with a message-passing implementation of PageRank com-

monly used in scalable graph-parallel systems such as Pregel

(Malewicz et al., 2010) and Spark (Gonzalez et al., 2014).

For comparison, using the COST code (McSherry et al.,

2015) we run 20 iterations of PageRank on the same hard-

ware and data. PageRank uses slightly less memory (about

50 GB, or one less floating-point number per node) and

takes about half of the time per iteration (a little over 20
minutes). This is consistent with the fact that ChoiceRank

requires two passes over the edges per iteration, whereas

PageRank requires one. The similarities between the two

algorithms lead us to believe that in general, ChoiceRank

can benefit from any new system optimizations developed

for PageRank.

7 Conclusion

In this paper, we present a method that tackles the problem

of finding the transition probabilities along the edges of a

network, given only the network’s structure and aggregate

node-level traffic data. This method generalizes and extends

ideas recently presented by Kumar et al. (2015). We demon-

strate that in spite of the strong model assumptions needed

to learn O(n2) probabilities from O(n) observations, the

method still manages to recover the transition probabilities

to a good level of accuracy on two clickstream datasets, and

shows promise for applications beyond clickstream data. To

sum up, we believe that our method will be useful to praci-

tioners interested in understanding patterns of navigation in

networks from aggregate traffic data, commonly available,

e.g., in public datasets.
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