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Abstract
A popular machine learning strategy is the trans-
fer of a representation (i.e. a feature extraction
function) learned on a source task to a target task.
Examples include the re-use of neural network
weights or word embeddings. We develop suffi-
cient conditions for the success of this approach.
If the representation learned from the source task
is fixed, we identify conditions on how the tasks
relate to obtain an upper bound on target task risk
via a VC dimension-based argument. We then
consider using the representation from the source
task to construct a prior, which is fine-tuned us-
ing target task data. We give a PAC-Bayes tar-
get task risk bound in this setting under suitable
conditions. We show examples of our bounds
using feedforward neural networks. Our results
motivate a practical approach to weight transfer,
which we validate with experiments.

1. Introduction
A widely used machine learning technique is the transfer
of a representation learned from a source task, for which
labeled data is abundant, to a target task, for which labeled
data is scarce. This may be effective if the tasks approxi-
mately share an intermediate representation. For example:

• features learned from an image of a human face to pre-
dict age may also be useful for predicting gender

• word embeddings learned to predict word contexts
may also be useful for part of speech tagging

• features learned from financial data to predict loan de-
fault may also be useful for predicting insurance fraud.

Often a representation is learned by a different organization
that may have greater access to data, computational and hu-
man resources. Examples are the Google word2vec pack-
age (Mikolov et al., 2013), and downloadable pre-trained
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neural networks.1 Under this ‘representation-as-a-service’
model, a user may expect to access the representation itself,
as well as information about its performance on the source
task data on which it was trained. We aim to convert this
into a guarantee of the usefulness of the representation on
other tasks, which is known in advance without the effort
or cost of testing the representation on the target task(s).
Our analysis also covers the case where the source task is
constructed from unlabeled data, as in neural network un-
supervised pre-training.

We consider two approaches to transferring a representa-
tion learned from a source task to a target task, as shown in
Figure 1. We may either treat the representation as fixed, or
we may narrow the class of representations considered on
the target task, which we refer to as fine-tuning. The fixed
option may be attractive when very little labeled target task
data is available and hence overfitting is a strong concern,
while the advantage of fine-tuning is relatively greater hy-
pothesis class expressiveness.

Let X,Y and Z be sets known as the input, output and
feature spaces respectively. Let F be a class of represen-
tations, where f : X → Z for f ∈ F . Let G be a class
of specialized classifiers, where g : Z → Y for g ∈ G.
Let the hypothesis class H := {h : ∃f ∈ F, g ∈ G
such that h = g ◦ f}. Let hS , hT : X → Y be the la-
beling functions and PS , PT be the input distributions for
source task S and target task T respectively. We consider
the setting Y = {−1, 1}. Let the risk of a hypothesis
h on S and T be RS(h) := Ex∼PS [hS(x) 6= h(x)] and
RT (h) := Ex∼PT [hT (x) 6= h(x)] respectively. Let R̂S(h)
and R̂T (h) be the corresponding empirical (i.e. training
set) risks. We have mS labelled points for S and mT la-
belled points for T . Let dH be the VC dimension of H .

The remainder of the paper is structured as follows. In Sec-
tion 2 we introduce related work. In Sections 3 and 4 we
analyze the cases where the transferred representation is
fixed and fine-tuned respectively. In Section 5 we apply
the results and use them to motivate and test a practical ap-
proach to weight transfer in neural networks. We conclude
in Section 6 and defer more involved proofs to Section 7.

1See http://code.google.com/archive/p/
word2vec, http://caffe.berkeleyvision.org/
model_zoo and http://vlfeat.org/matconvnet/
pretrained for examples.

http://code.google.com/archive/p/word2vec
http://code.google.com/archive/p/word2vec
http://caffe.berkeleyvision.org/model_zoo
http://caffe.berkeleyvision.org/model_zoo
http://vlfeat.org/matconvnet/pretrained
http://vlfeat.org/matconvnet/pretrained
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2. Background
Empirical studies have shown the success of transferring
representations between tasks (Donahue et al., 2014; Hoff-
man et al., 2014; Girshick et al., 2014; Socher et al., 2013;
Bansal et al., 2014). Word embeddings learned on a source
task have been shown (Qu et al., 2015) to perform better
than unigram features on target tasks such as part of speech
tagging, and comparably or better than embeddings fine-
tuned on the target task. Yosinski et al. (2014) learned
neural network weights using half of the ImageNet classes,
and then learned the other classes with a neural network
initialized with these weights, finding a benefit compared
to random initialization only with target task fine-tuning.
The transfer of representations, both with and without fine-
tuning, is widely and successfully used.

Previous work on domain adaptation (Ben-David et al.,
2010; Mansour et al., 2009; Germain et al., 2013) has con-
sidered learning a hypothesis h on S and re-using it on
T , bounding RT (h) using RS(h) (measured with labeled
source data) and some notion of similarity between PS and
PT (measured with additional unlabeled target data). Such
results motivate a joint optimization using labeled source
and unlabeled target data (Ganin et al., 2016; Long et al.,
2015) to learn separate mappings fS , fT : X → Z which
make the induced distributions in the feature space Z sim-
ilar, and a hypothesis g : Z → Y learned from the source
labels which can be re-used on T . This approach assumes
the tasks become the same if their input distributions can be
aligned. We consider a relaxation where the tasks are more
weakly related but some representation step can be trans-
ferred. We consider learning f : X → Z on S, re-using it
on T , and then learning gT : Z → Y from a small amount
of labeled target data. Given the widespread use of ‘down-
loadable’ representations, where f and gT are learned sep-
arately and there is no joint optimization over source and
target data, this is a realistic setting.

Work on lifelong learning relates the past performance of
a representation over many tasks to its expected future
performance. For a representation f ∈ F we construct
G ◦ f := {g ◦ f : g ∈ G}. Suppose there is a distribu-
tion over tasks, known as an environment. Assume several
tasks from this environment have been sampled, and that
for each task some hypothesis in G ◦ f has been selected
and its empirical risk evaluated. Previous work has pro-
vided bounds on the difference between the average em-
pirical risk and the expected risk of the best hypothesis in
G ◦ f for a new task drawn from the environment. Such
bounds have been given by measuring the complexity of
F and G using covering numbers (Baxter, 2000), a vari-
ant of the growth function (Galanti et al., 2016), and a
distribution-dependent measure known as Gaussian com-
plexity (Maurer et al., 2016). All of these bounds rely on
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Figure 1. A comparison of approaches to learning a representation
on a target task, where the search space in each case is the shaded
area. Learning from scratch, we search a representation class F
for a good representation f ∈ F . Without fine-tuning, we fix a
representation f̂ learned from the source task. With fine-tuning,
we narrow the search to F̂ ⊆ F near f̂ , which still contains f .

known past performance on a large number of tasks.2 In
practice, however, representations such as neural network
weights or word embeddings are often learned using only a
single source task, which is the setting we consider.

3. Representation Fixed by Source Task
Suppose labeled source data is abundant, labeled target data
is scarce, and we believe the tasks share a representation.
A natural approach to leveraging the source data is to learn
ĝS ◦ f̂ ∈ H on S, from which we assume we may ex-
tract f̂ ∈ F ,3 then conduct empirical risk minimization
over G ◦ f̂ := {g ◦ f̂ : g ∈ G} on T yielding ĝT ◦ f̂ .
Theorem 1 upper-bounds RT (ĝT ◦ f̂) using four terms: a
function ω measuring a transferrability property obtained
analytically from the problem setting, the empirical risk
R̂S(ĝS ◦ f̂), the generalization error of a hypothesis in H
learned from mS samples, and the generalization error of
a hypothesis in G learned from mT samples. The value
of the theorem is that if ω(R) = O(R), R̂S(ĝS ◦ f̂) is a
small constant, mS � mT and dH � dG,4 we improve on
the VC dimension-based bound for learning T from scratch
by avoiding the generalization error of a hypothesis in H
learned from mT samples. Furthermore, we do not settle
for bounding RT (ĝT ◦ f̂) in terms of R̂T (ĝT ◦ f̂), which
may be large. The theorem can be used to select S given

2Pentina & Lampert (2014) extend this analysis to stochas-
tic hypotheses (i.e. distributions over deterministic hypotheses),
where for each task we learn a posterior given a prior and training
data. The quality of the prior affects the learner’s performance.
The study proposes using source tasks to learn a ‘hyperposterior’,
a distribution over priors which is sampled to give a prior for each
task. Such a hyperposterior may focus the learner on a represen-
tation shared across tasks. The study gives a PAC-Bayes bound
on the expected risk of using a hyperposterior to learn a new task
drawn from the environment, in terms of the average empirical
risk obtained using the hyperposterior to learn the source tasks.

3This is not possible with knowledge of ĝS ◦ f̂ alone, but in
the case of feedforward neural networks which we focus on, f̂ is
known if the weights learned on S are known.

4We have mS � mT if labeled source task data is abundant
while labeled target task data is scarce, and dH � dG if we sim-
plify target task learning by substantially reducing the hypothesis
space to be searched.
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several options. While we refer to ω in a general form, we
give an example in Section 3.1 and expect that others exist.5

Theorem 1. Let ω : R → R be a non-decreasing func-
tion. Suppose PS , PT , hS , hT , f̂ , G have the property that
∀ĝS ∈ G, min

g∈G
RT (g ◦ f̂) ≤ ω(RS(ĝS ◦ f̂)). Let ĝT :=

arg min
g∈G

R̂T (g ◦ f̂). Then with probability at least 1 − δ

over pairs of training sets for tasks S and T , RT (ĝT ◦ f̂)

≤ ω(R̂S(ĝS ◦ f̂) + 2
√

2dH log(2emS/dH)+2 log(8/δ)
mS

) +

4
√

2dG log(2emT /dG)+2 log(8/δ)
mT

.

Proof. Let g∗T := arg min
g∈G

RT (g ◦ f̂). With probability at

least 1− δ,

RT (ĝT ◦ f̂)

≤ R̂T (ĝT ◦ f̂) + 2
√

2dG log(2emT /dG)+2 log(8/δ)
mT

≤ R̂T (g∗T ◦ f̂) + 2
√

2dG log(2emT /dG)+2 log(8/δ)
mT

≤ RT (g∗T ◦ f̂) + 4
√

2dG log(2emT /dG)+2 log(8/δ)
mT

≤ ω(RS(ĝS ◦ f̂)) + 4
√

2dG log(2emT /dG)+2 log(8/δ)
mT

≤ ω(R̂S(ĝS ◦ f̂) + 2
√

2dH log(2emS/dH)+2 log(8/δ)
mS

) +

4
√

2dG log(2emT /dG)+2 log(8/δ)
mT

.

Using m training points and a hypothesis class of VC di-
mension d, with probability at least 1 − δ, for all hypothe-
ses h simultaneously, the riskR(h) and empirical risk R̂(h)

satisfy |R(h)−R̂(h)| ≤ 2
√

2d log(2em/d)+2 log(4/δ)
m (Mohri

et al., 2012). ForG this yields the first and third inequalities
with probability at least 1 − δ

2 . For H , because ω is non-
decreasing, this yields the fifth inequality with probability
at least 1 − δ

2 . Applying the union bound achieves the de-
sired result. The second inequality is by the definition of ĝT
and the fourth inequality follows from our assumption.

3.1. Neural Network Example with Fixed
Representation

In Theorem 2, we give an example of the property required
by Theorem 1 which is specific to a particular problem set-
ting. We consider a neural network with a single hidden
layer (see Figure 2). We propose transferring the lower-
level weights (corresponding to f̂ ) learned on S, so that
only the upper-level weights (corresponding to G) have to
be learned on T . We want to show f̂ is also useful for T .

5We define ω by relating RS(ĝS ◦ f̂) to min
g∈G

RT (g ◦ f̂), since

we expect this may be feasible analytically as in our example in
Section 3.1. However, because we only observe R̂S(ĝS ◦ f̂), in
Theorem 1 we use this to bound RS(ĝS ◦ f̂) and then apply ω.

Learn T
from scratch

Learn ĝS ◦ f̂
on S

f̂

ĝS

Transfer f̂ from S,
learn ĝT on T

f̂

ĝT

Figure 2. Neural network example learning T from scratch (left)
and with weights transferred from S (right). Thin blue and thick
red lines show weights trained on S and T respectively. Under
certain assumptions using weight transfer yields low risk on T .

To do this, we assume that some lower-level weights per-
form well on both tasks, which is clearly a necessary con-
dition for the specific f̂ we are transferring to perform well
on both tasks. We also assume PS and PT have the rel-
ative rotation invariance property and that the upper-level
weights have fixed magnitude. This is so that a point x for
which f̂(x) contributes to the risk on T cannot be ‘hidden’
from the risk of using f̂ on S, either through low PS(x)

or low magnitude upper-level weights. Hence RS(ĝS ◦ f̂)

reliably indicates the usefulness of f̂ on T .

LetX = Rn and Z = Rk. Let F be the function class such
that f(x) = [a(w1 · x), . . . , a(wk · x)], where wi ∈ Rn
for 1 ≤ i ≤ k, a : R → R is an odd function6 and
· is the dot product. Let G be the function class such that
g(z) = sign(v · z), where v ∈ {−1, 1}k. Suppose ∃f ∈
F, gS , gT ∈ G such that max[RS(gS ◦f), RT (gT ◦f)] ≤ ε.
Let f̂(x) := [a(ŵ1 · x), . . . , a(ŵk · x)]. Given wi and
ŵi, pick nonzero constants αi and βi such that ||wi|| =
||αiŵi − βiwi|| and wi · (αiŵi − βiwi) = 0. Let M be a
2k×nmatrix with rowsw1, α1ŵ1−β1w1, . . . , wk, αkŵk−
βkwk. Suppose M is full rank.7 Suppose ∀x, x′ such that
||Mx|| = ||Mx′||, PT (x) ≤ cPS(x′) for some c ≥ 1,
which we call relative rotation invariance and implies PS
and PT have the same support. If M is an orthogonal ma-
trix then ∀x, x′ such that ||x|| = ||x′||, PT (x) ≤ cPS(x′).8

Theorem 2. Let ω(R) := cR + ε(1 + c). Then ∀ĝS ∈ G,
min
g∈G

RT (g ◦ f̂) ≤ ω(RS(ĝS ◦ f̂)).

6i.e. a(−x) = −a(x). Examples are tanh, sign and identity.
7To see that this condition is necessary, consider the following

example where M is not full rank. Let n = 4, k = 2, hS =
sign(x1) and hT = sign(x2). For f(x) = [x1 + x2, x1 − x2],
gS(z) = sign(z1 + z2) and gT (z) = sign(z1 − z2), we have
RS(gS ◦ f) = RT (gT ◦ f) = 0. On S we learn f̂(x) = [x1 +

x3, x1−x3] and ĝS(z) = sign(z1 +z2), so thatRS(ĝS ◦ f̂) = 0

but in general min
g∈G

RT (g ◦ f̂) > 0 since f̂ ignores x2.
8For example, PS and PT are spherical Gaussians. For a zero-

mean multivariate Gaussian distribution this is achieved by the
whitening transformation x → Λ−1/2UTx, where the columns
of U and entries of the diagonal matrix Λ are the eigenvectors and
eigenvalues of the distribution’s covariance matrix respectively.
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4. Representation Fine-Tuned on Target Task

Consider learning ĝS ◦ f̂ on S, and then using f̂ and
RS(ĝS ◦ f̂) to find F̂ ⊆ F , as in Figure 1. Let h̃g◦f be
a stochastic hypothesis (i.e. a distribution over H) asso-
ciated with g ◦ f (e.g. g ◦ f is the mode of h̃g◦f ). We
propose learning T with the hypothesis class H̃G◦F̂ :=

{h̃g◦f : f ∈ F̂ , g ∈ G} and the prior h̃ĝS◦f̂ . Learn-
ing T from scratch we assume that we would instead use
H̃G◦F := {h̃g◦f : f ∈ F, g ∈ G} and some fixed prior
h̃0 ∈ H̃G◦F . Let RT (h̃) := Ex∼PT ,h∼h̃[hT (x) 6= h(x)]

and compute R̂T (h̃) on the training set distribution of T .

In Theorem 3 we show that if F̂ is ‘small enough’ so that
all h̃ ∈ H̃G◦F̂ have a small KL divergence from h̃ĝS◦f̂ ,
we may apply a PAC-Bayes bound to the generalization
error of hypotheses in H̃G◦F̂ involving four terms: a func-
tion ω measuring a transferrability property, the empirical
risk R̂S(ĝS ◦ f̂), the generalization error of a hypothesis
in H learned from mS points, and a weak dependence on
mT . The value of the theorem is that if ω(R) = O(R),
R̂S(ĝS◦f̂) is a small constant, andmS � mT , we improve
on the PAC-Bayes bound for H̃G◦F and h̃0.9 F̂ is useful if
it is also ‘large enough’ in the sense that ∃h̃gT ◦f ∈ H̃G◦F̂
such that RT (h̃gT ◦f ) ≤ ε. Here ω quantifies how large the
F̂ we search on T must be in order to be ‘large enough’,
in terms of RS(ĝS ◦ f̂). While in general such an F̂ and ω
may not exist, we give an example in Section 4.1.

Theorem 3. Let ω : R → R be non-decreasing. Sup-
pose given f̂ ∈ F and RS(ĝS ◦ f̂) estimated from S,
it is possible to construct F̂ with the property ∀h̃ ∈
H̃G◦F̂ , KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS ◦ f̂)). Then with
probability at least 1 − δ over pairs of training sets for
tasks S and T , ∀h̃ ∈ H̃G◦F̂ , RT (h̃) ≤ R̂T (h̃) +√

ω(R̂S(ĝS◦f̂)+2
√

2dH log(2emS/dH )+2 log(8/δ)

mS
)+log 2mT /δ

2(mT−1) .

Proof. With probability at least 1− δ,

RT (h̃)

≤ R̂T (h̃) +

√
KL(h̃||h̃ĝS◦f̂ )+log 2mT /δ

2(mT−1)

≤ R̂T (h̃) +
√

ω(RS(ĝS◦f̂))+log 2mT /δ
2(mT−1) .

The first inequality holds with probability at least 1 − δ
2

(Shalev-Shwartz & Ben-David, 2014). The second inequal-
ity holds by assumption. Furthermore, RS(ĝS ◦ f̂) ≤
R̂S(ĝS ◦ f̂) + 2

√
2dH log(2emS/dH)+2 log(8/δ)

mS
with prob-

ability at least 1 − δ
2 (Mohri et al., 2012) and ω is non-

decreasing. The result follows from the union bound.
9Using the restricted deterministic hypothesis class G ◦ F̂ :=

{h : ∃f ∈ F̂ , g ∈ G such that h = g ◦ f} and a VC dimension-
based bound may not improve on H , since possibly dG◦F̂ = dH .

4.1. Neural Network Example with Fine-Tuning

We transfer and fine-tune weights in a feedforward neu-
ral network with one hidden layer to instantiate the prop-
erty required by Theorem 3. We learn a deterministic hy-
pothesis of this type on S and obtain k estimated lower-
level weight vectors ŵi. Learning T we now consider only
lower-level weights near ŵi, corresponding to F̂ . On T we
learn a stochastic hypothesis formed by taking a determin-
istic network and adding independent sources of spherical
Gaussian noise to the lower-level weights and sign-flipping
noise to the upper-level weights. The KL divergence be-
tween two of the stochastic hypotheses is expressed using
the angles between their lower-level weights10 and a quan-
tity computable from their upper-level weights.

We want to prove that we can construct such an F̂ to suc-
cessfully learn T . To do this, we assume some lower-level
weights wi perform well on both S and T . We make F̂
‘small enough’ by only including lower-level weights with
small angles to ŵi, and ‘large enough’ by using the risk
observed using ŵi on S to provide an upper bound on the
angle between each pair wi and ŵi. Our assumptions en-
sure that poor ŵi cannot be ‘hidden’ from the risk on S, ei-
ther through low PS density in the region of disagreement
between wi and ŵi, or through low magnitude higher-level
weights. Hence we know that searching F̂ will include wi.

Let X = Rn and Z = Rk, where k is odd.
Let F be the function class such that f(x) =
[sign(w1 · x), . . . , sign(wk · x)], where wi ∈ Rn
for 1 ≤ i ≤ k. Let G be the function class
such that g(z) = sign(v · z), where v ∈ {−1, 1}k.
Let Bv be a distribution on {−1, 1}k such that for

v′ ∼ Bv , Pr(v′) =
k∏
j=1

p1(v
′
j=vj)(1 − p)1(v

′
j=−vj), where

p ∈ [0.5, 1]. Let h̃g◦f := g′ ◦f ′ such that v′, w′1, . . . , w
′
k ∼

Bv
k∏
i=1

N (wi, σ
2I). Suppose ∃f ∈ F, gS , gT ∈ G such

that max[RS(gS ◦ f), RT (h̃gT ◦f )] ≤ ε. Let f̂(x) :=
[sign(ŵ1 · x), . . . , sign(ŵk · x)], θ(wi, ŵi) be the angle
between wi and ŵi, and assume ∀i, ||ŵi|| = 1. Define M
as in Section 3.1. Let PS have the rotation invariance prop-
erty ∀x, x′ such that ||Mx|| = ||Mx′||, PS(x) ≤ cPS(x′)
for some c ≥ 1.

Theorem 4. Given f̂ and RS(ĝS ◦ f̂) estimated from S,
let θmax := π

√
2(k − 1)c(RS(ĝS ◦ f̂) + ε) and F̂ :=

{f ∈ F : ∀i, ||wi|| = 1 ∧ |θ(wi, ŵi)| ≤ θmax}. Let
ω(R) := k

σ2 [1−cos θmax]+k[2p−1+(1−p)k] log2
p

1−p .

Then ∃h̃gT ◦f ∈ H̃G◦F̂ such that RT (h̃gT ◦f ) ≤ ε and
∀h̃ ∈ H̃G◦F̂ , KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS ◦ f̂)).

10Assuming that the lower-level weight vectors are of fixed
magnitude, which is no loss of model expressiveness since we
use the sign activation function at the hidden layer.
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5. Applications
We show the utility of the risk bounds, and present a novel
technique and experiments motivated by our theorems.

5.1. Using the Risk Bounds

The results described yield tighter bounds on risk when
transferring representations from S, compared to learning
T from scratch. Examples are shown in Figure 3.11

We set δ = 0.05. For the top part, we use the example
from Section 3.1 and set n = 10, k = 5. Learning T
from scratch with H , we use the bound from Mohri et al.
(2012) used previously. The VC dimension of a network
of |E| edges using the sign activation is O(|E| log |E|)
(Shalev-Shwartz & Ben-David, 2014), where in our case
|E| = nk+k. We use dH = |E| log |E| in the chart. Trans-
ferring a representation from S to T without fine-tuning,
we consider the limit ε → 0, R̂S(ĝS ◦ f̂) → 0, mS → ∞,
and hence ω(·) → 0 by Theorem 2. Furthermore, dG ≤ k
since G is finite and hence dG ≤ log2 |G| (Shalev-Shwartz
& Ben-David, 2014). We use the bound from Theorem 1.

For the bottom part, we use the example from Section 4.1
and set σ2 = 1

10 , k = 499, p = 2
3 . Learning T from

scratch we use the stochastic hypothesis class {h̃g◦f : f ∈
F such that ∀i||wi|| = 1, g ∈ G} and a prior h̃0 where
∀i wi = 0 and v ∈ {−1, 1}k is arbitrary.12 Hence we
have the bound KL(h̃||h̃0) ≤ 10k + k

3 , which becomes
tight for large k. We apply the PAC-Bayes bound (Shalev-
Shwartz & Ben-David, 2014) used previously. Transferring
a representation from S and fine-tuning on T , we consider
the limit ε → 0, R̂S(ĝS ◦ f̂) → 0, mS → ∞. We have
KL(h̃||h̃ĝS◦f̂ ) ≤ k

3 by Theorem 4. We use the bound from
Theorem 3.

5.2. Fine-Tuning through Regularization

We relax the hard constraint on F̂ from Section 4.1 by us-
ing a modified loss function, which we find performs better
in practice. Let yi and ŷi be the label and prediction re-
spectively for the ith training point. In a fully-connected
feedforward neural network with l layers of weights, let
W (j) be the jth weight matrix, Ŵ (j) be its estimate from
S (excluding weights for bias units in both cases), and ||·||2
be the entry-wise 2 norm. A typical loss function (1) used
for training is composed of the sum of training set log loss
and L2 regularization on the weights.

11Note that VC dimension risk bounds are known for being
rather loose, while PAC-Bayesian bounds are tighter and hence
yield non-trivial results in higher dimensions with fewer samples.

12This class is as expressive as H̃G◦F but by setting ||wi|| = 1
the KL divergence of all hypotheses from any prior is bounded,
allowing a fair comparison to H̃G◦F̂ . The choice of h̃0 minimizes
worst case KL divergence to a hypothesis in the class.

Figure 3. A comparison of risk bounds compared to learning T
from scratch, without fine-tuning (top) and with fine-tuning (bot-
tom). The two charts use different parameters (see Section 5.1).
m∑
i=1

[−yi log ŷi − (1− yi) log(1− ŷi)] +
λ

2

l∑
j=1

(||W (j)||22)

(1)

We replace the regularization penalty with (2).13

l∑
j=1

[
λ1(j)

2
||W (j) − Ŵ (j)||22 +

λ2(j)

2
||W (j)||22] (2)

This penalizes estimates of W far from the representation
learned on S. Since we expect the tasks to share a low-
level representation (e.g. edge detectors for vision, word
embeddings for text) but be distinct at higher levels (e.g.
image components for vision, topics for text), we set λ1(·)
to be a decreasing function, while λ2(·) controls standard
L2 regularization. The technique is novel to our knowl-
edge, although other approaches to transferring regulariza-
tion between tasks exist (Evgeniou & Pontil, 2004; Raina
et al., 2006; Argyriou et al., 2008; Ghifary et al., 2014).

5.3. Experiments

We experiment on basic image and text classification
tasks.14 We show that learning algorithms motivated by
our theoretical results can help to overcome a scarcity of
labeled target task data. Note that we do not replicate the
conditions specified in our theorems, nor do we attempt ex-
tensive tuning to achieve state-of-the-art performance.

13Basing our approach on (1), we follow the convention that
weights connected to bias units are excluded from the regular-
ization penalty. However, the inclusion of these weights in the
||W (j) − Ŵ (j)|| term of (2) is a plausible variant.

14The MNIST and 20 Newgroups datasets are available at
http://yann.lecun.com/exdb/mnist and http://
qwone.com/˜jason/20Newsgroups respectively.

http://yann.lecun.com/exdb/mnist
http://qwone.com/~jason/20Newsgroups
http://qwone.com/~jason/20Newsgroups
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We randomly partition label classes into sets S+ and S−,
where |S+| = |S−|.15 We construct T+ by randomly pick-
ing from S+ up to γ := |S+∩T+|

|S+| , then randomly picking
from S− such that |T+| = |T−|. We let S be the task of
distinguishing between S+ and S− and T be that of dis-
tinguishing T+ and T−. Constructing S+ and T+ as dis-
junctions of classes means that the class labels are a perfect
representation shared between S and T .

We compare the accuracy on T of four options:

• learn T from scratch (BASE)

• transfer f̂ from S, fine-tune f and train g on T using
(2) (FINE-TUNE f̂ )

• transfer f̂ from S and fix, train g on T (FIX f̂ )16

• transfer ĝS ◦ f̂ from S and fix (FIX ĝS ◦ f̂ ).17

We use λ1(1) = λ2(2) = λ := 1,18 λ1(2) = λ2(1) = 0,
mT = 500 and the sigmoid activation function. For
MNIST we use raw pixel intensities, a 784 × 50 × 1 net-
work andmS = 50000. For NEWSGROUPS we use TF-IDF
weighted counts of most frequent words, a 2000 × 50 × 1
network and mS = 15000. We use conjugate gradient op-
timization with 200 iterations.

The results are shown in Table 1.19 When the tasks are non-
identical, FINE-TUNE f̂ is mostly the strongest but per-
forms better on MNIST. FIX f̂ outperforms BASE when
γ ≥ 0.8 and hence the tasks are similar. While FIX f̂ out-
performs FIX ĝS ◦ f̂ when the tasks are non-identical on
MNIST, on NEWSGROUPS there is no evidence of benefit.
When the tasks are identical, FIX ĝS ◦ f̂ is the strongest.

It appears that learning an MNIST digit requires a dense
weight vector and so Ŵ (1) tends to encode single digits,
which helps transferrability. However, it appears that since
we may learn a newsgroup with a sparse weight vector,
Ŵ (1) tends to encode disjunctions of newsgroups which
somewhat reduces transferrability. When transferring rep-
resentations does work, fine-tuning using the regularization
penalty proposed in (2) improves performance.

15For MNIST there are 10 label classes and for 20 Newgroups
there are 20. In both cases the classes are approximately bal-
anced. Note that we ignore the hierarchical structure of the 20
Newsgroups classes, which likely contributes to the lower accu-
racies reported for all methods for this dataset relative to MNIST.

16i.e. logistic regression with L2 regularization and f̂ fixed.
17Used to isolate the benefit of transferring f̂ rather than ĝS ◦ f̂ .
18We explored tuning λ to lift the performance of BASE on

MNIST, but found that the results did not materially improve. Po-
tentially λ1(j) and λ2(j) in (2) could be tuned with cross valida-
tion on the target task.

19For γ = 1, hS = hT . We do not consider γ < 0.5, since that
is equivalent to 1−γ with the definitions of T+ and T− swapped.

Table 1. Evaluation of transferring representations. Entries are the
test set accuracy of the technique (row) for the task (column) av-
eraged over 10 trials, with the best result for each task bolded.

TECHNIQUE MNIST, γ = NEWSGROUPS, γ =
0.6 0.8 1 0.6 0.8 1

BASE 88.4 87.9 87.9 62.6 63.2 66.1
FINE-TUNE f̂ 91.9 93.9 95.4 62.3 72.3 83.3
FIX f̂ 87.5 92.3 97.3 52.2 69.6 83.3
FIX ĝS ◦ f̂ 67.4 85.6 98.1 55.5 70.7 83.6

6. Conclusion
We developed sufficient conditions for the successful trans-
fer of representations both with and without fine-tuning.
This is a step towards a principled explanation of the em-
pirical success achieved by such techniques. A promising
direction for future work is generalizing the neural network
architectures considered (e.g. using multiple hidden layers)
and relaxing the distributional assumptions required. Fur-
thermore, in the fine-tuning case it may be possible to upper
bound the target task generalization error of hypotheses in
G ◦ F̂ := {h : ∃f ∈ F̂ , g ∈ G such that h = g ◦ f} us-
ing another measure such as the Rademacher complexity of
G ◦ F̂ , eliminating the need for stochastic hypotheses.

We proposed a novel form of regularization for neu-
ral network training motivated by our theoretical results,
which penalizes divergence from source task weights and
is stricter for lower-level weights. We validated this tech-
nique through applications to image and text classification.
Future directions include experiments on more challenging
tasks using deeper and more tailored network architectures
(e.g. convolutional neural networks).

7. Additional Proofs
We provide complete proofs of Theorems 2 and 4. For
brevity, we drop the explicit dependence of f , f̂ , hS and
hT on x in our notation where the meaning is clear.

7.1. Proof of Theorem 2

Proof. Let gS(z) := sign(vS · z), gT (z) := sign(vT · z),
ĝS(z) := sign(v̂S · z), ĝT (z) := sign(d ∗ v̂S · z), where
d := vS ∗vT ∈ {−1, 1}k and ∗ is the elementwise product.
It is sufficient to showRT (ĝT ◦f̂) ≤ cRS(ĝS◦f̂)+ε(1+c).

RT (ĝT ◦ f̂)

= Prx∼PT (hT d ∗ v̂S · f̂ ≤ 0)

≤ Prx∼PT (hT d ∗ vS · f ≤ 0, d ∗ vS · fd ∗ v̂S · f̂ ≥ 0) +

Prx∼PT (hT d ∗ vS · f ≥ 0, d ∗ vS · fd ∗ v̂S · f̂ ≤ 0)

≤ Prx∼PT (hT d ∗ vS · f ≤ 0)+

Prx∼PT (d ∗ vS · fd ∗ v̂S · f̂ ≤ 0)
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≤ ε+ Prx∼PT (d ∗ vS · fd ∗ v̂S · f̂ ≤ 0)

≤ ε+ cPrx∼PS (vS · fv̂S · f̂ ≤ 0)

≤ ε+ c[Prx∼PS (hS v̂S · f̂ ≤ 0, hSvS · f ≥ 0)+

Prx∼PS (hS v̂S · f̂ ≥ 0, hSvS · f ≤ 0)]

≤ ε+ c[Prx∼PS (hS v̂S · f̂ ≤ 0) +Prx∼PS (hSvS · f ≤ 0)]

≤ cRS(ĝS ◦ f̂) + ε(1 + c).

The third and final inequalities are due to the shared repre-
sentation assumption in the problem statement. The fourth
inequality holds by Lemma 1. The remaining lines apply
simple rules of probability.

Lemma 1. Suppose ∀x, x′ such that ||Mx|| = ||Mx′||,
PT (x) ≤ cPS(x′). Let f, f̂ ∈ F , v, v̂, d ∈ {−1, 1}k. Then
Prx∼PT (d∗v ·fd∗ v̂ · f̂ ≤ 0) ≤ cPrx∼PS (v · fv̂ · f̂ ≤ 0).

Proof. Suppose there is an invertible map Rn → Rn yield-
ing x′ on input x, such that ∀x, ||Mx|| = ||Mx′|| and
d ∗ v · f(x)d ∗ v̂ · f̂(x) = v · f(x′)v̂ · f̂(x′). Then the result
follows since PT (x) ≤ cPS(x′) by assumption. Further-
more, if M is an orthogonal matrix, ||x|| = ||x′||.

Such a map is x′ := (MTM)−1MT d̃ ∗ (Mx), where d̃ :=
[d1, d1, . . . , dk, dk]. We have ∀i, wi · x′ = diwi · x and
(αiŵi−βiwi)·x′ = di(αiŵi−βiwi)·x, and hence ŵi ·x′ =
diŵi · x for αi, βi 6= 0. Therefore:

d ∗ v · f(x)d ∗ v̂ · f̂(x)

= v · d ∗ f(x)v̂ · d ∗ f̂(x)

= v · f(x′)v̂ · d ∗ f̂(x)

= v · f(x′)v̂ · f̂(x′).

The first equality is a property of the elementwise and dot
products. For the second equality, a(wi·x′) = a(diwi·x) =
dia(wi · x) since a is an odd function. Similarly, for the
third equality a(ŵi · x′) = a(diŵi · x) = dia(ŵi · x).

7.2. Proof of Theorem 4

Proof of ∃h̃gT ◦f ∈ H̃G◦F̂ such that RT (h̃gT ◦f ) ≤ ε.
Recall that wi are the weight vectors for f and ŵi are
those for f̂ . Observe that for any wi such that wi · ŵi < 0,
we have −wi · ŵi > 0 and −visign(−wi · x) =
visign(wi · x). Combining this with the assumption

min
f∈F,gS ,gT∈G

max[RS(gS ◦ f), RT (gT ◦ f)] ≤ ε, we con-

clude ∃f ∈ F, gS , gT ∈ G such that ∀i, wi · ŵi ≥ 0 and
max[RS(gS ◦ f), RT (h̃gT ◦f )] ≤ ε.

Let gS(z) := sign(vS · z) and ĝS(z) := sign(v̂S · z). Let
P be a rotation invariant distribution for c = 1. To prove
h̃gT ◦f ∈ H̃G◦F̂ , by the definition of H̃G◦F̂ it is sufficient
to show ∀i, |θ(wi, ŵi)| ≤ π

√
2(k − 1)c(RS(ĝS ◦ f̂) + ε).

max
i
|θ(wi,ŵi)|

π
√

2(k−1)

≤ Prx∼P (vS · fvS · f̂ ≤ 0)

≤ Prx∼P (vS · fv̂S · f̂ ≤ 0)

≤ cPrx∼PS (vS · fv̂S · f̂ ≤ 0)

≤ c[Prx∼PS (hSvS · f ≤ 0, hS v̂S · f̂ ≥ 0)+

Prx∼PS (hSvS · f ≥ 0, hS v̂S · f̂ ≤ 0)]

≤ c[Prx∼PS (hSvS · f ≤ 0) + Prx∼PS (hS v̂S · f̂ ≤ 0)]

≤ c[ε+RS(ĝS ◦ f̂)].

The first inequality holds by Lemma 2. The second in-
equality holds by Lemma 3, using the fact ∀i, wi · ŵi ≥ 0.
The third inequality uses the rotation invariance of PS . The
following two lines use basic laws of probability. The final
inequality uses the assumption RS(gS ◦ f) ≤ ε.

Proof of ∀h̃ ∈ H̃G◦F̂ ,KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS ◦ f̂)).

For any h̃g◦f ∈ H̃G◦F̂ , KL(h̃g◦f ||h̃ĝS◦f̂ )

=
k∑
i=1

[KL(N (wi, σ
2I)||N (ŵi, σ

2I))] +KL(Bv||Bv̂S ).

The KL divergence of a product distribution is the sum of
the KL divergences of its component distributions. We up-
per bound both terms and apply the definition of ω.
k∑
i=1

KL(N (wi, σ
2I)||N (ŵi, σ

2I))

= 1
2σ2

k∑
i=1

||wi − ŵi||2

= 1
2σ2

k∑
i=1

(||wi||2 + ||ŵi||2 − 2||wi||||ŵi|| cos |θ(wi, ŵi)|)

= 1
σ2

k∑
i=1

(1− cos |θ(wi, ŵi)|)

≤ k
σ2 [1− cos(π

√
2(k − 1)c(RS(ĝS ◦ f̂) + ε))].

The first equality uses the KL divergence of Gaussian dis-
tributions. The second equality uses the law of cosines. The
third equality is because ∀i, ||wi|| = ||ŵi|| = 1 by con-
struction. The inequality follows by the definition of F̂ and
the fact that 1− cos |θ| is non-decreasing for |θ| ∈ [0, π].

KL(Bv||Bv̂S )

≤
k∑
i=1

(
k
i

)
pi(1− p)k−i log2

pi(1−p)k−i
(1−p)ipk−i

= k[2p− 1 + (1− p)k] log2
p

1−p .

The first inequality uses the definition of Bv to express
KL(Bv||Bv̂S ). The equality is a simplification.
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Lemma 2. Suppose k is odd, v ∈ {−1, 1}k, f, f̂ ∈ F such
that ∀i, wi · ŵi ≥ 0 and P is rotation invariant with c = 1.

Then
max
i
|θ(wi,ŵi)|

π
√

2(k−1)
≤ Prx∼P (v · fv · f̂ ≤ 0).

Proof. Let v−j := [v1, . . . , vj−1, vj+1, . . . , vk] and define
f−j and f̂−j similarly. Let Pr(·) := Prx∼P (·).

Pr(v · fv · f̂ ≤ 0)

≥ Pr(v · fv · f̂ < 0)

≥ Pr(v−j · f−j = 0)Pr(v · fv · f̂ < 0|v−j · f−j = 0)

= Pr(v−j · f−j = 0)

Pr(vjfjv−j · f̂−j + fj f̂j < 0|v−j · f−j = 0)

= Pr(v−j · f−j = 0)

[Pr(vjfjv−j · f̂−j < −1, fj f̂j = 1|v−j · f−j = 0)+

Pr(vjfjv−j · f̂−j < 1, fj f̂j = −1|v−j · f−j = 0)]

≥ Pr(v−j · f−j = 0)

[Pr(vjfjv−j · f̂−j < −1, fj f̂j = −1|v−j · f−j = 0)+

Pr(vjfjv−j · f̂−j < 1, fj f̂j = −1|v−j · f−j = 0)]

= Pr(v−j · f−j = 0)

[Pr(vjfjv−j · f̂−j < −1, fj f̂j = −1|v−j · f−j = 0)+

Pr(vjfjv−j · f̂−j > −1, fj f̂j = −1|v−j · f−j = 0)]

= Pr(v−j · f−j = 0)Pr(fj f̂j = −1|v−j · f−j = 0)

= Pr(v−j · f−j = 0)Pr(fj f̂j = −1)

=
(k−1
k−1
2

)
( 1
2 )k−1

|θ(wj ,ŵj)|
π

≥ 2k−1√
2(k−1)

( 1
2 )k−1

|θ(wj ,ŵj)|
π

≥
max
i
|θ(wi,ŵi)|

π
√

2(k−1)
.

The third inequality follows since P is rotation invariant
and wj · ŵj ≥ 0. The third and fifth equalities use rotation
invariance. The final equality uses rotation invariance and
the fact that k is odd. The fourth inequality is a standard
lower bound for the central binomial coefficient. The other
lines use basic simplifications and laws of probability.

Lemma 3. Suppose k is odd, v, v̂ ∈ {−1, 1}k, f, f̂ ∈ F
such that ∀i, wi · ŵi ≥ 0 and P is rotation invari-
ant with c = 1. Then Prx∼P (v · fv · f̂ ≤ 0) ≤
Prx∼P (v · fv̂ · f̂ ≤ 0).
Proof. Let Pr(·) := Prx∼P (·) and E[·] := Ex∼P [·]. Let
Pr(f̃) := Prx∼P ([f1(x)f̂1(x), . . . , fk(x)f̂k(x)] = f̃).
Let d := v̂ ∗ v and ∆(x) := 1(v · f(x)v̂ · f̂(x) ≤ 0) −
1(v · f(x)v · f̂(x) ≤ 0). Assume v̂ 6= v (if v̂ = v then

the lemma clearly holds). Let a(f̃) :=
k∑
i=1

1(f̃i = 1) and

let l := min
i:di=−1

i. Let F̃ := {f̃ ∈ {−1, 1}k : a(f̃) >

a(d ∗ f̃) ∨ (a(f̃) = a(d ∗ f̃) ∧ f̃l = 1)}.

Let Φ(a) := 1
2k−1

bk/2c∑
b=0

b∑
j=da/2+b/2−k/4e

(
a
j

)(
k−a
b−j
)
. The

term b counts coordinates where vif̂i = sign(v · f), while
j counts those where vifi = sign(v · f) and fi = f̂i.

Pr(v · fv̂ · f̂ ≤ 0)− Pr(v · fv · f̂ ≤ 0)

= E[1(v · fv̂ · f̂ ≤ 0)]− E[1(v · fv · f̂ ≤ 0)]

= E[∆]

=
∑̃
f∈F̃

Pr(f̃)E[∆|f̃ ] + Pr(d ∗ f̃)E[∆|d ∗ f̃ ]

=
∑̃
f∈F̃

[Pr(f̃)− Pr(d ∗ f̃)]E[∆|f̃ ]

=
∑̃
f∈F̃

[Pr(f̃)− Pr(d ∗ f̃)]

[Pr(v · fv · f̂ ≤ 0|d ∗ f̃)− Pr(v · fv · f̂ ≤ 0|f̃)]

=
∑̃
f∈F̃

[Pr(f̃)− Pr(d ∗ f̃)][Φ(a(d ∗ f̃))− Φ(a(f̃))]

≥ 0.

The second equality uses linearity of expectation. The third
equality uses the law of total expectation and the definition
of F̃ .

The fourth equality holds since E[∆|d ∗ f̃ ]
=

∑
f∈{−1,1}k

Pr(f |d ∗ f̃)E[∆|d ∗ f̃ , f ]

= −
∑

f∈{−1,1}k
Pr(f |d ∗ f̃)E[∆|f̃ , f ]

= −
∑

f∈{−1,1}k
Pr(f |f̃)E[∆|f̃ , f ] = −E[∆|f̃ ] due to the

rotation invariance of P .

The fifth equality holds by expanding ∆, linearity of ex-
pectation, and a similar argument to the previous equality
to show Pr(v · fv̂ · f̂ ≤ 0|f̃) = Pr(v · fv · f̂ ≤ 0|d ∗ f̃).

The sixth equality holds by the rotation invariance of P and
the fact that k is odd.

For the final inequality, the right hand term is non-negative
since a(f̃) ≥ a(d ∗ f̃) and Φ is non-increasing. The left
hand term is also non-negative due to the rotation invari-
ance assumption and the fact that ∀i, wi · ŵi ≥ 0.
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