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Abstract
The past few years have witnessed a growth in
size and computational requirements for training
and inference with neural networks. Currently, a
common approach to address these requirements
is to use a heterogeneous distributed environ-
ment with a mixture of hardware devices such
as CPUs and GPUs. Importantly, the decision
of placing parts of the neural models on devices
is often made by human experts based on simple
heuristics and intuitions. In this paper, we pro-
pose a method which learns to optimize device
placement for TensorFlow computational graphs.
Key to our method is the use of a sequence-to-
sequence model to predict which subsets of op-
erations in a TensorFlow graph should run on
which of the available devices. The execution
time of the predicted placements is then used as
the reward signal to optimize the parameters of
the sequence-to-sequence model. Our main re-
sult is that on Inception-V3 for ImageNet classi-
fication, and on RNN LSTM, for language mod-
eling and neural machine translation, our model
finds non-trivial device placements that outper-
form hand-crafted heuristics and traditional algo-
rithmic methods.

1. Introduction
Over the past few years, neural networks have proven to
be a general and effective tool for many practical prob-
lems, such as image classification (Krizhevsky et al., 2012;
Szegedy et al., 2015; He et al., 2016), speech recogni-
tion (Hinton et al., 2012; Graves & Jaitly, 2014; Han-
nun et al., 2014; Chan et al., 2015), machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014; Bahdanau
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et al., 2015; Wu et al., 2016) and speech synthesis (Oord
et al., 2016; Arik et al., 2017; Wang et al., 2017). Together
with their success is the growth in size and computational
requirements of training and inference. Currently, a typical
approach to address these requirements is to use a hetero-
geneous distributed environment with a mixture of many
CPUs and GPUs. In this environment, it is a common prac-
tice for a machine learning practitioner to specify the de-
vice placement for certain operations in the neural network.
For example, in a neural translation network, each layer, in-
cluding all LSTM layers, the attention layer, and the soft-
max layer, is computed by a GPU (Sutskever et al., 2014;
Wu et al., 2016).

Although such decisions can be made by machine learn-
ing practitioners, they can be challenging, especially when
the network has many branches (Szegedy et al., 2016),
or when the minibatches get larger. Existing algorithmic
solvers (Pellegrini, 2009; Karypis & Kumar, 1995b), on the
other hand, are not flexible enough to work with a dynamic
environment with many interferences.
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Figure 1. An overview of the RL based device placement model.

In this paper, we propose a method which learns to opti-
mize device placement for training and inference with neu-
ral networks. The method, illustrated in Figure 1, takes into
account information of the environment by performing se-
ries of experiments to understand which parts of the model
should be placed on which device, and how to arrange the
computations so that the communication is optimized. Key
to our method is the use of a sequence-to-sequence model
to read input information about the operations as well as
the dependencies between them, and then propose a place-
ment for each operation. Each proposal is executed in the
hardware environment to measure the execution time. The
execution time is then used as a reward signal to train the
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recurrent model so that it gives better proposals over time.

Our main result is that our method finds non-trivial place-
ments on multiple devices for Inception-V3 (Szegedy et al.,
2016), Recurrent Neural Language Model (Zaremba et al.,
2014; Jozefowicz et al., 2016) and Neural Machine Trans-
lation (Sutskever et al., 2014; Wu et al., 2016). Single-step
measurements show that Scotch (Pellegrini, 2009) yields
disappointing results on all three benchmarks, suggesting
that their graph-based heuristics are not flexible enough for
them. Our method can find non-trivial placements that are
up to 3.5 times faster. When applied to train the three mod-
els in real time, the placements found by our method are up
to 20% faster than human experts’ placements.

2. Related Work
Our work is closely related to the idea of using neural net-
works and reinforcement learning for combinatorial opti-
mization (Vinyals et al., 2015; Bello et al., 2016). The
space of possible placements for a computational graph is
discrete, and we model the placements using a sequence-
to-sequence approach, trained with policy gradients. How-
ever, experiments in early work were only concerned with
toy datasets, whereas this work applies the framework to a
large-scale practical application with noisy rewards.

Reinforcement learning has also been applied to optimize
system performance. For example, Mao et al. (2016) pro-
pose to train a resource management algorithm with policy
gradients. However, they optimize the expected value of a
hand-crafted objective function based on the reward, unlike
this work, where we optimize directly for the running time
of the configurations, hence relieving the need to design
intermediate cost models.

Graph partitioning is an intensively studied subject in com-
puter science. Early work such as Kernighan & Lin (1970);
Kirkpatrick et al. (1983); Fiduccia & Mattheyses (1988);
Johnson et al. (1989) employ several iterative refinement
procedures that start from a partition and continue to ex-
plore similar partitions to improve. Alternative meth-
ods such as Hagen & Kahng (1992); Karypis & Kumar
(1995b) perform spectral analyses on matrix representa-
tions of graphs to partition them. Despite their extensive
literature, graph partitioning algorithms remain heuristics
for computational graphs. The reason is that in order to ap-
ply these algorithms, one has to construct cost models for
the graphs of concern. Since such models are expensive to
even estimate and in virtually all cases, are not accurate,
graph partitioning algorithms applied on them can lead to
unsatisfying results, as we show in Section 4 of this paper.

A well-known graph partitioning algorithm with an open
source software library is the Scotch optimizer (Pellegrini,
2009), which we use as a baseline in our experiments.

The Scotch mapper attempts to balance the computational
load of a collection of tasks among a set of connected
processing nodes, while reducing the cost of communica-
tion by keeping intensively communicating tasks on nearby
nodes. Scotch relies on a collection of graph partitioning
techniques such as k-way Fiduccia-Mattheyses (Fiduccia
& Mattheyses, 1988), multilevel method (Barnard & Si-
mon, 1994; Hendrickson & Leland, 1993; Karypis & Ku-
mar, 1995a), band method (Chevalier & Pellegrini, 2006),
diffusion method (Pellegrini, 2007), and dual recursive bi-
partitioning mapping (Pellegrini & Roman, 1996)).

Scotch models the problem with 2 graphs. The first graph
is called the target architecture graph, whose vertices rep-
resent hardware resources such as CPUs or GPUs and
whose edges represent the communication paths available
between them, such as a PCIe bus or a network link. The
second graph is called the source graph, which models
the computation to be mapped onto the target architecture
graph. In the case of TensorFlow (Abadi et al., 2016), the
computations of programs are modeled as a graph whose
vertices represent operations, while the graph edges repre-
sent the multidimensional data arrays (tensors) communi-
cated between them. Scotch users have to choose how and
when given partitioning should be applied to graphs. How-
ever, in our experiment, we rely on the software’s default
strategies implemented in Scotch, which have already been
extensively tuned.

3. Method
Consider a TensorFlow computational graph G, which con-
sists ofM operations {o1, o2, ..., oM}, and a list ofD avail-
able devices. A placement P = {p1, p2, ..., pM} is an
assignment of an operation oi ∈ G to a device pi, where
pi ∈ {1, ..., D}. Let r(P) denote the time that it takes to
perform a complete execution of G under the placement P .
The goal of device placement optimization is to find P such
that the execution time r(P) is minimized.

3.1. Training with Policy Gradients

While we seek to minimize the execution time r(P), di-
rect optimization of r(P) results in two major issues. First,
in the beginning of the training process, due to the bad
placements sampled, the measurements of r(P) can be
noisy, leading to inappropriate learning signals. Second,
as the RL model gradually converges, the placements that
are sampled become more similar to each other, leading
to small differences between the corresponding running
times, which results in less distinguishable training sig-
nals. We empirically find that the square root of running
time, R(P) =

√
r(P), makes the learning process more

robust. Accordingly, we propose to train a stochastic pol-
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Figure 2. Device placement model architecture.

icy π(P|G; θ) to minimize the objective

J(θ) = EP∼π(P|G;θ) [R (P) |G] (1)

In our work, π(P|G; θ) is defined by an attentional
sequence-to-sequence model, which we will describe in
Section 3.2. We learn the network parameters using
Adam (Kingma & Ba, 2014) optimizer based on policy gra-
dients computed via the REINFORCE equation (Williams,
1992),

∇θJ(θ) = EP∼π(P|G;θ) [R (P) · ∇θ log p (P|G; θ)] (2)

We estimate∇θJ(θ) by drawing K placement samples us-
ing Pi ∼ π(·|G; θ). We reduce the variance of policy gra-
dients by using a baseline term B, leading to

∇θJ(θ) ≈
1

K

K∑
i=1

(R (Pi)−B) · ∇θ log p (Pi|G; θ) (3)

We find that a simple moving average baseline B works
well in our experiments. In practice, on computational
graphs with large memory footprints, some placements can
fail to execute, e.g., putting all of the operations of a huge
LSTM on a single GPU will exceed the device’s memory
limit. For such cases, we set the square root of running
time R(P) to a large constant, which we call the failing
signal. We specify the failing signal manually depending
on the input graph. We observe that throughout our train-
ing process, some placements sporadically and unexpect-
edly fail, perhaps due to factors such as the state of the ma-
chine (we train our model on a shared cluster). This phe-
nomenon is particularly undesirable towards the end of the
training process, since a large difference between R(Pi)
and the baseline B leads to a large update of the parame-
ters, which potentially perturbs parameters θ out of a good
minimum. We thus hard-code the training process so that
after 5, 000 steps, one performs a parameter update with a
sampled placement P only if the placement executes. In
our experiments, we also find that initializing the baseline
B with the failing signal results in more exploration.

3.2. Architecture Details

We use a sequence-to-sequence model (Sutskever et al.,
2014) with LSTM (Hochreiter & Schmidhuber, 1997) and
a content-based attention mechanism (Bahdanau et al.,
2015) to predict the placements. Figure 2 shows the overall
architecture of our model, which can be divided into two
parts: encoder RNN and decoder RNN.

The input to the encoder RNN is the sequence of operations
of the input graph. We embed the operations by concate-
nating their information. Specifically, for each input graph
G, we first collect the types of its operations. An opera-
tion’s type describes the underlying computation, such as
MatMul or conv2d. For each type, we store a tunable
embedding vector. We then record the size of each oper-
ation’s list of output tensors and concatenate them into a
fixed-size zero-padded list called the output shape. We also
take the one-hot encoding vector that represents the oper-
ations that are direct inputs and outputs to each operation.
Finally, the embedding of each operation is the concatena-
tion of its type, its output shape, and its one-hot encoded
adjacency information.

The decoder is an attentional LSTM (Bahdanau et al.,
2015) with a fixed number of time steps that is equal to
the number of operations in a graph G. At each step, the
decoder outputs the device for the operation at the same
encoder time step. Each device has its own tunable embed-
ding, which is then fed as input to the next decoder time
step.

3.3. Co-locating Operations

A key challenge when applying our method to Tensor-
Flow computational graphs is that these graphs generally
have thousands of operations (see Table 1). Modeling such
a large number of operations with sequence-to-sequence
models is difficult due to vanishing and exploding gradient
issues (Pascanu et al., 2013) and large memory footprints.
We propose to reduce the number of objects to place on dif-
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ferent devices by manually forcing several operations to be
located on the same device. In practice, this is implemented
by the colocate with feature of TensorFlow.

We use several heuristics to create co-location groups.
First, we rely on TensorFlow’s default co-location groups,
such as co-locating each operation’s outputs with its gra-
dients. We further apply a simple heuristic to merge more
operations into co-location groups. Specifically, if the out-
put of an operation X is consumed only by another oper-
ation Y , then operations X and Y are co-located. Many
initialization operations in TensorFlow can be grouped in
this way. In our experiments, we apply this heuristic re-
cursively, and after each iteration, we treat the co-location
groups as operations until there are not any further groups
that can be merged. For certain models, we apply specific
rules to construct co-location groups. For example, with
ConvNets, we can treat several convolutions and pooling
layers as a co-location group, and with RNN models, we
treat each LSTM cell as a group.

3.4. Distributed Training

We speed up the training process of our model using
asynchronous distributed training, as shown in Figure 3.
Our framework consists of several controllers, each of
which execute the current policy defined by the attentional
sequence-to-sequence model as described in Section 3.2.
All of the controllers interact with a single shared parame-
ter server. We note that the parameter server holds only the
controllers’ parameters, and not the input graph’s param-
eters, because keeping the input graph’s parameters on the
parameter server can potentially create a latency bottleneck
to transfer these parameters. Each controller in our frame-
work interacts with K workers, where K is the number of
Monte Carlo samples in Equation 3.

Figure 3. Distributed and asynchronous parameter update and re-
ward evaluation.

The training process has two alternating phases. In the first
phase, each worker receives a signal that indicates that it
should wait for placements from its controller, while each
controller receives a signal that indicates it should sam-
ple K placements. Each sampled placement comes with
a probability. Each controller then independently sends the

placements to their workers, one placement per worker, and
sends a signal to indicate a phase change.

In the second phase, each worker executes the placement it
receives and measures the running time. To reduce the vari-
ance in these measurements, each placement is executed for
10 steps and the average running time of the steps but the
first one is recorded. We observe that in TensorFlow, the
first step can take longer to execute compared to the follow-
ing steps, and hence we treat itss runing time as an outlier.
Each controller waits for all of its workers to finish execut-
ing their assigned placements and returning their running
times. When all of the running times are received, the con-
troller uses the running times to scale the corresponding
gradients to asynchronously update the controller parame-
ters that reside in the parameter server.

In our experiments, we use up to 20 controllers, each with
either 4 or 8 workers. Under this setting, it takes between
12 to 27 hours to find the best placement for the models in
our experiments. Using more workers per controller yields
more accurate estimates of the policy gradient as in Equa-
tion 3, but comes at the expense of possibly having to put
more workers in idle states. We also note that due to the dis-
crepancies between machines, it is more stable to let each
controller have its own baseline.

4. Experiments
In the following experiments, we apply our proposed
method to assign computations to devices on three impor-
tant neural networks in the deep learning literature: Recur-
rent Neural Language Model (RNNLM) (Zaremba et al.,
2014; Jozefowicz et al., 2016), Attentional Neural Ma-
chine Translation (Bahdanau et al., 2015), and Inception-
V3 (Szegedy et al., 2016). We compare the RL placements
against strong existing baselines described in Section 4.2.

4.1. Experiment Setup

Benchmarks. We evaluate our approach on three estab-
lished deep learning models:

• Recurrent Neural Network Language Model
(RNNLM) with multiple LSTM layers (Zaremba
et al., 2014; Jozefowicz et al., 2016). The grid struc-
ture of this model introduces tremendous potential for
parallel executions because each LSTM cell can start
as soon as its input and previous states are available.

• Neural Machine Translation with attention mecha-
nism (NMT) (Bahdanau et al., 2015; Wu et al., 2016).
While the architecture of this model is similar to that
of RNNLM, its large number of hidden states due
to the source and target sentences necessitates model
parallelism. Both Sutskever et al. (2014) and Wu
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et al. (2016) propose to place each LSTM layer, the
attention layer, and the softmax layer, each on a sepa-
rate device. While the authors observe significant im-
provements at training time, their choices are not opti-
mal. In fact, we show in our experiments that a trained
policy can find significantly better placements.

• Inception-V3 (Szegedy et al., 2016) is a widely-used
architecture for image recognition and visual feature
extraction (Khetan & Oh, 2016; Esteva et al., 2016).
The Inception network has multiple blocks. Each
block has several branches of convolutional and pool-
ing layers, which are then concatenated to make the
inputs for the next block. While these branches can
be executed in parallel, the network’s depth restricts
such potential since the later blocks have to wait for
the previous ones.

Model details. For Inception-V3, each step is executed
on a batch of images, each of size 299 × 299 × 3,
which is the widely-used setting for the ImageNet Chal-
lenge (Szegedy et al., 2015). For RNNLM and NMT, we
use the model with 2 LSTM layers, with sizes of 2048 and
1024, respectively. We set the number of unrolling steps
for RNNLM, as well as the maximum length for the source
and target sentences of NMT, to 40. Each pass on RNNLM
and NMT consists of a minibatch of 64 sequences.

Co-location groups. We pre-process the TensorFlow
computational graphs of the three aforementioned models
to manually create their co-location groups. More pre-
cisely; for RNNLM and NMT, we treat each LSTM cell,
each embedding lookup, each attention step and each soft-
max prediction step as a group; for Inception-V3, we treat
each branch as a group. Table 1 shows the grouping statis-
tics of these models.

Model #operations #groups

RNNLM 8943 188
NMT 22097 280
Inception-V3 31180 83

Table 1. Model statistics.

Metrics. We implement training operations for RNNLM
and NMT using Adam (Kingma & Ba, 2014), and for
Inception-V3 using RMSProp (Tieleman & Hinton, 2012).
We evaluate a placement by the total time it takes to per-
form one forward pass, one backward pass and one param-
eter update. To reduce measurement variance, we average
the running times over several trials. Additionally, we train
each model from scratch using the placements found by
our method and compare the training time to that of the
strongest baseline placement.

Devices. In our experiments, the available devices are 1
Intel Haswell 2300 CPU, which has 18 cores, and either 2
or 4 Nvidia Tesla K80 GPUs. We allow 50 GB of RAM for
all models and settings.

4.2. Baselines

Single-CPU. This placement executes the whole neural
network on a single CPU. Processing some large models on
GPUs is infeasible due to memory limits, leaving Single-
CPU the only choice despite being slow.

Single-GPU. This placement executes the whole neural
network on a single CPU. If an operation lacks GPU im-
plemention, it will be placed on CPU.

Scotch. We estimate the computational costs of each op-
eration as well as the amount of data that flows along each
edge of the neural network model, and feed them to the
Scotch static mapper (Pellegrini, 2009). We also annotate
the architecture graph (see Section 2) with compute and
communication capacities of the underlying devices.

MinCut. We use the same Scotch optimizer, but elimi-
nate the CPU from the list of available devices fed to the
optimizer. Similar to the single-GPU placement, if an op-
eration has no GPU implementation, it runs on the CPU.

Expert-designed. For RNNLM and NMT, we put each
LSTM layer on a device. For NMT, we also put the atten-
tion mechanism and the softmax layer on the same device
with the highest LSTM layer, and we put the embedding
layer on the same device with the first LSTM layer. For
Inception-V3, the common practice for the batch size of
32 is to put the entire model on a single GPU. There is no
implementation of Inception-V3 with batch 32 using more
than 1 GPU. To create an intuitive baseline on multiple
GPUs, we heuristically partition the model into contigu-
ous parts that have roughly the same number of layers. We
compare against this approach in Section 4.3. The com-
mon practice for Inception-V3 with the larger batch size
of 128 is to apply data parallelism using 4 GPUs. Each
GPU runs a replica of the model and processes a batch of
size 32 (Szegedy et al., 2016). We compare against this
approach in Section 4.4.

4.3. Single-Step Runtime Efficiency

In Table 2, we present the per-step running times of the
placements found by our method and by the baselines. We
observe that our model is either on par with or better than
other methods of placements. Despite being given no in-
formation other than the running times of the placements
and the number of available devices, our model learns sub-
tle tradeoffs between performance gain by parallelism and
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Tasks Single-CPU Single-GPU #GPUs Scotch MinCut Expert RL-based Speedup

RNNLM 6.89 1.57 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) 4 11.52 10.44 4.46 1.57 0.0%

NMT 10.72 OOM 2 14.19 11.54 4.99 4.04 23.5%
(batch 64) 4 11.23 11.78 4.73 3.92 20.6%

Inception-V3 26.21 4.60 2 25.24 22.88 11.22 4.60 0.0%
(batch 32) 4 23.41 24.52 10.65 3.85 19.0%

Table 2. Running times (in seconds) of placements found by RL-based method and the baselines (lower is better). For each model, the
first row shows the results with 1 CPU and 2 GPUs; the second row shows the results with 1 CPU and 4 GPUs. Last column shows
improvements in running time achieved by RL-based placement over fastest baseline. To reduce variance, running times less than 10
seconds are measured 15 times and the averages are recorded. OOM is Out Of Memory.

LSTM 2

LSTM 1

Embedding

Softmax

Attention

LSTM 2

LSTM 1

Embedding

Figure 4. RL-based placement of Neural MT graph. Top: encoder, Bottom: decoder. Devices are denoted by colors, where the trans-
parent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an
improvement of 19.3% in running time compared to the fine-tuned expert-designed placement.

the costs induced by inter-device communications.

RNNLM. Our method detects that it is possible to fit the
whole RNNLM graph into one GPU, and decides to do so
to save the inter-device communication latencies. The re-
sulting placement is more than twice faster than the best
published human-designed baseline.

Neural MT. Our method finds a non-trivial placement
(see Figure 4) that leads to a speedup of up to 20.6% for
4 GPUs. Our method also learns to put the less compu-
tational expensive operations, such as embedding lookups,
on the CPU. We suspect that whilst being the slowest de-
vice, the CPU can handle these lookup operations (which
are less computationally expensive than other operations)
to reduce the load for other GPUs.

Inception-V3. For Inception-V3 with the batch size of
32, RL-based placer learns that when there are only 2 GPUs
available, the degree of freedom for model parallelism is
limited. It thus places all the operations on a single GPU
(although it could use 2 GPUs). However, when 4 GPUs
are available, the RL-based placer finds an efficient way to
use all of the GPUs, reducing the model’s per-step running
time from 4.60 seconds to 3.85 seconds. This result is sig-
nificant, as neither of our baselines could find a placement

better than assigning all the operations to a single GPU.

We also conduct a simple extension of our experiments, by
increasing the batch sizes of RNNLM and NMT to 256, and
their LSTM sizes to 4, 096 and 2, 048, respectively. This
makes the models’ memory footprints so large that even
one layer of them cannot be fitted into any single device,
hence ruling out the human-designed placement. Never-
theless, after several steps of finding placements that fail
to run, our approach manages to find a way to successfully
place input models on devices The running times of the
placements found for large RNNLM and NMT are 33.46
and 35.84 seconds, respectively.

4.4. End-to-End Runtime Efficiency

We now investigate whether the RL-based placements can
speedup not only the single-step running time but also the
entire training process.

Neural MT. We train our Neural MT model on the
WMT14 English-German dataset.1 For these experiments,
we pre-process the dataset into word pieces (Wu et al.,
2016) such that the vocabularies of both languages consist
of 32, 000 word pieces. In order to match our model’s set-

1http://www.statmt.org/wmt14/

http://www.statmt.org/wmt14/
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Figure 5. RL-based placement of Inception-V3. Devices are denoted by colors, where the transparent color represents an operation on a
CPU and each other unique color represents a different GPU. RL-based placement achieves the improvement of 19.7% in running time
compared to expert-designed placement.

tings, we consider only the translation pairs where no sen-
tence has more than 40 word pieces. We train each model
for 200, 000 steps and record their train perplexities. Each
training machine has 4 Nvidia Tesla K80 GPUs and 1 Intel
Haswell 2300 CPU. Since there are inevitable noises in the
computer systems when measuring the running times, we
train each model 4 times independently and average their
per-step running times and perplexities.
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Figure 6. Training curves of NMT model using RL-based place-
ment and expert-designed placement. The per-step running time
as well as the perplexities are averaged over 4 runs.

The RL-based placement runs faster than the expert-
designed placement, as shown in the training curves in
Figure 6. Quantitatively, the expert-designed placement,
which puts each layer (LSTM, attention and softmax) on
a different GPU, takes 229.57 hours; meanwhile the RL-
based placement (see Figure 4) takes 165.73 hours, giv-
ing 27.8% speed up of total training time. We note that
the measured speedup rate (and the running times) of these
models appear different than reported in Table 2 because
measuring them in our RL method has several overheads.

Inception-V3. We train Inception-V3 on the ImageNet
dataset (Russakovsky et al., 2015) until the model reaches
the accuracy of 72% on the validation set. In practice, more
often, inception models are trained with data parallelism
rather than model parallelism. We thus compare the place-

ments found by our algorithm (see Figure 5) against two
such baselines.

The first baseline, called Asynchronous towers, puts one
replica of the Inception-V3 network on each GPU. These
replicas share the data reading operations, which are as-
signed to the CPU. Each replica independently performs
forward and backward passes to compute the model’s gra-
dients with respect to a minibatch of 32 images and then up-
dates the parameters asynchronously. The second baseline,
called Synchronous Tower, is the same as Asynchronous
towers, except that it waits for the gradients of all copies
before making an update. All settings use the learning rate
of 0.045 and are trained using RMSProp.
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Figure 7. Training curves of Inception-V3 model using RL-based
placement and two expert-designed placements: Synchronous
towers and Asynchronous towers. The per-step running time as
well as the perplexities are averaged over 4 runs.

Figure 7 shows the training curves of the three settings for
Inception-V3. As can be seen from the figure, the end-to-
end training result confirms that the RL-based placement
indeed speedups the training process by 19.7% compared
to the Synchronous Tower. While Asynchronous towers
gives a better per-step time, synchronous approaches lead
to faster convergence. The training curve of the RL-based
placement, being slower at first, eventually crosses the
training curve of Asynchronous towers.
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4.5. Analysis of Found Placements

In order to understand the rationale behind the RL-based
placements, we analyze their profiling information and
compare them against those of expert-designed placements.
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Figure 8. Computational load profiling of NMT model for RL-
based and expert-designed placements. Smaller blocks of each
color correspond to feedforward path and same-color upper
blocks correspond to backpropagation. RL-based placement per-
forms a more balanced computational load assignment than the
expert-designed placement.

Neural MT. We first compare the per-device computa-
tional loads by RL-based placement and expert-designed
placement for the NMT model. Figure 8 shows such
performance profiling. RL-based placement balances the
workload significantly better than does the expert-designed
placement. Interestingly, if we do not take into account the
time for back-propagation, then expert-designed placement
makes sense because the workload is more balanced (whilst
still less balanced than ours). The imbalance is much more
significant when back-propagation time is considered.

Inception-V3. On Inception-V3, however, the RL-based
placement does not seek to balance the computations be-
tween GPUs, as illustrated in Figure 9-top. We suspect this
is because Inception-V3 has more dependencies than NMT,
allowing less room for model parallelism across GPUs.
The reduction in running time of the RL-based placement
comes from the less time it spends copying data between
devices, as shown in Figure 9-bottom. In particular, the
models parameters are on the same device as the operations
that use them, unlike in Synchronous tower, where all tow-
ers have to wait for all parameters have to be updated and
sent to them. On the contrary, that use them to reduce the
communication cost, leading to overall reduction in com-
puting time.
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Figure 9. Computational load and memory copy profiling of
Inception-V3 for RL-based and Synchronous tower placements.
Top figure: Operation runtime for GPUs. Smaller blocks of
each color correspond to feedforward path and same-color upper
blocks correspond to backpropagation. RL-based placement pro-
duces less balanced computational load than Synchronous tower.
Bottom figure: Memory copy time. All memory copy activities
in Synchronous tower are between a GPU and a CPU, which are
in general slower than GPU to GPU copies that take place in the
RL-based placement.

5. Conclusion
In this paper, we present an adaptive method to optimize
device placements for neural networks. Key to our ap-
proach is the use of a sequence-to-sequence model to pro-
pose device placements given the operations in a neural net-
work. The model is trained to optimize the execution time
of the neural network. Besides the execution time, the num-
ber of available devices is the only other information about
the hardware configuration that we feed to our model.

Our results demonstrate that the proposed approach learns
the properties of the environment including the complex
tradeoff between computation and communication in hard-
ware. On a range of tasks including image classification,
language modeling, and machine translation, our method
surpasses placements carefully designed by human experts
and highly optimized algorithmic solvers.
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