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Abstract
Standard forms of coordinate and stochastic gra-
dient methods do not adapt to structure in data;
their good behavior under random sampling is
predicated on uniformity in data. When gradi-
ents in certain blocks of features (for coordinate
descent) or examples (for SGD) are larger than
others, there is a natural structure that can be ex-
ploited for quicker convergence. Yet adaptive
variants often suffer nontrivial computational
overhead. We present a framework that discov-
ers and leverages such structural properties at a
low computational cost. We employ a bandit op-
timization procedure that “learns” probabilities
for sampling coordinates or examples in (non-
smooth) optimization problems, allowing us to
guarantee performance close to that of the opti-
mal stationary sampling distribution. When such
structures exist, our algorithms achieve tighter
convergence guarantees than their non-adaptive
counterparts, and we complement our analysis
with experiments on several datasets.

1. Introduction
Identifying and adapting to structural aspects of problem
data can often improve performance of optimization algo-
rithms. In this paper, we study two forms of such structure:
variance in the relative importance of different features and
observations (as well as blocks thereof). As a motivating
concrete example, consider the `p regression problem

minimize
x

{
f(x) := ‖Ax− b‖pp =

n∑
i=1

|aTi x− bi|p
}
, (1)

where ai denote the rows ofA ∈ Rn×d. When the columns
(features) of A have highly varying norms—say because

1Management Science & Engineering, Stanford Univer-
sity, USA 2Electrical Engineering, Stanford University, USA
3Statistics, Stanford University, USA. Correspondence to:
Hongseok Namkoong <hnamk@stanford.edu>, Aman Sinha
<amans@stanford.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

certain features are infrequent—we wish to leverage this
during optimization. Likewise, when rows ai have dis-
parate norms, “heavy” rows of A influence the objective
more than others. We develop optimization algorithms that
automatically adapt to such irregularities for general non-
smooth convex optimization problems.

Standard (stochastic) subgradient methods (Nemirovski
et al., 2009), as well as more recent accelerated variants for
smooth, strongly convex incremental optimization prob-
lems (e.g. Johnson and Zhang, 2013; Defazio et al., 2014),
follow deterministic or random procedures that choose data
to use to compute updates in ways that are oblivious to con-
ditioning and structure. As our experiments demonstrate,
choosing blocks of features or observations—for instance,
all examples belonging to a particular class in classifica-
tion problems—can be advantageous. Adapting to such
structure can lead to substantial gains, and we propose
a method that adaptively updates the sampling probabil-
ities from which it draws blocks of features/observations
(columns/rows in problem (1)) as it performs subgradient
updates. Our method applies to both coordinate descent
(feature/column sampling) and mirror descent (observa-
tion/row sampling). Heuristically, our algorithm learns to
sample informative features/observations using their gradi-
ent values and requires overhead only logarithmic in the
number of blocks over which it samples. We show that
our method optimizes a particular bound on convergence,
roughly sampling from the optimal stationary probability
distribution in hindsight, and leading to substantial im-
provements when the data has pronounced irregularity.

When the objective f(·) is smooth and the desired solu-
tion accuracy is reasonably low, (block) coordinate descent
methods are attractive because of their tractability (Nes-
terov, 2012; Necoara et al., 2011; Beck and Tetruashvili,
2013; Lee and Sidford, 2013; Richtárik and Takáč, 2014;
Lu and Xiao, 2015). In this paper, we consider potentially
non-smooth functions and present an adaptive block co-
ordinate descent method, which iterates over b blocks of
coordinates, reminiscent of AdaGrad (Duchi et al., 2011).
Choosing a good sampling distribution for coordinates
in coordinate descent procedures is nontrivial (Lee and
Sidford, 2013; Necoara et al., 2011; Shalev-Shwartz and
Zhang, 2012; Richtárik and Takáč, 2015; Csiba et al., 2015;
Allen-Zhu and Yuan, 2015). Most work focuses on choos-
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ing a good stationary distribution using problem-specific
knowledge, which may not be feasible; this motivates auto-
matically adapting to individual problem instances. For ex-
ample, Csiba et al. (2015) provide an updating scheme for
the probabilities in stochastic dual ascent. However, the up-
date requires O(b) time per iteration, making it impractical
for large-scale problems. Similarly, Nutini et al. (2015) ob-
serve that the Gauss-Southwell rule (choosing the coordi-
nate with maximum gradient value) achieves better perfor-
mance, but this also requires O(b) time per iteration. Our
method roughly emulates this behavior via careful adaptive
sampling and bandit optimization, and we are able to pro-
vide a number of a posteriori optimality guarantees.

In addition to coordinate descent methods, we also consider
the finite-sum minimization problem

minimize
x∈X

1

n

n∑
i=1

fi(x),

where the fi are convex and may be non-smooth. Variance-
reduction techniques for finite-sum problems often yield
substantial gains (Johnson and Zhang, 2013; Defazio et al.,
2014), but they generally require smoothness. More
broadly, importance sampling estimates (Strohmer and Ver-
shynin, 2009; Needell et al., 2014; Zhao and Zhang, 2014;
2015; Csiba and Richtárik, 2016) can yield improved con-
vergence, but the only work that allows online, problem-
specific adaptation of sampling probabilities of which we
are aware is Gopal (2016). However, these updates require
O(b) computation and do not have optimality guarantees.

We develop these ideas in the coming sections, focusing
first in Section 2 on adaptive procedures for (non-smooth)
coordinate descent methods and developing the necessary
bandit optimization and adaptivity machinery. In Section 3,
we translate our development into convergence results for
finite-sum convex optimization problems. Complementing
our theoretical results, we provide a number of experiments
in Section 4 that show the importance of our algorithmic
development and the advantages of exploiting block struc-
tures in problem data.

2. Adaptive sampling for coordinate descent
We begin with the convex optimization problem

minimize
x∈X

f(x) (2)

where X = X1 × · · · × Xb ⊂ Rd is a Cartesian product
of closed convex sets Xj ⊂ Rdj with

∑
j dj = d, and

f is convex and Lipschitz. When there is a natural block
structure in the problem, some blocks have larger gradi-
ent norms than others, and we wish to sample these blocks
more often in the coordinate descent algorithm. To that

end, we develop an adaptive procedure that exploits vari-
ability in block “importance” online. In the coming sec-
tions, we show that we obtain certain near-optimal guar-
antees, and that the computational overhead over a simple
random choice of block j ∈ [b] is at most O(log b). In
addition, under some natural structural assumptions on the
blocks and problem data, we show how our adaptive sam-
pling scheme provides convergence guarantees polynomi-
ally better in the dimension than those of naive uniform
sampling or gradient descent.

Notation for coordinate descent Without loss of gen-
rality we assume that the first d1 coordinates of x ∈ Rd
correspond to X1, the second d2 to X2, and so on. We let
Uj ∈ {0, 1}d×dj be the matrix identifying the jth block, so
that Id = [U1 · · · Ud]. We define the projected subgradient
vectors for each block j by

Gj(x) = UjU
>
j f
′(x) ∈ Rd,

where f ′(x) ∈ ∂f(x) is a fixed element of the subdiffer-
ential ∂f(x). Define x[j] := U>j x ∈ Rdj and G[j](x) =

U>j Gj(x) = U>j f
′(x) ∈ Rdj . Let ψj denote a differen-

tiable 1-strongly convex function on Xj with respect to the
norm ‖·‖j , meaning for all ∆ ∈ Rdj we have

ψj
(
x[j] + ∆

)
≥ ψj

(
x[j]

)
+∇ψj(x[j])

>∆ +
1

2
‖∆‖2j ,

and let ‖·‖j,∗ be the dual norm of ‖·‖j . Let Bj(u, v) =

ψj(u) − ψj(v) −∇ψj(v)>(u − v) be the Bregman diver-
gence associated with ψj , and define the tensorized diver-
gence B(x, y) :=

∑b
j=1Bj(x[j], y[j]). Throughout the pa-

per, we assume the following.

Assumption 1. For all x, y ∈ X , we have B(x, y) ≤ R2

and
∥∥G[j](x)

∥∥2

j,∗ ≤ L
2/b for j = 1, . . . , b.

2.1. Coordinate descent for non-smooth functions

The starting point of our analysis is the simple observation
that if a coordinate J ∈ [b] is chosen according to a proba-
bility vector p > 0, then the importance sampling estimator

GJ(x)/pJ satisfies Ep[GJ(x)/pJ ] = f ′(x) ∈ ∂f(x).

Thus the randomized coordinate subgradient method
of Algorithm 1 is essentially a stochastic mirror de-
scent method (Nemirovski and Yudin, 1983; Beck and
Teboulle, 2003; Nemirovski et al., 2009), and as long
as supx∈X E[‖p−1

J GJ(x)‖2∗] < ∞ it converges at rate
O(1/

√
T ). With this insight, a variant of standard stochas-

tic mirror descent analysis yields the following conver-
gence guarantee for Algorithm 1 with non-stationary prob-
abilities (cf. Dang and Lan (2015), who do not quite as
carefully track dependence on the sampling distribution
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Algorithm 1 Non-smooth Coordinate Descent
Input: Stepsize αx > 0, Probabilities p1, . . . , pT .
Initialize: x1 = x
for t← 1, . . . , T

Sample Jt ∼ pt
Update x:

xt+1
[Jt]
← argminx∈XJt

{〈
G[Jt]

(xt)

pt
Jt

, x

〉
+ 1
αx
BJt

(
x, xt[Jt]

)}
return x̄T ← 1

T

∑T
t=1 x

t

p). Throughout, we define the expected sub-optimality gap
of an algorithm outputing an estimate x̂ by S(f, x̂) :=
E[f(x̂)]− infx∗∈X f(x∗). See Section A.1 for the proof.

Proposition 1. Under Assumption 1, Algorithm 1 achieves

S(f, xT ) ≤ R2

αxT
+
αx
2T

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj

 . (3)

where S(f, x̄T ) = E[f(x̄T )]− infx∈X f(x).

As an immediate consequence, if pt ≥ pmin > 0 and αx =
R
L

√
2pmin

T , then S(f, x̄T ) ≤ RL
√

2
Tpmin

. To make this
more concrete, we consider sampling from the uniform dis-
tribution pt ≡ 1

b1 so that pmin = 1/b, and assume homo-
geneous block sizes dj = d/b for simplicity. Algorithm 1
solves problem (2) to ε-accuracy within O(bR2L2/ε2) it-
erations, where each iteration approximately costs O(d/b)
plus the cost of projecting into Xj . In contrast, mirror de-
scent with the same constraints and divergence B achieves
the same accuracy within O(R2L2/ε2) iterations, taking
O(d) time plus the cost of projecting to X per iteration. As
the projection costs are linear in the number b of blocks, the
two algorithms are comparable.

In practice, coordinate descent procedures can significantly
outperform full gradient updates through efficient memory
usage. For huge problems, coordinate descent methods can
leverage data locality by choosing appropriate block sizes
so that each gradient block fits in local memory.

2.2. Optimal stepsizes by doubling

In the the upper bound (3), we wish to choose the optimal
stepsize αx that minimizes this bound. However, the term∑T
t=1 E

[∑b
j=1

‖G[j](x
t)‖2j,∗

ptj

]
is unknown a priori. We cir-

cumvent this issue by using the doubling trick (e.g. Shalev-
Shwartz, 2012, Section 2.3.1) to achieve the best possible
rate in hindsight. To simplify our analysis, we assume that
there is some pmin > 0 such that

pt ∈ ∆b :=
{
p ∈ Rb+ : p>1 = 1, p ≥ pmin

}
.

Maintaining the running sum
∑t
l=1 p

−2
l,Jl

∥∥G[Jl](xl)
∥∥2

Jl,∗

Algorithm 2 Stepsize Doubling Coordinate Descent
Initialize: x1 = x, p1 = p, k = 1
while t ≤ T do

while
∑t
l=1(plJl)

−2
∥∥G[Jl](x

l)
∥∥2

Jl,∗
≤ 4k, t ≤ T do

Run inner loop of Algorithm 1 with

αx,k =
√

2R
(

4k + L2

bp2min

)− 1
2

t← t+ 1
k ← k + 1

return x̄T ← 1
T

∑T
t=1 x

t

requires incremental timeO(dJt) at each iteration t, choos-
ing the stepsizes adaptively via Algorithm 2 only requires
a constant factor of extra computation over using a fixed
step size. The below result shows that the doubling trick in
Algorithm 2 acheives (up to log factors) the performance
of the optimal stepsize that minimizes the regret bound (3).

Proposition 2. Under Assumption 1, Algorithm 2 achieves

S(f, x̄T ) ≤ 6
R

T

 T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj

 1
2

+

√
2

b

RL

pminT log 4
log

(
4bTL2

pmin

)
where S(f, x̄T ) = E[f(x̄T )]− infx∈X f(x).

2.3. Adaptive probabilities

We now present an adaptive updating scheme for pt, the
sampling probabilities. From Proposition 2, the stationary
distribution achieving the smallest regret upper bound min-
imizes the criterion

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

pj

 =

T∑
t=1

E

∥∥G[Jt](x
t)
∥∥2

Jt,∗

p2
Jt

 ,
where the equality follows from the tower property. Since
xt depends on the pt, we view this as an online convex
optimization problem and choose p1, . . . , pT to minimize
the regret

max
p∈∆b

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

(
1

ptj
− 1

pj

) . (4)

Note that due to the block coordinate nature of Algorithm 1,
we only compute

∥∥G[j](x
t)
∥∥2

j,∗ for the sampled j = Jt at
each iteration. Hence, we treat this as a multi-armed bandit
problem where the arms are the blocks j = 1, . . . , b and
we only observe the loss

∥∥G[j](x
t)
∥∥2

j,∗ /(p
t
Jt

)2 associated
with the arm Jt pulled at time t.
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Algorithm 3 Coordinate Descent with Adaptive Sampling
Input: Stepsize αp > 0, Threshold pmin > 0 with

P = {p ∈ Rb+ : p>1 = 1, p ≥ pmin}
Initialize: x1 = x, p1 = p
for t← 1, . . . , T

Sample Jt ∼ pt
Choose αx,k according to Algorithm 2
Update x:

xt+1
[Jt]
← argminx∈XJt

{〈
G[Jt]

(xt)

pt
Jt

, x

〉
+ 1
αx,k

B
(
x, xt[Jt]

)}
Update p: for ̂̀t,j(x) defined in (5),
wt+1 ← pt exp(−(αp ̂̀t,Jt(xt)/ptJt)eJt),
pt+1 ← argminq∈P Dkl

(
q||wt+1

)
return x̄T ← 1

T

∑T
t=1 x

t

By using a bandit algorithm—another coordinate descent
method— to update p, we show that our updates achieve
performance comparable to the best stationary probability
in ∆b in hindsight. To this end, we first bound the regret (4)
by the regret of a linear bandit problem. By convexity of
x 7→ 1/x and d

dxx
−1 = −x−2, we have

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

(
1

ptj
− 1

pj

)

≤
T∑
t=1

E


〈
−
{∥∥G[j](x

t)
∥∥2

j,∗ /(p
t
j)

2
}b
j=1︸ ︷︷ ︸

(∗)

, pt − p

〉 .
Now, let us view the vector (∗) as the loss vector for a con-
strained linear bandit problem with feasibility region ∆b.
We wish to apply EXP3 (due to Auer et al. (2002)) or equiv-
alently, a 1-sparse mirror descent to pwith ψP (p) = p log p
(see, for example, Section 5.3 of Bubeck and Cesa-Bianchi
(2012) for the connections). However, EXP3 requires the
loss values be positive in order to be in the region where
ψP is strongly convex, so we scale our problem using the
fact that p and pt’s are probability vectors. Namely,

T∑
t=1

E
[〈
−
{∥∥G[j](x

t)
∥∥2

j,∗ /(p
t
j)

2
}b
j=1

, pt − p
〉]

=

T∑
t=1

E
[〈̂̀

t(x
t), pt − p

〉]
,

where ̂̀
t,j(x) := −

∥∥G[j](x)
∥∥2

j,∗

(ptj)
2

+
L2

bp2
min

. (5)

Using scaled loss values, we perform EXP3 (Algorithm
3). Intuitively, we penalize the probability of the sam-
pled block by the strength of the signal on the block. The

scaling (5) ensures that we penalize blocks with low sig-
nal (as opposed to rewarding those with high signal) which
enforces diversity in the sampled coordinates as well. In
Section A.3, we will see how this scaling plays a key role
in proving optimality of Algorithm 3. Here, the signal is
measured by the relative size of the gradient in the block
against the probability of sampling the block. This means
that blocks with large “surprises”—those with higher gra-
dient norms relative to their sampling probability—will get
sampled more frequently in the subsequent iterations. Al-
gorithm 3 guarantees low regret for the online convex op-
timization problem (4) which in turn yields the following
guarantee for Algorithm 3.

Theorem 3. Under Assumption 1, the adaptive updates in

Algorithm 3 with αp =
p2min

L2

√
2b log b
T achieve

S(f, x̄T ) ≤ 6R

T

√√√√√min
p∈∆b

T∑
t=1

E

 b∑
j=1

‖G[j](xt)‖2j,∗
pj


︸ ︷︷ ︸

(a):best in hindsight

(6)

+
8LR

Tpmin

(
T log b

b

) 1
4

︸ ︷︷ ︸
(b):regret for bandit problem

+
2RL√
bTpmin

log

(
4bTL2

pmin

)
.

where S(f, x̄T ) = E[f(x̄T )]− infx∈X f(x).

See Section A.3 for the proof. Note that there is a trade-off
in the regret bound (6) in terms of pmin: for small pmin,
the first term is small, as the the set ∆b is large, but sec-
ond (regret) term is large, and vice versa. To interpret the
bound (6), take pmin = δ/b for some δ ∈ (0, 1). The first
term dominates the remainder as long as T = Ω(b log b);
we require T � (bR2L2/ε2) to guarantee convergence of
coordinate descent in Proposition 1, so that we roughly ex-
pect the first term in the bound (6) to dominate. Thus, Al-
gorithm 3 attains the best convergence guarantee for the
optimal stationary sampling distribution in hindsight.

2.4. Efficient updates for p

The updates for p in Algorithm 3 can be done in O(log b)
time by using a balanced binary tree. Let Dkl (p||q) :=∑d
i=1 pi log pi

qi
denote the Kullback-Leibler divergence be-

tween p and q. Ignoring the subscript on t so that w =
wt+1, p = pt and J = Jt, the new probability vector q is
given by the minimizer of

Dkl (q||w) s.t. q>1 = 1, q ≥ pmin, (7)

where w is the previous probability vector p modified only
at the index J . We store w in a binary tree, keeping val-
ues up to their normalization factor. At each node, we
also store the sum of elements in the left/right subtree for
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Algorithm 4 KL Projection
1: Input: J , pJ , wJ , mass =

∑
i wi

2: wcand ← pJ ·mass.
3: if wcand/(mass−wJ + wcand) ≤ pmin then
4: wcand ← pmin

1−pmin
(mass−wJ)

5: Update(wcand, J)

efficient sampling (for completeness, the pseudo-code for
sampling from the binary tree in O(log b) time is given in
Section B.3). The total mass of the tree can be accessed by
inspecting the root of the tree alone.

The following proposition shows that it suffices to touch at
most one element in the tree to do the update. See Section B
for the proof.

Proposition 4. The solution to (7) is given by

qj 6=J =

{
1

1−pJ+wJ
wj if wJ ≥ pmin(1−pJ )

1−pmin
1−pmin

1−pJ wj otherwise
,

qJ =

{
1

1−pJ+wJ
w if wJ ≥ pmin(1−pJ )

1−pmin

pmin otherwise.

As seen in Algorithm 4, we need to modify at most one
element in the binary tree. Here, the update function mod-
ifies the value at index J and propagates the value up the
tree so that the sum of left/right subtrees are appropriately
updated. We provide the full pseudocode in Section B.2.

2.5. Example

The optimality guarantee given in Theorem 3 is not directly
interpretable since the term (a) in the upper bound (6)
is only optimal given the iterates x1, . . . , xT despite the
fact that xt’s themselves depend on the sampling probabil-
ities. Hence, we now study a setting where we can further
bound (6) to get a explicit regret bound for Algorithm 3 that
is provably better than non-adaptive counterparts. Indeed,
under certain structural assumptions on the problem similar
to those of McMahan and Streeter (2010) and Duchi et al.
(2011), our adaptive sampling algorithm provably achieves
regret polynomially better in the dimension than either us-
ing a uniform sampling distribution or gradient descent.

Consider the SVM objective

f(x) =
1

n

n∑
i=1

(
1− yiz>i x

)
+

where n is small and d is large. Here, ∂f(x) =
1
n

∑n
i=1 1

{
1− yiz>i x ≥ 0

}
zi. Assume that for some

fixed α ∈ (1,∞) and Lj := βj−α, we have |∂jf(x)|2 ≤
1
n

∑n
i=1 |zi,j |2 ≤ L2

j . In particular, this is the case if we
have sparse features zU ∈ {−1, 0,+1}d with power law

Algorithm α ∈ [2,∞) α ∈ (1, 2)

ACD
(
R
ε

)2
log2 d

(
R
ε

)2
d2−α

+
(
R
ε

) 4
3 d log

5
3 d +

(
R
ε

) 4
3 d log

5
3 d

UCD
(
R
ε

)2
d log d

GD
(
R
ε

)2
d log d

Table 1. Runtime comparison (computations needed to guar-
antee ε-optimality gap) under heavy-tailed block structures.
ACD=adaptive coordinate descent, UCD=uniform coordinate de-
scent, GD=gradient descent

tails P (|zU,j | = 1) = βj−α where U is a uniform random
variable over {1, . . . , n}.

Take Cj = {j} for j = 1, . . . , d (and b = d). First, we
show that although for the uniform distribution p = 1/d

d∑
j=1

E[‖Gj(xt)‖
2

∗]

1/d
≤ d

d∑
j=1

L2
j = O(d log d),

the term (a) in (6) can be orders of magnitude smaller.
Proposition 5. Let b = d, pmin = δ/d for some δ ∈ (0, 1),
and Cj = {j}. If ‖Gj(x)‖2∗ ≤ L2

j := βj−α for some
α ∈ (1,∞), then

min
p∈∆b,p≥pmin

d∑
j=1

E[
∥∥Gj(xt)∥∥2

∗]

pj
=

{
O(log d), if α ∈ [2,∞)

O(d2−α), if α ∈ (1, 2).

We defer the proof of the proposition to Section A.5. Using
this bound, we can show explicit regret bounds for Algo-
rithm 3. From Theorem 3 and Proposition 5, we have that
Algorithm 3 attains

S(f, x̄T ) ≤

{
O(R log d√

T
), if α ∈ [2,∞)

R√
T
O(d1−α2 ), if α ∈ (1, 2)

+O
(
Rd3/4T−3/4 log5/4 d

)
.

Setting above to be less than ε and inverting with respect to
T , we obtain the iteration complexity in Table 1.

To see the runtime bounds for uniformly sampled co-
ordinate descent and gradient descent, recall the regret
bound (3) given in Proposition 1. Plugging ptj = 1/d in
the bound, we obtain

S(f, x̄T ) ≤ O(R
√

log d
√

2dT ).

for αx =
√

2R2/(L2Td) where L2 :=
∑d
j=1 L

2
j . Simi-

larly, gradient descent with αx =
√

2R2/(L2T ) attains

S(f, x̄T ) ≤ O(R
√

log d
√

2T ).

Since each gradient descent update takes O(d), we obtain
the same runtime bound.
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While non-adaptive algorithms such as uniformly-sampled
coordinate descent or gradient descent have the same run-
time for all α, our adaptive sampling method automatically
tunes to the value of α. Note that for α ∈ (1,∞), the first
term in the runtime bound for our adaptive method given in
Table 1 is strictly better than that of uniform coordinate de-
scent or gradient descent. In particular, for α ∈ [2,∞) the
best stationary sampling distribution in hindsight yields an
improvement that is at most O(d) better in the dimension.
However, due to the remainder terms for the bandit prob-
lem, this improvement only matters (i.e.first term is larger
than second) when

ε =

O
(
Rd−

3
2

√
log d

)
if α ∈ [2,∞)

O
(
Rd

3
2 (1−α) log−5/2 d

)
if α ∈ (1, 2).

In Section 4, we show that these remainder terms can be
made smaller than what their upper bounds indicate. Em-
pirically, our adaptive method outperforms the uniformly-
sampled counterpart for larger values of ε than above.

3. Adaptive probabilities for stochastic
gradient descent

Consider the empirical risk minimization problem

minimize
x∈X

{
1

n

n∑
i=1

fi(x) =: f(x)

}

where X ∈ Rd is a closed convex set and fi(·) are con-
vex functions. Let C1, . . . , Cb be a partition of the n sam-
ples so that each example belongs to some Cj , a set of size
nj := |Cj | (note that the index j now refers to blocks of ex-
amples instead of coordinates). These block structures nat-
urally arise, for example, when Cj’s are the examples with
the same label in a multi-class classification problem. In
this stochastic optimization setting, we now sample a block
Jt ∼ pt at each iteration t, and perform gradient updates
using a gradient estimate on the block CJt . We show how
a similar adaptive updating scheme for pt’s again achieves
the optimality guarantees given in Section 2.

3.1. Mirror descent with non-stationary probabilities

Following the approach of (Nemirovski et al., 2009), we
run mirror descent for the updates on x. At iteration
t, a block Jt is drawn from a b-dimensional probabil-
ity vector pt. We assume that we have access to unbi-
ased stochastic gradients Gj(x) for each block. That is,
E[Gj(x)] = 1

nj

∑
i∈Cj ∂fi(x). In particular, the estimate

GJt(x
t) := ∂fIt(x) where It is drawn uniformly in CJt

gives the usual unbiased stochastic gradient of minibatch
size 1. The other extreme is obtained by using a minibatch
size of nj where GJt(x

t) := 1
nJt

∑
i∈CJt

∂fi(x). Then,

the importance sampling estimator nJt
nptJt

GJt(x
t) is an un-

biased estimate for the subgradient of the objective.

Let ψ be a differentiable 1-strongly convex function on
X with respect to the norm ‖·‖ as before and denote by
‖·‖∗ the dual norm of ‖·‖. Let B(x, y) = ψ(x) − ψ(y) −
∇ψ(y)>(x−y) be the Bregman divergence associated with
ψ. In this section, we assume the below (standard) bound.

Assumption 2. For all x, y ∈ X , we have B(x, y) ≤ R2

and ‖Gj(x)‖2∗ ≤ L for j = 1, . . . , b.

We use these stochastic gradients to perform mirror up-
dates, replacing the update in Algorithm 1 with the update

xt+1 ← argmin
x∈X

{
nJt
nptJt

〈
GJt(x

t), x
〉

+
1

αx
B(x, xt)

}
. (8)

From a standard argument (e.g., (Nemirovski et al., 2009)),
we obtain the following convergence guarantee. The proof
follows an argument similar to that of Proposition 1.

Proposition 6. Under Assumption 2, the updates (8) attain

S(f, x̄T ) ≤ R2

αxT
+
αx
2T

T∑
t=1

E

 b∑
j=1

n2
j ‖Gj(xt)‖

2

∗
n2ptj

 . (9)

where S(f, x̄T ) = E[f(x̄T )]− infx∈X f(x).

Again, we wish to choose the optimal step size αx that
minimizes the regret bound (9). To this end, modify
the doubling trick given in Algorithm 2 as follows: use∑t
l=1

n2
Jl

n2p2l,Jl

∥∥GJl(xl)∥∥2

∗ for the second while condition,

and stepsizes αx,k =
√

2R
(

4k +
L2 maxj n

2
j

n2p2min

)− 1
2

. Then,
similar to Proposition 2, we have

S(f, x̄T ) ≤ 6
R

T

 T∑
t=1

E

 b∑
j=1

n2
j

n2ptj

∥∥Gj(xt)∥∥2

∗

 1
2

+

√
2RL

pminT log 4

maxj nj
n

log

4TL2

pmin

b∑
j=1

n2
j

n2

 .

3.2. Adaptive probabilities

Now, we consider an adaptive updating scheme for pt’s
similar to Section 2.3. Using the scaled gradient estimate

̂̀
t,j(x) := −

(
nj
nptj
‖Gj(x)‖∗

)2

+
L2 maxj n

2
j

n2p2
min

(10)

to run EXP3, we obtain Algorithm 5. Again, the additive
scaling L2(maxj nj/npmin)2 is to ensure that ̂̀≥ 0. As in
Section 2.4, the updates for p in Algorithm 5 can be done in
O(log b) time. We can also show similar optimality guar-
antees for Algorithm 5 as before. The proof is essentially
the same to that given in Section A.3.
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Algorithm 5 Mirror Descent with Adaptive Sampling
Input: Stepsize αp > 0
Initialize: x1 = x, p1 = p
for t← 1, . . . , T

Sample Jt ∼ pt
Choose αx,k according to (modified) Algorithm 2.
Update x:

xt+1
Jt
← argminx∈X

{
1
pt
Jt

〈
GJt (x

t), x
〉

+ 1
αx,k

B
(
x, xtJt

)}
Update p:
wt+1 ← pt exp(−(αp ̂̀t,Jt(xt)/ptJt)eJt)
pt+1 ← argminq∈P Dkl

(
q||wt+1

)
return x̄T ← 1

T

∑T
t=1 x

t

Theorem 7. Let W :=
Lmaxj nj
pminn

. Under Assumption 2,

Algorithm 5 with αp = 1
W 2

√
2 log b
bT achieves

S(f, x̄T ) ≤ 6R

T
min
p∈∆b

T∑
t=1

E

 b∑
j=1

n2
j

n2pj

∥∥GJt(xt)∥∥2

∗


+W (2Tb log b)

1
4 +

√
2RW

T log 4
log

(
4TL2

pmin

b∑
j=1

n2
j

n2

)

where S(f, x̄T ) = E[f(x̄T )]− infx∈X f(x).

With equal block sizes nj = n/b and pmin = δ/b for
some δ ∈ (0, 1), the first term in the boudn of The-
orem 7 is O(TL2) which dominates the second term if
T = Ω(b log b). Since we usually have T = Θ(n) for
SGD, as long as n = Ω(b log b) we have

S(f, x̄T ) ≤ O

R
T

√√√√√min
p∈∆b

T∑
t=1

E

 b∑
j=1

∥∥G[j](xt)
∥∥2

j,∗

pj


 .

That is, Algorithm 5 attains the best regret bound achieved
by the optimal stationary distribution in hindsight had the
xt’s had remained the same. Further, under similar struc-
tural assumptions ‖Gj(x)‖2∗ ∝ j−α as in Section 2.5, we
can prove that the regret bound for our algorithm is better
than that of the uniform distribution.

4. Experiments
We compare performance of our adaptive approach with
stationary sampling distributions on real and synthetic
datasets. To minimize parameter tuning, we fix αp at the
value suggested by theory in Theorems 3 and 7. However,
we make a heuristic modification to our adaptive algorithm
since rescaling the bandit gradient (5) and (10) dwarfs the
signals in gradient values if L is too large. We present
performance of our algorithm with respect to multiple esti-
mates of the Lipschitz constant L̂ = L/c for c > 1, where

L is the actual upper bound.1 We tune the stepsize αx for
both methods, using the form β/

√
t and tuning β.

For all our experiments, we compare our method against
the uniform distribution and blockwise Lipschitz sampling
distribution pj ∝ Lj where Lj is the Lipschitz constant
of the j-th block (Zhao and Zhang, 2015). We observe
that the latter method often performs very well with re-
spect to iteration count. However, since computing the
blockwise Lipschitz sampling distribution takesO(nd), the
method is not competitive in large-scale settings. Our algo-
rithm, on the other hand, adaptively learns the latent struc-
ture and often outperforms stationary counterparts with re-
spect to runtime. While all of our plots are for a single
run with a random seed, we can reject the null hypothesis
f(xTuniform) < f(xTadaptive) at 99% confidence for all in-
stances where our theory guarantees it. We take ‖·‖ = ‖·‖2
throughout this section.

4.1. Adaptive sampling for coordinate descent

Synthetic Data We begin with coordinate descent, first
verifying the intuition of Section 2.5 on a synthetic dataset.
We consider the problem minimize‖x‖∞≤1

1
n ‖Ax− b‖1,

and we endow A ∈ Rn×d with the following block struc-
ture: the columns are drawn as aj ∼ j−α/2N(0, I). Thus,
the gradients of the columns decay in a heavy-tailed man-
ner as in Section 2.5 so that L2

j = j−α. We set n = d =
b = 256; the effects of changing ratios n/d and b/d man-
ifest themselves via relative norms of the gradients in the
columns, which we control via α instead. We run all exper-
iments with pmin = 0.1/b and multiple values of c.

Results are shown in Figure 1, where we show the op-
timality gap vs. runtime in (a) and the learned sampling
distribution in (b). Increasing α (stronger block structure)
improves our relative performance with respect to uniform
sampling and our ability to accurately learn the underlying
block structure. Experiments over more α and c in Section
C further elucidate the phase transition from uniform-like
behavior to regimes learning/exploiting structure.

We also compare our method with (non-preconditioned)
SGD using leverage scores pj ∝ ‖aj‖1 given by (Yang
et al., 2016). The leverage scores (i.e., sampling distribu-
tion proportional to blockwise Lipschitz constants) roughly
correpond to using pj ∝ j−α/2, which is the stationary
distribution that minimizes the bound (3); in this synthetic
setting, this sampling probability coincides with the actual
block structure. Although this is expensive to compute, tak-
ing O(nd) time, it exploits the latent block structure very
well as expected. Our method quickly learns the structure
and performs comparably with this “optimal” distribution.

1We guarantee a positive loss by taking max(̂̀t,j(x), 0).
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Figure 1. Adaptive coordinate descent (left to right: α = 0.4, 2.2)
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Figure 2. Model selection for nucleotide sequences

Model selection Our algorithm’s ability to learn underly-
ing block structure can be useful in its own right as an on-
line feature selection mechanism. We present one example
of this task, studying an aptamer selection problem (Cho
et al., 2013), which consists of n = 2900 nucleotide se-
quences (aptamers) that are one-hot-encoded with all k-
grams of the sequence, where 1 ≤ k ≤ 5 so that d =
105, 476. We train an l1-regularized SVM on the binary
labels, which denote (thresholded) binding affinity of the
aptamer. We set the blocksize as 50 features (b = 2110)
and pmin = 0.01/b. Results are shown in Figure 2, where
we see that adaptive feature selection certainly improves
training time in (a). The learned sampling distribution de-
picted in (b) for the best case (c = 107) places larger weight
on features known as G-complexes; these features are well-
known to affect binding affinities (Cho et al., 2013).

4.2. Adaptive sampling for SGD

Synthetic data We use the same setup as in Section 4.1
but now endow block structure on the rows ofA rather than
the columns. In Figure 3, we see that when there is little
block structure (α = 0.4) all sampling schemes perform
similarly. When the block structure is apparent (α = 6),
our adaptive method again learns the underlying structure
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Figure 3. Adaptive SGD (left to right: α = 0.4, 6)
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Figure 4. Optimality gap for CUB-200-2011 and ALOI

and outperforms uniform sampling. We provide more ex-
periments in Section C to illustrate behaviors over more
c and α. We note that our method is able to handle on-
line data streams unlike stationary methods such as lever-
age scores.

CUB-200-2011/ALOI We apply our method to two
multi-class object detection datasets: Caltech-UCSD
Birds-200-2011 (Wah et al., 2011) and ALOI (Geusebroek
et al., 2005). Labels are used to form blocks so that b = 200
for CUB and b = 1000 for ALOI. We use softmax loss for
CUB-200-2011 and a binary SVM loss for ALOI, where
in the latter we do binary classification between shells and
non-shell objects. We set pmin = 0.5/b to enforce enough
exploration. For the features, outputs of the last fully-
connected layer of ResNet-50 (He et al., 2016) are used
for CUB so that we have 2049-dimensional features. Since
our classifier x is (b · d)-dimensional, this is a fairly large
scale problem. For ALOI, we use default histogram fea-
tures (d = 128). In each case, we have n = 5994 and n =
108, 000 respectively. We use X := {x ∈ Rm : ‖x‖2 ≤ r}
where r = 100 for CUB and r = 10 for ALOI. We observe
in Figure 4 that our adaptive sampling method outperforms
stationary counterparts.
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P. Richtárik and M. Takáč. Iteration complexity of random-
ized block-coordinate descent methods for minimizing a
composite function. Mathematical Programming, 144
(1-2):1–38, 2014.
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A. Proofs
A.1. Proof of Proposition 1

Let σt := σ(x1, . . . , xt, J1, . . . , Jt−1) and Et[·] = E[·|σt].
By convexity of f and unbiasedness of our gradient estima-
tor Et

[
1
ptJt
GJt(x

t)
]

= g(xt) ∈ ∂f(xt), we have

f(xt)− f(x) ≤ Et
[

1

ptJt

〈
GJt(x

t), xt − x
〉]
.

We use the following lemma.
Lemma 1. For any t = 1, . . . , T , we have

1

ptJt

〈
GJt(x

t), xt − x
〉
≤ 1

αx

(
B(x, xt)−B(x, xt+1)

)
+

αx
2(ptJt)

2

∥∥G[Jt](x
t)
∥∥2

Jt,∗
.

Proof of Lemma
1

ptJt

〈
GJt(x

t), xt − x
〉

=
1

ptJt

〈
GJt(x

t), xt+1 − x
〉

+
1

ptJt

〈
GJt(x

t), xt − xt+1
〉

=
1

ptJt

〈
G[Jt](x

t), xt+1
[Jt]
− x[Jt]

〉
+

1

ptJt

〈
G[Jt](x

t), xt[Jt] − x
t+1
[Jt]

〉
(a)

≤ 1

αx

〈
∇ψJt

(
xt+1

[Jt]

)
−∇ψJt

(
xt[Jt]

)
, x[Jt] − x

t+1
[Jt]

〉
+

1

ptJt

〈
G[Jt](x

t), xt[Jt] − x
t+1
[Jt]

〉
(b)

≤ 1

αx

(
BJt

(
x[Jt], x

t
[Jt]

)
−BJt

(
x[Jt], x

t+1
[Jt]

))
− 1

2αx

∥∥∥xt+1
[Jt]
− xt[Jt]

∥∥∥2

Jt

+
1

ptJt

〈
G[Jt](x

t), xt[Jt] − x
t+1
[Jt]

〉
(c)

≤ 1

αx

(
BJt

(
x[Jt], x

t
[Jt]

)
−BJt

(
x[Jt], x

t+1
[Jt]

))
+

αx

2
(
ptJt
)2 ∥∥G[Jt](x

t)
∥∥2

Jt,∗

(d)
=

1

αx

(
B(x, xt)−B

(
x, xt+1

))
+

αx
2(ptJt)

2

∥∥G[Jt](x
t)
∥∥2

Jt,∗
.

where in step (a) we used the optimality conditions for the
mirror update in Algorithm 1. Step (b) follows from the
algebraic relation〈
∇ψJt(xt+1

[Jt]
)−∇ψJt(xt[Jt]), x[Jt] − x

t+1
[Jt]

〉
= BJt

(
x[Jt], x

t
[Jt]

)
−BJt

(
x[Jt], x

t+1
[Jt]

)
−BJt

(
xt+1

[Jt]
, xt[Jt]

)
,

and strong convexity of ψJt given by BJt
(
xt+1

[Jt]
, xt[Jt]

)
≥

1
2

∥∥∥xt+1
[Jt]
− xt[Jt]

∥∥∥2

Jt
. For step (c), we used Fenchel-Young’s

inequality:

1

ptJt

〈
G[Jt](x

t), xt[Jt] − x
t+1
[Jt]

〉
≤ αx

2(ptJt)
2

∥∥G[Jt](x
t)
∥∥2

Jt,∗
+

1

2αx

∥∥∥xt+1
[Jt]
− xt[Jt]

∥∥∥2

Jt
.

Furthermore, due to the fact that xt and xt+1 only differ in
the Jt-th block, we have

BJt

(
x[Jt], x

t
[Jt]

)
−BJt

(
x[Jt], x

t+1
[Jt]

)
= B(x, xt)−B(x, xt+1)

from which (d) follows.

Using convexity and Lemma 1 to bound f(xt)− f(x) and
summing each side over t = 1, . . . , T , we conclude

TE[f(x̄T )− f(x)]

≤ E

[
T∑
t=1

(f(xt)− f(x))

]

≤
T∑
t=1

E
[

1

ptJt

〈
GJt(x

t), xt − x
〉]

≤ B(x, x1)

αx
+
αx
2

T∑
t=1

E
1

(ptJt)
2

∥∥G[Jt](x
t)
∥∥2

Jt,∗

(∗)
≤ R2

αx
+
αx
2

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj


where in step (∗) we used the tower law E[·] = E[Et[·]].
The second result follows from the bound ptj ≥ pmin.

A.2. Proof of Proposition 2

Denote by Ek the indices in epoch k. Let K be the total
number of epochs used in Algorithm 2. Applying Lemma 1
to each of the epochs, we obtain

T∑
t=1

1

ptJt

〈
GJt(x

t), xt − x
〉

=

K∑
k=1

∑
t∈Ek

1

ptJt

〈
GJt(x

t), xt − x
〉

≤
K∑
k=1

{
R2

αx,k
+
∑
t∈Ek

αx,k

2
(
ptJt
)2 ∥∥G[Jt](x

t)
∥∥2

Jt,∗

}
(a)

≤
K∑
k=1

{
R2

αx,k
+
αx,k

2

(
4k +

L2

bp2
min

)}
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≤
√

2R

K∑
k=1

√
4k +

L2

bp2
min

(b)

≤
√

2R

K∑
k=1

(
2k +

L

pmin

√
b

)
=
√

2R

(
2K+1 − 2 +K

L

pmin

√
b

)
(c)

≤
√

2R

(
4

 T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2

 1
2

+
L

pmin

√
b log 4

log

4

T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2

)

where (a) follows from noting that∑
t∈Ek

∥∥G[Jt](x
t)
∥∥2

Jt,∗
/
(
ptJt
)2 ≤ 4k + L2

bp2min
, (b)

from
√
a+ b ≤

√
a +

√
b. In step (c), we used the

stopping condition of the K − 1th epoch

T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2 ≥ 4K−1.

Taking expectations on both sides, we have

T (E[f(x̄T )]− f(x))

≤
T∑
t=1

(E[f(xt)]− f(x)) ≤
T∑
t=1

E
[

1

ptJt

〈
GJt(x

t), xt − x
〉]

≤
√

2RE

[
4

 T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2

 1
2

+
L

pmin

√
b log 4

log

4

T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2

]

(a)

≤ 4
√

2R

E

 T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2

 1
2

+

√
2RL

pmin

√
b log 4

log

4E

 T∑
t=1

∥∥G[Jt](x
t)
∥∥2

Jt,∗(
ptJt
)2


(b)
= 4
√

2R

 T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj

 1
2

+

√
2RL

pmin

√
b log 4

log

4

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj


where (a) follows from Jensen’s inequality and (b) from
the tower law.

A.3. Proof of Theorem 3

From Proposition 2, it suffices to show that Algorithm 3
with αp attains the regret bound

sup
p∈P

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj
−

∥∥G[j](x
t)
∥∥2

j,∗

pj


≤ L2

p2
min

√
2T log b

b
. (11)

Note that the bandit updates in Algorithm 3 correspond to
mirror descent updates with ψP (p) =

∑b
j=1 pj log pj and

ψ?P (u) =
∑b
j=1 exp(uj − 1) (Beck and Teboulle, 2003).

We wish show that the bandit mirror descent updates in
Algorithm 3 achieves regret scaling as

√
T . To this end, we

first state a standard result for mirror descent algorithms.
See for example, Cesa-Bianchi and Lugosi (2006, Ch.11)
or Bubeck and Cesa-Bianchi (2012, Thm 5.3). We outline
the proof for completeness in Appendix A.4.
Lemma 2 (Bubeck and Cesa-Bianchi (2012), Thm 5.3).
The following bound holds for Algorithm 3 for any p ∈ P .
T∑
t=1

〈̂̀
t(x

t), pt − p
〉

≤ BψP (p, p1)

αp
+

1

αp

T∑
t=1

Bψ?P

(
∇ψP (pt)− αp ̂̀t(xt),∇ψP (pt)

)
(12)

A straightforward calculation gives that

Bψ?P

(
∇ψP (pt)− αp ̂̀t(xt),∇ψP (pt)

)
=

b∑
j=1

ptj

(
exp(−αp ̂̀t,j(xt)) + αp ̂̀t,j(xt)− 1

)
≤
α2
p

2
ptJt
̂̀
t,Jt(x

t)2 ≤
L4α2

p

2p4
minb

2ptJt
(13)

since ez − z − 1 ≤ z2 for z ≤ 0 where we used the fact
that ̂̀≥ 0. From convexity, we have for p ∈ P
T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj
−

∥∥G[j](x
t)
∥∥2

j,∗

pj


(a)
=

T∑
t=1

E

 b∑
j=1

∥∥G[j](x
t)
∥∥2

j,∗

ptj
−

∥∥G[j](x
t)
∥∥2

j,∗

pj


+

T∑
t=1

E
[〈
pt − p, L2

bp2
min

1

〉]
(b)

≤
T∑
t=1

E

 b∑
j=1

−∥∥G[j](x
t)
∥∥2

j,∗

(ptj)
2

+
L2

bp2
min

 (ptj − pj)
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(c)
=

T∑
t=1

E
[〈̂̀

t(x
t), pt − p

〉]
(d)

≤ log b

αp
+
αp
2

T∑
t=1

L4

p4
minb

2
E
[

1

ptJt

]
(e)

≤ log b

αp
+
αp
2

L4

p4
minb

T

where in (a) we used the fact that p, pt are prob-
abilities and in (b) we used convexity of g(p) =∑b
j=1

1
pj

(∥∥G[j](x
t)
∥∥
j,∗

)2

+ p>1. To obtain (d), we used
Dkl (p||p1) ≤ log b, Lemma 2 and (13). Finally, step (e)

follows from tower law. Setting αp =
p2min

L2

√
2b log b
T , we

obtain

max
p∈P

T∑
t=1

E

 b∑
j=1

‖Gj(xt)‖
2

∗
ptj

−
‖Gj(xt)‖

2

∗
pj


≤ L2

p2
min

√
2T log b

b
. (14)

Using this in the bound of Proposition 2, we obtain the de-
sired result.

A.4. Proof of Lemma 2

From Algorithm 3, we have

αp ̂̀t(xt)>(pt − p)

=
(
∇ψP (wt+1)−∇ψP (pt)

)>
(pt − p)

= BψP (p, pt) +BψP (pt, wt+1)−BψP (p, wt+1). (15)

For any p ∈ P , we have for all p ∈ P ,

BψP (p, wt+1) ≥ BψP (p, pt+1) +BψP (pt+1, w
t+1)

≡
(
∇ψP (p)−∇ψP (wt+1)

)>
(p− pt+1) ≥ 0.

The latter inequality is just the optimality condition for
pt+1 = argminp∈P BψP (p, wt+1). Applying the first
equality in (15) and summing for t = 1, . . . , T , we obtain

αp

T∑
t=1

̂̀
t(x

t)>(pt − p)

≤ BψP (p, p1)−BψP (p, pT+1)

+

T∑
t=1

(
BψP (pt, wt+1)−BψP (pt+1, w

t+1)
)

≤ BψP (p, p1) +

T∑
t=1

BψP (pt, wt+1)

= BψP (p, p1) +

T∑
t=1

Bψ?P (∇ψP (wt+1),∇ψP (pt)).

Now, noting that∇ψP (wt+1) = ∇ψP (pt) + αp ̂̀t(xt), we
obtain the result.

A.5. Proof of Proposition 5

Let us first solve for the KKT conditions of the following
minimization problem

minimize
p∈Rn

b∑
j=1

L2
j

pj

subject to p>1 = 1, p ≥ pmin.

Taking the first order conditions for the Lagrangian

L(p, η, θ) =

b∑
j=1

L2
j

pj
− η(p> − 1)− θ>(p− pmin1),

we have

pj =
Lj√
|η + θj |

=

{ Lj√
|η|

if Lj ≥
√
|η|pmin

pmin otherwise

where the last equality follows from complementary slack-
ness. Let I :=

{
j : Lj ≥

√
|η|pmin

}
. Plugging pj’s into

the equality constraint, we get

b∑
j=1

pj =
1√
|η|

∑
j∈I

Lj + (b− |I|)pmin = 1

so that √
|η| = 1

1− (b− |I|)pmin

∑
j∈I

Lj . (16)

Then, by plugging in pj into the objective and using the
above identity for |η| yields

b∑
j=1

L2
j

pj
=
√
|η|
∑
j∈I

Lj +
1

pmin

∑
j∈Ic

L2
j

= ((1− (b− |I|)pmin) |η|+ 1

pmin

∑
j∈Ic

L2
j . (17)

Now, let L2
j = cj−α so that I =

{
j : j ≤

(
c

|η|p2min

) 1
α

}
.

When α ∈ [2,∞), we have

|I|∑
j=1

Lj = c

|I|∑
j=1

j−α/2 = O(log |I|) = O

(
log

(
b

|η|

))
.

From (16), we have |η| = O(log2 b) and |I| =

O

((
b2

log2 b

) 1
α

)
= o(b). Using these in the bound (17),

we obtain
b∑
j=1

L2
j

pj
≤ O(log2 b) +

b

δ
c(b− |I|)1−α = O(log2 b)



Adaptive Sampling Probabilities for Non-Smooth Optimization

which was the result for α ∈ [2,∞).

When α ∈ (1, 2), we have

|I|∑
j=1

Lj = c

|I|∑
j=1

j−α/2 = Θ
(
|I|1−α/2

)

= Θ

((
b2

|η|

) 1
α−

1
2

)
so that from (16), |η| = Θ(b2−α) and |I| = Θ(b). Using
these in the bound (17) for the objective, we obtain

b∑
j=1

L2
j

pj
= Θ(b2−α)

which gives the second result.

B. Procedures for Efficient Updates
B.1. Proof of Proposition 4

We are interested in finding the solution to the projection
problem

minimize
q

{
Dkl (q||w) : q>1 = 1, q ≥ pmin

}
where w ∈ Rb+ is a probability vector with its value at J-th
element shrunken down. Let the Lagrangian be

L(q, η, θ) =

b∑
j=1

qj log
qj
wj
− η(q>1−1)− θ>(q−pmin1)

where θ ∈ Rb+. Writing down the first order conditions for
q, we have

log
q

w
+ 1− η1− θ = 0

where η ∈ R is the dual variable for q>1 = 1 − bpmin

and θ ∈ Rb+ is the dual variable for q ≥ 0. From strict
complementarity, we have that

qj = (wj exp(η − 1)− pmin)+ + pmin

Then, it suffices to solve for η∗ such that∑
j∈I(η)

(wj exp(η − 1)− pmin) = 1− bpmin (18)

where I(η) := {1 ≤ j ≤ b : wj exp(η − 1) ≥ pmin}.

Now, assume that w is sorted and stored in a binary tree up
to a constant s. At each node, we also store the sum of the
values in the right/left subtree. Denote by w(1) ≥ . . . ≥
w(b) the sorted values of w. Let

f(j) := w(j)(1− (b− j)pmin)− pmin

j∑
i=1

w(j)

and J∗ := max {1 ≤ j ≤ b : f(j) ≥ 0}. We first show
that the optimal dual variable η∗ is given by

eη
∗−1 =

1− (b− J∗)pmin∑J∗

i=1 w(j)

.

To this end, let J(η) := |I(η)|. For the optimal dual vari-
able η∗, we have that J(η∗) satisfies

w(J(η∗)) exp(η∗ − 1) ≥ pmin and
w(J(η∗)+1) exp(η∗ − 1) < pmin. (19)

Now, note that eη
∗−1 satisfies

eη
∗−1 =

1− (b− J(η∗))pmin∑J(η∗)
i=1 w(j)

from p>1 = 1. Plugging this back into (19), we have that
f(J(η∗)) ≥ 0 and f(J(η∗)) < 0. Since f(j) is nonin-
creasing in j, it follows that J(η∗) = J∗ which show the
claim.

Next, we show that J∗ = b − 1 or b are the only possibili-
ties.

1. Case wJ < pmin: Here, wJ = w(b) since p ≥ pmin.
Noting that wj = pj for j 6= J , if

w(b)
1∑b

j=1 w(j)

= wJ
1

1− pJ + wJ
≥ pmin,

then J∗ = b and eη
∗−1 = 1∑b

j=1 wj
. Otherwise, we

surely have that

w(b−1)
1− pmin∑b−1
j=1 w(j)

= w(b−1)
1− pmin

1− pJ
≥ w(b−1) ≥ pmin

since pj = wj for j 6= J and pJ ≥ pmin. It follows
that J∗ = b− 1 and eη

∗−1 = 1−pmin

1−pJ .

2. Case wJ ≥ pmin: since

w(b)
1∑b

j=1 w(j)

≥ w(b) ≥ pmin,

we have J∗ = b and eη
∗−1 = 1∑b

j=1 wj
.

Combining the two cases and noting that

q =
(
weη

∗−1 − pmin

)
+

+ pmin,

we have

q =


1

1−pJ+wJ
w if wJ ≥ pmin(1−pJ )

1−pmin(
1−pmin

1−pJ w − pmin

)
+

+ pmin otherwise

Since wj ≥ pmin for j 6= J , result follows.
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B.2. Update

We recapitulate that a key characteristic of our tree imple-
mentation is that at each node, in addition to the value v, we
store suml, sumr, the sum of elements in the left/right sub-
tree. Below, we give an algorithm that modifies an element
of the tree and updates suml, sumr of its parents accord-
ingly. All node comparisons are based on their correspond-
ing index values.

Algorithm 6 Update
1: wnew, J
2: Set value at index J to wnew
3: Initialize node with that of index J
4: while node.parent ! = NULL do
5: if node is a left child then
6: node.parent.suml ← node.parent.sumr

7: +wnew − wold
8: else
9: node.parent.sumr ← node.parent.sumr

10: +wnew − wold
11:
12: node← node.parent

B.3. Sampling

For completeness, we give the pseudo-code for sampling
from the BST in O(log b).

Algorithm 7 Sample Tree
1: coin← Uniform(0,1), node← root
2: coin← scale · coin
3: while node is not a leaf do
4: if coin < node.v then
5: Return node
6: elseif coin < node.v + node.suml then
7: coin← coin− node.v
8: node← node.left
9: else

10: coin← coin− node.v − node.suml

11: node← node.right
12: return node

C. Detailed synthetic experiments
Here we present further experiments for Sections 4.1 and
4.2. Namely, Figures 5 and 6 shows experiments over more
α and more values of c for each α. This more detailed
setup illustrates the phase change in behavior: from em-
ulating uniform sampling at small α to learning and tak-
ing advantage of structure at large α. Interestingly, we see
that even though we are able to learn structure in sampling
over examples (Figure 6), the magnitude of improvement

over uniform sampling is smaller than in the coordinate
sampling case (Figure 5). We postulate that this is due to
the following effect: for an ε-optimality gap, SGD requires
O(R2L2/ε2) iterations, whereas O(R2L2b/ε2) iterations.
Since our bandit algorithm requires roughlyO(b log b) iter-
ations to learn structure, it has more time to take advantage
of this structure in coordinate sampling before reaching a
given optimality gap. For SGD, our adaptive algorithm
does better than leverage scores when α = 2.2 which is a
result of learning a more aggressive sampling distribution.

Figure 7 analyzes the effects of stepsize on the performance
of our algorithm. Specifically, we consider the same syn-
thetic dataset as in Section 4.1, and we fix the number of
iterations to 105. Varying the stepsize parameter β, we
track the optimality gap at the end of the procedure for our
method as well as uniform sampling. Although the sensi-
tivity to stepsize (the width of the bowl) appears the same in
both approaches, our method is able to handle larger step-
sizes (our “bowl” is shifted to the right) and learns more
efficiently for a given stepsize (our “bowl” is deeper) at
larger α. Importantly, we achieve these advantages solely
by tilting the sampling distribution to match the underlying
data’s structure.

Finally, we consider using the Gauss-Southwell rule for the
experiments in Section 4.1; similar to using blockwise Lip-
schitz constants, the Gauss-Southwell rule descends on the
coordinate with the largest gradient magnitude at every it-
eration. This method is inefficient except for specialized
loss functions, as seen in Figure 8.
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(a) Optimality gap vs. runtime
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(b) Learned probability distribution compared to j−α. We use c that resulted in the best performance.

Figure 5. Adaptive coordinate descent (left to right: α = 0.2, 0.4, 1.0, 2.2)
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(b) Learned probability distribution compared to j−α. We use c that resulted in the best performance.

Figure 6. Adaptive SGD (left to right: α = 0.4, 1.8, 2.2, 6.0)
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Figure 7. Optimality gap vs. stepsize after 105 iterations
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Figure 8. Optimality gap vs. runtime for the same experiments as in Figure 5 with the Gauss-Southwell rule (left to right: α =
0.2, 0.4, 1.0, 2.2)


