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Abstract
We investigate, theoretically and empirically, the
effectiveness of kernel K-means++ samples as
landmarks in the Nyström method for low-rank
approximation of kernel matrices. Previous em-
pirical studies (Zhang et al., 2008; Kumar et al.,
2012) observe that the landmarks obtained using
(kernel) K-means clustering define a good low-
rank approximation of kernel matrices. However,
the existing work does not provide a theoretical
guarantee on the approximation error for this ap-
proach to landmark selection. We close this gap
and provide the first bound on the approxima-
tion error of the Nyström method with kernel K-
means++ samples as landmarks. Moreover, for
the frequently used Gaussian kernel we provide
a theoretically sound motivation for performing
Lloyd refinements of kernel K-means++ land-
marks in the instance space. We substantiate our
theoretical results empirically by comparing the
approach to several state-of-the-art algorithms.

1. Introduction
We consider the problem of finding a good low-rank approx-
imation for a given symmetric and positive definite matrix.
Such matrices arise in kernel methods (Schölkopf & Smola,
2001) where the data is often first transformed to a sym-
metric and positive definite matrix and then an off-the-shelf
matrix-based algorithm is used for solving classification
and regression problems, clustering, anomaly detection, and
dimensionality reduction (Bach & Jordan, 2005). These
learning problems can often be posed as convex optimiza-
tion problems for which the representer theorem (Wahba,
1990) guarantees that the optimal solution can be found in
the subspace of the kernel feature space spanned by the
instances. To find the optimal solution in a problem with n
instances, it is often required to perform a matrix inversion
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or eigendecomposition which scale asO
(
n3
)
. To overcome

this computational shortcoming and scale kernel methods
to large scale datasets, Williams & Seeger (2001) have pro-
posed to use a variant of the Nyström method (Nyström,
1930) for low-rank approximation of kernel matrices. The
approach is motivated by the fact that frequently used ker-
nels have a fast decaying spectrum and that small eigen-
values can be removed without a significant effect on the
precision (Schölkopf & Smola, 2001). For a given sub-set
of l landmarks, the Nyström method finds a low-rank ap-
proximation in time O

(
l2n+ l3

)
and kernel methods with

the low-rank approximation in place of the kernel matrix
scale as O

(
l3
)
. In practice, l � n and the approach can

scale kernel methods to millions of instances.

The crucial step in the Nyström approximation of a symmet-
ric and positive definite matrix is the choice of landmarks
and an optimal choice is a difficult discrete/combinatorial
problem directly influencing the goodness of the approxi-
mation (Section 2). A large part of the existing work has,
therefore, focused on providing approximation guarantees
for different landmark selection strategies. Following this
line of research, we propose to select landmarks using the
kernel K-means++ sampling scheme (Arthur & Vassil-
vitskii, 2007) and provide the first bound on the relative
approximation error in the Frobenius norm for this strategy
(Section 3). An important part of our theoretical contribu-
tion is the first complete proof of a claim by Ding & He
(2004) on the relation between the subspace spanned by
optimal K-means centroids and left singular vectors of the
feature space (Proposition 1). While our proof covers the
general case, that of Ding & He (2004) is restricted to data
matrices with piecewise constant right singular vectors.

Having given a bound on the approximation error for the
proposed landmark selection strategy, we provide a brief
overview of the existing landmark selection algorithms and
discuss our work in relation to approaches directly compa-
rable to ours (Section 4). For the frequently used Gaussian
kernel, we also theoretically motivate the instance space
Lloyd refinements (Lloyd, 1982) of kernel K-means++
landmarks. The results of our empirical study are presented
in Section 5 and indicate a superior performance of the
proposed approach over competing methods. This is in
agreement with the previous studies on K-means centroids
as landmarks by Zhang et al. (2008) and Kumar et al. (2012).
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2. Nyström Method
In this section, we review the Nyström method for low-
rank approximation of kernel matrices. The method was
originally proposed for the approximation of integral eigen-
functions (Nyström, 1930) and later adopted to low-rank
approximation of kernel matrices by Williams & Seeger
(2001). We present it here in a slightly different light by fol-
lowing the approach to subspace approximations by Smola
& Schölkopf (2000, 2001).

Let X be an instance space and X = {x1, x2, · · · , xn}
an independent sample from a Borel probability measure
defined on X . LetH be a reproducing kernel Hilbert space
with a positive definite kernel h : X × X → R. Given a
set of landmark points Z = {z1, · · · zm} (not necessarily
a subset of the sample) the goal is to approximate kernel
functions h (xi, ·) for all i = 1, n using linear combinations
of the landmarks. This goal can be formally stated as

min
α∈Rm×n

n∑
i=1

∥∥∥∥∥∥h (xi, ·)−
m∑
j=1

αj,ih (zj , ·)

∥∥∥∥∥∥
2

H

. (1)

Let H denote the kernel matrix over all samples and land-
marks and let HZ denote the block in this matrix corre-
sponding to the kernel values between the landmarks. Addi-
tionally, let hx denote a vector with entries corresponding to
the kernel values between an instance x and the landmarks.
After expanding the norm, the problem is transformed into

min
α∈Rm×n

n∑
i=1

Hii − 2h>xi
αi + α>i HZαi , (2)

where αi denotes the ith column of α. Each summand in
the optimization objective is a convex function depending
only on one column of α. Hence, the optimal solution is

α = H−1Z HZ×X .

From here it then follows that the optimal approximation
H̃X|Z of the matrix HX using landmarks Z is given by

H̃X|Z = HX×ZH
−1
Z HZ×X .

While the problem of computing the optimal projections of
instances to a subspace spanned by the landmarks is con-
vex and solvable in closed form (see above), the problem
of choosing the best set of landmarks is a combinatorial
problem that is difficult to solve. To evaluate the effective-
ness of the subspace spanned by a given set of landmarks
it is standard to use the Schatten matrix norms (Weidmann,
1980). The Schatten p-norm of a symmetric and positive def-
inite matrix H is defined as ‖H‖p = (

∑n
i=1 λ

p
i )

1/p
, where

λi ≥ 0 are eigenvalues of H and p ≥ 1. For p = ∞ the
Schatten p-norm is equal to the operator norm and for p = 2

it is equal to the Frobenius norm. The three most frequently
used Schatten norms are p = 1, 2,∞ and for these norms
the following inequalities hold:

‖H‖∞ = max
i
λi ≤

√∑
i

λ2i =
√

tr (H>H) = ‖H‖2

≤
∑
i

λi = tr (H) = ‖H‖1 .

From Eq. (1) and (2) it follows that for a subspace spanned
by a given set of landmarks Z, the 1-norm approximation
error of the optimal projections onto this space is given by

L (α∗) = tr(HX)− tr(H̃X|Z) =
∥∥∥HX − H̃X|Z

∥∥∥
1
.

The latter equation follows from the properties of trace
and the fact that Ξ = HX − H̃X|Z is a symmetric and
positive definite matrix with Ξij = 〈ξ (xi, ·), ξ (xj , ·)〉H
and ξ (xi, ·) = h (xi, ·)−

∑m
k=1 α

∗
k,ih (zk, ·).

For a good Nyström approximation of a kernel matrix it is
crucial to select the landmarks to reduce the error in one of
the frequently used Schatten p-norms, i.e.,

Z∗ = arg min
Z⊂span(X), |Z|=K

∥∥∥HX − H̃X|Z

∥∥∥
p
.

Let us denote with VK and ΛK the top K eigenvectors and
eigenvalues of the kernel matrix HX . Then, at the low-rank
approximation H̃∗X|Z = VKΛKV

>
K , the Schatten p-norm

error attains its minimal value (Golub & van Loan, 1996).

3. Kernel K-means++ Samples as Landmarks
We start with a review of K-means clustering (Lloyd, 1982)
and then give the first complete proof of a claim stated
in Ding & He (2004) and Xu et al. (2015) on the relation
between the subspace spanned by the top (K − 1) left sin-
gular vectors of the data matrix and that spanned by optimal
K-means centroids. Building on a result by Arthur & Vas-
silvitskii (2007) we then bound the relative approximation
error in the Frobenius norm of the Nyström method with
kernel K-means++ samples as landmarks.

Let the instance spaceX ⊂ Rd and letK denote the number
of clusters. In K-means clustering the goal is to choose a
set of centers C = {c1, · · · , cK} minimizing the potential

φ(C) =
∑
x∈X

min
c∈C
‖x− c‖2 =

K∑
k=1

∑
x∈Pk

‖x− ck‖2 ,

where Pk = {x ∈ X | P (x) = ck} is a clustering cell
and P : X → C denotes the centroid assignment func-
tion. For a clustering cell Pk the centroid is computed as
1
|Pk|

∑
x∈Pk

x. In the remainder of the section, we denote
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with P ∈ Rn×K the cluster indicator matrix of the cluster-
ing C such that pij = 1/√nj when instance xi is assigned
to centroid cj , and pij = 0 otherwise. Here nj denotes the
number of instances assigned to centroid cj . Without loss
of generality, we assume that the columns of the data matrix
X ∈ Rd×n are centered instances (i.e.,

∑n
i=1 xi/n = 0).

Now, using the introduced notation we can write the cluster-
ing potential as (Ding & He, 2004; Boutsidis et al., 2009)

φ (C) =
∥∥X −XPP>∥∥2

2
.

Denoting with pi the ith column in P we have that it holds
p>i pj = δij , where δij = 1 if i = j and otherwise δij = 0.
Hence, it holds that P>P = IK and P is an orthogonal
projection matrix with rank K. Let C denote the family of
all possible clustering indicator matrices of rank K. Then,
the K-means optimization problem is equivalent to the con-
strained low-rank approximation problem

P ∗ = arg min
P∈C

∥∥X −XPP>∥∥2
2
.

From here, using the relation between the squared Schatten
2-norm and the matrix trace we obtain

P ∗ = arg min
P∈C

tr
(
X>X

)
− tr

(
P>X>XP

)
. (3)

In the remainder of the section, we refer to the constrained
optimization objective from Eq. (3) as the discrete prob-
lem. For this problem, Ding & He (2004) observe that the
set of vectors {p1, · · · , pK , e/√n} is linearly dependent (e
is a vector of ones) and that the rank of the optimization
problem can be reduced. As

∑K
i=1

√
nipi = e, there exists

a linear orthonormal transformation of the subspace basis
given by the columns of P such that one of the vectors in
the new basis of the subspace spanned by P is e/

√
n. Such

transformations are equivalent to a rotation of the subspace.
Let R ∈ RK×K denote an orthonormal transformation
matrix such that the vectors {pi}Ki=1 map to {qi}Ki=1 with
qK = 1√

n
e. This is equivalent to requiring that the Kth col-

umn in R is rK =
(√

n1

n , · · · ,
√

nK

n

)>
and q>i e = 0 for

i = 1,K − 1. Moreover, from Q = PR and R>R = IK it
follows that

Q>Q = R>P>PR = R>R = IK .

Hence, if we denote with QK−1 the matrix-block with the
first (K − 1) columns of Q then the problem from Eq. (3)
can be written as (Ding & He, 2004; Xu et al., 2015)

Q∗K−1 = arg max
QK−1∈Rn×(K−1)

tr
(
Q>K−1X

>XQK−1
)

s.t. Q>K−1QK−1 = IK−1

Q = PR ∧ qK =
1√
n
e.

While P is an orthonormal indicator/sparse matrix of rank
K, Q is a piecewise constant and in general non-sparse or-
thonormal matrix of the same rank. The latter optimization
problem can be relaxed by not adding the structural con-
straints Q = PR and qK = e/

√
n. The resulting optimiza-

tion problem is known as the Rayleigh–Ritz quotient (e.g.,
see Lütkepohl, 1997) and in the remainder of the section we
refer to it as the continuous problem. The optimal solution
to the continuous problem is (up to a rotation of the basis)
defined by the top (K − 1) eigenvectors from the eigende-
composition of the positive definite matrix X>X and the
optimal value of the relaxed optimization objective is the
sum of the eigenvalues corresponding to this solution. As
the continuous solution is (in general) not sparse, the dis-
crete problem is better described with non-sparse piecewise
constant matrix Q than with sparse indicator matrix P .

Ding & He (2004) and Xu et al. (2015) have formulated
a theorem which claims that the subspace spanned by op-
timal K-centroids is in fact the subspace spanned by the
top (K − 1) left singular vectors of X . The proofs pro-
vided in these works are, however, restricted to the case
when the discrete and continuous/relaxed version of the
optimization problem match. We address here this claim
without that restriction and amend their formulation ac-
cordingly. For this purpose, let C∗ = {c1, · · · , cK}
be K centroids specifying an optimal K-means cluster-
ing (i.e., minimizing the potential). The between clus-
ter scatter matrix S =

∑K
i=1 nicic

>
i projects any vector

x ∈ X to a subspace spanned by the centroid vectors, i.e.,
Sx =

∑K
i=1 ni

(
c>i x

)
ci ∈ span {c1, · · · , cK}. Let also

λK denote the Kth eigenvalue of H = X>X and assume
the eigenvalues are listed in descending order. A proof of
the following proposition is provided in Appendix A.

Proposition 1. Suppose that the subspace spanned by op-
timal K-means centroids has a basis that consists of left
singular vectors of X . If the gap between the eigenvalues
λK−1 and λK is sufficiently large (see the proof for explicit
definition), then the optimal K-means centroids and the top
(K − 1) left singular vectors of X span the same subspace.

Proposition 2. In contrast to the claim by Ding & He (2004)
and Xu et al. (2015), it is possible that no basis of the
subspace spanned by optimal K-means centroids consists
of left singular vectors of X . In that case, the subspace
spanned by the top (K − 1) left singular vectors is different
from that spanned by optimal K-means centroids.

LetX = UΣV > be an SVD decomposition ofX and denote
with UK the top K left singular vectors from this decom-
position. Let also U⊥K denote the dual matrix of UK and
φ (C∗ | UK) the clustering potential given by the projec-
tions of X and C∗ onto the subspace UK .

Proposition 3. Let HK denote the optimal rank K approx-
imation of the Gram matrix H = X>X and let C∗ be an
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optimal K-means clustering of X . Then, it holds

φ (C∗)≤‖H −HK−1‖1 + φ (C∗ | UK−1) .

Let us now relate Proposition 1 to the result from Section 2
where we were interested in finding a set of landmarks span-
ning the subspace that preserves most of the variance of
the data in the kernel feature space. Assuming that the
conditions from Proposition 1 are satisfied, the Nyström
approximation using optimal kernel K-means centroids as
landmarks projects the data to a subspace with the highest
possible variance. Hence, under these conditions optimal
kernelK-means landmarks provide the optimal rank (K−1)
reconstruction of the kernel matrix. However, for a kernel
K-means centroid there does not necessarily exist a point
in the instance space that maps to it. To account for this
and the hardness of the kernel K-means clustering prob-
lem (Aloise et al., 2009), we propose to approximate the
centroids with kernel K-means++ samples. This sampling
strategy iteratively builds up a set of landmarks such that
in each iteration an instance is selected with probability
proportional to its contribution to the clustering potential
in which previously selected instances act as cluster cen-
ters. For a problem with n instances and dimension d, the
strategy selects K landmarks in time O (Knd).

Before we give a bound on the Nyström approximation with
kernel K-means++ samples as landmarks, we provide a
result by Arthur & Vassilvitskii (2007) on the approximation
error of the optimal clustering using this sampling scheme.

Theorem 4. [Arthur & Vassilvitskii (2007)] If a clustering
C is constructed using the K-means++ sampling scheme
then the corresponding clustering potential φ (C) satisfies

E [φ (C)] ≤ 8 (lnK + 2)φ (C∗) ,

where C∗ is an optimal clustering and the expectation is
taken with respect to the sampling distribution.

Having presented all the relevant results, we now give a
bound on the approximation error of the Nyström method
with kernel K-means++ samples as landmarks. A proof of
the following theorem is provided in Appendix A.

Theorem 5. Let H be a kernel matrix with a finite rank
factorization H = Φ (X)

>
Φ (X). Denote with HK the

optimal rank K approximation of H and let H̃K be the
Nyström approximation of the same rank obtained using
kernel K-means++ samples as landmarks. Then, it holds

E

[
‖H − H̃K‖2
‖H −HK‖2

]
≤ 8(ln(K + 1) + 2)(

√
n−K + ΘK),

with ΘK = φ(C∗|UK)/‖H−HK‖2, where UK denotes the top
K left singular vectors of Φ (X) and C∗ an optimal kernel
K-means clustering with (K + 1) clusters.

Corollary 6. When φ (C∗ | UK) ≤
√
n−K ‖H −HK‖2,

then the additive term ΘK ≤
√
n−K and

E

[
‖H − H̃K‖2
‖H −HK‖2

]
∈ O

(
lnK
√
n−K

)
. (4)

The given bound for low-rank approximation of symmetric
and positive definite matrices holds for the Nyström method
with kernel K-means++ samples as landmarks without
any Lloyd iterations (Lloyd, 1982). To obtain even better
landmarks, it is possible to first sample candidates using
the kernel K-means++ sampling scheme and then attempt
a Lloyd refinement in the instance space (motivation for
this is provided in Section 4.3). If the clustering potential
is decreased as a result of this, the iteration is considered
successful and the landmarks are updated. Otherwise, the
refinement is rejected and current candidates are selected as
landmarks. This is one of the landmark selection strategies
we analyze in our experiments (e.g., see Appendix C).

Let us now discuss the properties of our bound with re-
spect to the rank of the approximation. From Corollary 6
it follows that the bound on the relative approximation er-
ror increases initially (for small K) with lnK and then
decreases as K approaches n. This is to be expected as a
larger K means we are trying to find a higher dimensional
subspace and initially this results in having to solve a more
difficult problem. The bound on the low-rank approxima-
tion error is, on the other hand, obtained by multiplying
with ‖H −HK‖2 which depends on the spectrum of the
kernel matrix and decreases with K. In order to be able to
generalize at all, one has to assume that the spectrum falls
rather sharply and typical assumptions are λi ∈ O (i−a)
with a > 1 or λi ∈ O

(
e−bi

)
with b > 0 (e.g., see Sec-

tion 4.3, Bach, 2013). It is simple to show that for a ≥ 2,
K > 1, and λi ∈ O (i−a) such falls are sharper than lnK
(Corollary 7, Appendix A). Thus, our bound on the low-rank
approximation error decreases with K for sensible choices
of the kernel function. Note that a similar state-of-the-art
bound on the relative approximation error by Li et al. (2016)
exhibits worse behavior and grows linearly with K.

4. Discussion
We start with a brief overview of alternative approaches
to landmark selection in the Nyström method for low-rank
approximation of kernel matrices. Following this, we fo-
cus on a bound that is the most similar to ours, that of
K-DPP-Nyström (Li et al., 2016). Then, for the frequently
used Gaussian kernel, we provide a theoretically sound
motivation for performing Lloyd refinements of kernel K-
means++ landmarks in the instance space instead of the
kernel feature space. These refinements are computationally
cheaper than those performed in the kernel feature space
and can only improve the positioning of the landmarks.
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4.1. Related Approaches

As pointed in Sections 1 and 2, the choice of landmarks
is instrumental for the goodness of the Nyström low-rank
approximations. For this reason, the existing work on the
Nyström method has focused mainly on landmark selection
techniques with theoretical guarantees. These approaches
can be divided into four groups: i) random sampling, ii)
greedy methods, iii) methods based on the Cholesky decom-
position, iv) vector quantization (e.g., K-means clustering).

The simplest strategy for choosing the landmarks is by uni-
formly sampling them from a given set of instances. This
was the strategy that was proposed by Williams & Seeger
(2001) in the first paper on the Nyström method for low-rank
approximation of kernel matrices. Following this, more so-
phisticated non-uniform sampling schemes were proposed.
The schemes that received a lot of attention over the past
years are the selection of landmarks by sampling propor-
tional to column norms of the kernel matrix (Drineas et al.,
2006), diagonal entries of the kernel matrix Drineas & Ma-
honey (2005), approximate leverage scores (Alaoui & Ma-
honey, 2015; Gittens & Mahoney, 2016), and submatrix
determinants (Belabbas & Wolfe, 2009; Li et al., 2016).
From this group of methods, the approximate leverage score
sampling and the K-DPP Nyström method (see Section 4.2)
are considered state-of-the-art methods in low-rank approxi-
mation of kernel matrices.

The second group of landmark selection techniques are
greedy methods. A well-performing representative from
this group is a method for sparse approximations proposed
by Smola & Schölkopf (2000) for which it was later inde-
pendently established (Kumar et al., 2012) that it performs
very well in practice—second only to K-means clustering.

The third group of methods relies on the incomplete
Cholesky decomposition to construct a low-rank approx-
imation of a kernel matrix (Fine & Scheinberg, 2002; Bach
& Jordan, 2005; Kulis et al., 2006). An interesting aspect of
the work by Bach & Jordan (2005) and that of Kulis et al.
(2006) is the incorporation of side information/labels into
the process of finding a good low-rank approximations of a
given kernel matrix.

Beside these approaches, an influential ensemble method
for low-rank approximation of kernel matrices was pro-
posed by Kumar et al. (2012). This work also contains an
empirical study with a number of approaches to landmark
selection. Kumar et al. (2012) also note that the landmarks
obtained using instance space K-means clustering perform
the best among non-ensemble methods.

4.2. K-DPP Nyström Method

The first bound on the Nyström approximation with land-
marks sampled proportional to submatrix determinants was

given by Belabbas & Wolfe (2009). Li et al. (2016) recog-
nize this sampling scheme as a determinantal point process
and extend the bound to account for the case when l land-
marks are selected to make an approximation of rank K ≤ l.
That bound can be formally specified as (Li et al., 2016)

E

[
‖H − H̃K‖2
‖H −HK‖2

]
≤ l + 1

l + 1−K
√
n−K. (5)

For l = K, the bound can be derived from that of Belabbas
& Wolfe (Theorem 1, 2009) by applying the inequalities
between the corresponding Schatten p-norms.

The bounds obtained by Belabbas & Wolfe (2009) and Li
et al. (2016) can be directly compared to the bound from
Corollary 6. From Eq. (5), for l = K + 1, we get that
the expected relative approximation error of the K-DPP
Nyström method scales like O

(
K
√
n−K

)
. For a good

worst case guarantee on the generalization error of learning
with Nyström approximations (see, e.g., Yang et al., 2012),
the parameter K scales as

√
n. Plugging this parameter

estimate into Eq. (4), we see that the upper bound on the ex-
pected error with kernel K-means++ landmarks scales like
O (
√
n lnn) and that with K-DPP landmarks like O (n).

Having compared our bound to that of K-DPP landmark
selection, we now discuss some specifics of the empirical
study performed by Li et al. (2016). The crucial step of
that landmark selection strategy is the ability to efficiently
sample from aK-DPP. To achieve this, the authors have pro-
posed to use a Markov chain with a worst case mixing time
linear in the number of instances. The mixing bound holds
provided that a data-dependent parameter satisfies a condi-
tion which is computationally difficult to verify (Section 5,
Li et al., 2016). Moreover, there are cases when this condi-
tion is not satisfied and for which the mixing bound does not
hold. In their empirical evaluation of the K-DPP Nyström
method, Li et al. (2016) have chosen the initial state of the
Markov chain by sampling it using theK-means++ scheme
and then run the chain for 100-300 iterations. While the
choice of the initial state is not discussed by the authors, one
reason that this could be a good choice is because it starts the
chain from a high density region. To verify this hypothesis,
we simulate the K-DPP Nyström method by choosing the
initial state uniformly at random and run the chain for 1 000
and 10 000 steps (Section 5). Our empirical results indicate
that starting the K-DPP chain with K-means++ samples is
instrumental for performing well with this method in terms
of runtime and accuracy (Figure 6, Li et al., 2016). More-
over, for the case when the initial state is sampled uniformly
at random, our study indicates that the chain might need at
least one pass through the data to reach a region with good
landmarks. The latter is computationally inefficient already
on datasets with more than 10 000 instances.
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4.3. Instance Space K-means Centroids as Landmarks

We first address the approach to landmark selection based
on K-means clustering in the instance space (Zhang et al.,
2008) and then give a theoretically sound motivation for why
these landmarks work well with the frequently used Gaus-
sian kernel. The outlined reasoning motivates the instance
space Lloyd refinements of kernel K-means++ samples
and it can be extended to other kernel feature spaces by
following the derivations from Burges (1999).

The only existing bound for instance space K-means land-
marks was provided by Zhang et al. (2008). However, this
bound only works for kernel functions that satisfy

(h (a, b)− h (c, d))
2 ≤ η (h,X )

(
‖a− c‖2 − ‖b− d‖2

)
,

for all a, b, c, d ∈ X and a data- and kernel-dependent con-
stant η (h,X ). In contrast to this, our bound holds for all
kernels over Euclidean spaces. The bound given by Zhang
et al. (2008) is also a worst case bound, while ours is a
bound in the expectation. The type of the error itself is also
different, as we bound the relative error and Zhang et al.
(2008) bound the error in the Frobenius norm. The disad-
vantage of the latter is in the sensitivity to scaling and such
bounds become loose even if a single entry of the matrix
is large (Li et al., 2016). Having established the difference
in the type of the bounds, it cannot be claimed that one is
sharper than the other. However, it is important to note that
the bound by Zhang et al. (Proposition 3, 2008) contains the
full clustering potential φ (C∗) multiplied by n

√
n/K as a

term and this is significantly larger than the rank dependent
term from our bound (e.g., see Theorem 5).

Burges (1999) has investigated the geometry of kernel fea-
ture spaces and a part of that work refers to the Gaussian
kernel. We review the results related to this kernel feature
space and give an intuition for why K-means clustering in
the instance space provides a good set of landmarks for the
Nyström approximation of the Gaussian kernel matrix. The
reasoning can be extended to other kernel feature spaces
as long as the manifold onto which the data is projected
in the kernel feature space is a flat Riemannian manifold
with the geodesic distance between the points expressed in
terms of the Euclidean distance between instances (e.g., see
Riemmannian metric tensors in Burges, 1999).

The frequently used Gaussian kernel is given by

h (x, y) = 〈Φ (x),Φ (y)〉 = exp
(
‖x−y‖2/2σ2

)
,

where the feature map Φ (x) is infinite dimensional and for
a subset X of the instance space X ∈ Rd also infinitely
continuously differentiable on X . As in Burges (1999) we
denote with S the image of X in the reproducing kernel
Hilbert space of h. The image S is a r ≤ d dimensional
surface in this Hilbert space. As noted by Burges (1999)

the image S is a Hausdorff space (Hilbert space is a metric
space and, thus, a Hausdorff space) and has a countable
basis of open sets (the reproducing kernel Hilbert space
of the Gaussian kernel is separable). So, for S to be a
differentiable manifold (Boothby, 1986) the image S needs
to be locally Euclidean of dimension r ≤ d.

We assume that our set of instances X is mapped to a differ-
entiable manifold in the reproducing kernel Hilbert space
H. On this manifold a Riemannian metric can be defined
and, thus, the set X is mapped to a Riemannian manifold S .
Burges (1999) has showed that the Riemannian metric ten-
sor induced by this kernel feature map is gij =

δij
σ2 , where

δij = 1 if i = j and zero otherwise (1 ≤ i, j ≤ d). This
form of the tensor implies that the manifold is flat.

From the obtained metric tensor, it follows that the squared
geodesic distance between two points Φ (x) and Φ (y) on S
is equal to the σ-scaled Euclidean distance between x and y
in the instance space, i.e., dS (Φ (x) ,Φ (y))

2
= ‖x−y‖

2
/σ2.

For a cluster Pk, the geodesic centroid is a point on S that
minimizes the distance to other cluster points (centroid in
the K-means sense). For our instance space, we have that

c∗k = arg min
c∈Rd

∑
x∈Pk

‖x− c‖2 ⇒ c∗k =
1

|Pk|
∑
x∈Pk

x.

Thus, by doing K-means clustering in the instance space
we are performing approximate geodesic clustering on the
manifold onto which the data is embedded in the Gaussian
kernel feature space. It is important to note here that a cen-
troid from the instance space is only an approximation to
the geodesic centroid from the kernel feature space – the
preimage of the kernel feature space centroid does not nec-
essarily exist. As the manifold is flat, geodesic centroids are
‘good’ approximations to kernel K-means centroids. Hence,
by selecting centroids obtained using K-means clustering
in the instance space we are making a good estimate of
the kernel K-means centroids. For the latter centroids, we
know that under the conditions of Proposition 1 they span
the same subspace as the top (K − 1) left singular vectors
of a finite rank factorization of the kernel matrix and, thus,
define a good low-rank approximation of the kernel matrix.

5. Experiments
Having reviewed the state-of-the-art methods in select-
ing landmarks for the Nyström low-rank approximation
of kernel matrices, we perform a series of experiments to
demonstrate the effectiveness of the proposed approach
and substantiate our claims from Sections 3 and 4. We
achieve this by comparing our approach to the state-of-the-
art in landmark selection – approximate leverage score sam-
pling (Gittens & Mahoney, 2016) and the K-DPP Nyström
method (Belabbas & Wolfe, 2009; Li et al., 2016).
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Figure 1. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using that strategy compared to the uniformly sampled ones.
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Figure 2. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.

Before we present and discuss our empirical results, we
provide a brief summary of the experimental setup. The
experiments were performed on 13 real-world datasets avail-
able at the UCI and LIACC repositories. Each of the selected
datasets consists of more than 5 000 instances. Prior to
running the experiments, the datasets were standardized to
have zero mean and unit variance. We measure the good-
ness of a landmark selection strategy with the lift of the
approximation error in the Frobenius norm and the time
needed to select the landmarks. The lift of the approxima-
tion error of a given strategy is computed by dividing the
error obtained by sampling landmarks uniformly without
replacement (Williams & Seeger, 2001) with the error of
the given strategy. In contrast to the empirical study by Li
et al. (2016), we do not perform any sub-sampling of the
datasets with less than 25 000 instances and compute the
Frobenius norm error using full kernel matrices. On one
larger dataset with more than 25 000 instances the memory
requirements were hindering our parallel implementation
and we, therefore, subsampled it to 25 000 instances (ct-
slice dataset, Appendix C). By performing our empirical
study on full datasets, we are avoiding a potentially negative
influence of the sub-sampling on the effectiveness of the
compared landmark selection strategies, time consumed,

and the accuracy of the approximation error. Following pre-
vious empirical studies (Drineas & Mahoney, 2005; Kumar
et al., 2012; Li et al., 2016), we evaluate the goodness of
landmark selection strategies using the Gaussian kernel and
repeat all experiments 10 times to account for their non-
deterministic nature. We refer to γ = 1/σ2 as the bandwidth
of the Gaussian kernel and in order to determine the band-
width interval we sample 5 000 instances and compute their
squared pairwise distances. From these distances we take
the inverse of 1 and 99 percentile values as the right and
left endpoints. To force the kernel matrix to have a large
number of significant spectral components (i.e., the Gaus-
sian kernel matrix approaches to the identity matrix), we
require the right bandwidth endpoint to be at least 1. From
the logspace of the determined interval we choose 10 evenly
spaced values as bandwidth parameters. In the remainder of
the section, we summarize our findings with 5 datasets and
provide the complete empirical study in Appendix C.

In the first set of experiments, we fix the approximation
rank and evaluate the performance of the landmark selection
strategies while varying the bandwidth of the Gaussian ker-
nel. Similar to Kumar et al. (2012), we observe that for most
datasets at a standard choice of bandwidth – inverse median
squared pairwise distance between instances – the princi-
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Figure 3. The figure shows the improvement in the lift of the approximation error measured in the Frobenius norm that comes as a result
of the increase in the rank of the approximation. The bandwidth parameter of the Gaussian kernel is set to the inverse of the squared
median pairwise distance between the samples.

pal part of the spectral mass is concentrated at the top 100
eigenvalues and we set the approximation rank K = 100.
Figure 1 demonstrates the effectiveness of evaluated selec-
tion strategies as the bandwidth varies. More precisely, as
the log value of the bandwidth parameter approaches to
zero the kernel matrix is close to being the identity matrix,
thus, hindering low-rank approximations. In contrast to this,
as the bandwidth value gets smaller the spectrum mass be-
comes concentrated in a small number of eigenvalues and
low-rank approximations are more accurate. Overall, the
kernel K-means++ sampling scheme performs the best
across all 13 datasets. It is the best performing method on
10 of the considered datasets and a competitive alternative
on the remaining ones. The improvement over alternative
approaches is especially evident on datasets ailerons and
elevators. The approximate leverage score sampling is on
most datasets competitive and achieves a significantly better
approximation than alternatives on the dataset cal-housing.
The approximations for the K-DPP Nyström method with
10 000 MC steps are more accurate than that with 1 000
steps. The low lift values for that method seem to indicate
that the approach moves rather slowly away from the ini-
tial state sampled uniformly at random. This choice of the
initial state is the main difference in the experimental setup
compared to the study by Li et al. (2016) where the K-DPP
chain was initialized with K-means++ sampling scheme.

Figure 2 depicts the runtime costs incurred by each of the
sampling schemes. It is evident that compared to other
methods the cost of running the K-DPP chain with uni-
formly chosen initial state for more than 1 000 steps results
in a huge runtime cost without an appropriate reward in the
accuracy. From this figure it is also evident that the approxi-
mate leverage score and kernel K-means++ sampling are
efficient and run in approximately the same time apart from
the dataset ujil (see also ct-slice, Appendix C). This dataset
has more than 500 attributes and it is time consuming for
the kernel K-means++ sampling scheme (our implementa-
tion does not cache/pre-compute the kernel matrix). While

on such large dimensional datasets the kernel K-means++
sampling scheme is not as fast as the approximate lever-
age score sampling, it is still the best performing landmark
selection technique in terms of the accuracy.

In Figure 3 we summarize the results of the second exper-
iment where we compare the improvement in the approxi-
mation achieved by each of the methods as the rank of the
approximation is increased from 5 to 100. The results indi-
cate that the kernelK-means++ sampling achieves the best
increase in the lift of the approximation error. On most of
the datasets the approximate leverage score sampling is com-
petitive. That method also performs much better than the
K-DPP Nyström approach initialized via uniform sampling.

As the landmark subspace captured by our approach depends
on the gap between the eigenvalues and that of the approx-
imate leverage score sampling on the size of the sketch
matrix, we also evaluate the strategies in a setting where
l landmarks are selected in order to make a rank K < l
approximation of the kernel matrix. Similar to the first ex-
periment, we fix the rank to K = 100 and in addition to the
already discussed case with l = K we consider cases with
l = K lnn and l = K lnK. Due to space restrictions, the
details of this experiment are provided in Appendix C. The
results indicate that there is barely any difference between
the lift curves for the kernel K-means++ sampling with
l = K lnK and l = K lnn landmarks. In their empirical
study, Gittens & Mahoney (2016) have observed that for uni-
formly selected landmarks, ε ∈ [0, 1], and l ∈ O (K lnn),
the average rank K approximation errors are within (1 + ε)
of the optimal rank K approximation errors. Thus, based
on that and our empirical results it seems sufficient to take
K lnK landmarks for an accurate rank K approximation
of the kernel matrix. Moreover, the gain in the accuracy for
our approach with l = K lnK landmarks comes with only
a slight increase in the time taken to select the landmarks.
Across all datasets, the proposed sampling scheme is the
best performing landmark selection technique in this setting.
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A. Proofs
Lemma A.1. [Kanungo et al. (2002)] Let c be the centroid
of a cluster C with n instances and let z be an arbitrary
point from Rd. Then, it holds∑

x∈C
‖x− z‖2 −

∑
x∈C
‖x− c‖2 = n ‖c− z‖2 .

Proof. After expanding the sums we obtain∑
x∈C
‖x‖2 + n ‖z‖2 − 2

∑
x∈C
〈x, z〉 −

∑
x∈C
‖x‖2 − n ‖c‖2

+ 2
∑
x∈C
〈c, x〉 = n ‖c‖2 + n ‖z‖2 − 2n 〈c, z〉 .

We can now rewrite the latter equation as

−2n 〈c, z〉 − n ‖c‖2 + 2n ‖c‖2 = n ‖c‖2 − 2n 〈c, z〉 ,

and the claim follows from here.

Proposition 1. Suppose that the subspace spanned by op-
timal K-means centroids has a basis that consists of left
singular vectors of X . If the gap between the eigenvalues
λK−1 and λK is sufficiently large (see the proof for explicit
definition), then the optimal K-means centroids and the top
(K − 1) left singular vectors of X span the same subspace.

Proof. Let M ∈ Rd×K with centroids {c1, c2, . . . , cK}
as columns and let N = diag (n1, n2, · · · , nK) where ni
denotes the size of the cluster with centroid ci.

Now, observe that M = XPN−1/2 and that we can write
the non-constant term from Eq. (3) as

tr
(
P>X>XP

)
= tr

(
N

1
2M>MN

1
2

)
=

tr
(
MNM>

)
= tr

(
K∑
i=1

nicic
>
i

)
.

(6)

An optimal solution of K-means clustering places centroids
to maximize this objective. From the relaxed version of the
problem (described in Section 3) we know that it holds

tr

(
K∑
i=1

nicic
>
i

)
≤
K−1∑
i=1

λi,

where {λi}K−1i=1 are the top eigenvalues of the eigendecom-
position XX> = UΛU>, and λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

From the SVD decomposition X = UΣV > it follows that
X =

∑r
i=1 σiuiv

>
i , where r is the rank of X and r ≤

min(d− 1, n− 1) (note that X is a centered data matrix).
Hence, U ∈ Rd×r is an orthonormal basis of the data span
and we can express the centroids in this basis as M = UΓ,
where Γ = [γ1 γ2 · · · γK ] and γi ∈ Rr for i = 1,K.

Having expressed the centroids in the U -basis it is now
possible to rewrite the optimization objective in this basis,
as well. In particular, it holds

tr
(
MNM>

)
= tr

(
UΓNΓ>U>

)
=

tr
(
ΓNΓ>

)
= tr

(
K∑
i=1

niγiγ
>
i

)
=

K∑
i=1

ni

r∑
j=1

γ2ji =

r∑
j=1

K∑
i=1

niγ
2
ji.

(7)

From the SVD decomposition of X it is possible to compute
the projections of instances onto the left singular vectors,
and thus retrieve the coefficient matrix Γ. For instance,
projecting the data over a left singular vector uj we get

u>j X = σjv
>
j ,

where vj is the jth right singular vector of X .

Hence, the centroid ci of a cluster cell Pi can be expressed
in U -basis by setting

γji =
σj
ni

∑
l∈Pi

vlj

and

niγ
2
ji = λjni

(∑
l∈Pi

vlj

ni

)2

= λjniδ
2
ji,

where δji =
∑

l∈Pi
vlj/ni. From here it then follows that

tr
(
MNM>

)
=

r∑
j=1

λj

K∑
i=1

niδ
2
ji. (8)

As the data matrix X is centered, i.e., 1
n

∑n
i=1 xi = 0, it

follows that the columns of matrixM are linearly dependent.
In particular, we have that it holds

K∑
i=1

ni
n
ci =

1

n

n∑
i=1

xi = 0.

From here it follows that we can express one column (e.g.,
centroid cK) as a linear combination of the others. Thus,
the rank of M is at most K − 1 ≤ r. As the rank of
span {c1, c2, · · · , cK} is at mostK−1, then by the assump-
tion of the proposition there are at least r −K + 1 columns
of U that are orthogonal to this span. What this means is
that in matrix Γ ∈ Rr×K there are at least (r−K+1) rows
with all entries equal to zero.

From the Cauchy–Schwartz inequality and the fact that
right singular vectors of X are unitary orthogonal vectors it
follows that

niδ
2
ji ≤

∑
l∈Pi

v2lj ≤ 1. (9)
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On the one hand, from this inequality we can conclude that
δji ≤ 1/√ni. On the other hand, summing the first part of
the inequality over 1 ≤ i ≤ K we obtain

K∑
i=1

niδ
2
ji ≤

K∑
i=1

∑
l∈Pi

v2lj = ‖vj‖2 = 1 .

Now, in order to minimize the objective in Eq. (3) one needs
to maximize the objective in Eq. (7). In other words, the
rows in Γ that correspond to low value terms in Eq. (8)
need to be set to zero. As λj

∑K
i=1 niδ

2
ji ≤ λj it is a

good strategy to set to zero the rows that correspond to
eigenvalues λj with j ≥ K, i.e., γji = δji = 0 for K ≤
j ≤ r and 1 ≤ i ≤ K.

Let us now investigate whether and when the optimal value
of the relaxed objective,

∑K−1
j=1 λj , is attained. By applying

Lemma A.1 with z = 0 to Eq. (8) we obtain

r∑
j=1

λj

K∑
i=1

niδ
2
ji =

r∑
j=1

λj

K∑
i=1

∑
l∈Pi

v2lj − (vlj − δji)2 =

r∑
j=1

λj

(
1−

K∑
i=1

∑
l∈Pi

(vlj − δji)2
)
.

The maximal value of this objective is attained when the
top K − 1 right singular vectors V are piecewise constant
over clusters. In particular, for vlj = δji when l ∈ Pi,
1 ≤ i ≤ K, and 1 ≤ j ≤ K − 1 the expression attains the
maximal value of the continuous version of the problem,∑K−1
j=1 λj . Thus, in this case the solutions to the discrete

and continuous version of the K-means optimization prob-
lem match. However, right singular vectors of X are not
necessarily piecewise constant but a perturbation of these.

Taking ṽj to be the column vector with entries ṽlj = δji
when l ∈ Pi and 1 ≤ i ≤ K, we can write Eq. (7) as

tr
(
MNM>

)
=

r∑
j=1

λj

(
1− ‖vj − ṽj‖2

)
.

Let VK−1 be the matrix with top (K − 1) right sin-
gular vectors of X . Let {u1, · · · , uK−2, uK−1} and
{u1, · · · , uK−2, uK} be the subspaces spanned by cen-
troids of clusterings C(1)

K and C(2)
K , respectively. For these

two clusterings, let Ṽ1 and Ṽ2 be the piecewise constant
approximations to corresponding right singular vectors.

In the case when Ṽ1 6= VK−1, the gap between eigenvalues
λK−1 and λK needs to be sufficiently large so that the
choice of rows γji 6= 0 and 1 ≤ j ≤ K − 1 corresponds to
an optimal K-means clustering and that the corresponding
centroid subspace is spanned by the top (K−1) left singular
vectors of X . In particular, it needs to hold

λK−1(1− ‖vK−1 − ṽ(1)K−1‖
2) > λK(1− ‖vK − ṽ(2)K ‖

2),

where vj and ṽ(·)j denote corresponding columns in matrices
VK−1 and Ṽ· , respectively. This is equivalent to

λK−1 − λK
λK−1

>

∥∥∥vK−1 − ṽ(1)K−1∥∥∥2 − ∥∥∥vK − ṽ(2)K ∥∥∥2
1−

∥∥∥vK − ṽ(2)K ∥∥∥2 .

The claim follows by noting that from

0 <

K∑
i=1

niδ
2
ji =

K∑
i=1

∑
l∈Pi

v2lj − (vlj − δji)2 ,

it follows that

‖vj − ṽj‖2 < 1,

for any selected/non-zero row in matrix Γ.

Having established the condition on eigenvalues, let us now
check whether the upper bound on the objective in Eq. (7)
is attained when the right singular vectors are not piecewise
constant. From the Cauchy-Schwarz inequality in Eq. (9), it
follows that the equality is attained when vlj = const. for
all l ∈ Pi and 1 ≤ i ≤ K. According to the assumption,
the right singular vectors are not piecewise constant and we
then have the strict inequality in Eq. (9). This implies that
for sufficiently large gap between the eigenvalues λK−1 and
λK , it holds

tr
(
MNM>

)
=

K−1∑
j=1

λj

K∑
i=1

niδ
2
ji <

K−1∑
j=1

λj .

Hence, in this case the optimal value of the relaxed objective
is not attained.

Proposition 3. Let HK denote the optimal rank K approx-
imation of the Gram matrix H = X>X and let C∗ be an
optimal K-means clustering of X . Then, it holds

φ (C∗)≤‖H −HK−1‖1 + φ (C∗ | UK−1) .

Proof. Using the notation from the proof of Proposition 1,

φ (C∗) = tr
(
X>X

)
− tr

(
P>X>XP

)
=

r∑
j=1

λj −
r∑
j=1

λj

(
1−

K∑
i=1

∑
l∈Pi

(vlj − δji)2
)

=

r∑
j=1

λj

K∑
i=1

∑
l∈Pi

(vlj − δji)2 .

Now, observe that

0 ≤ δ2ji ⇐⇒ niδ
2
ji ≤ 2δji

∑
l∈Pi

vlj

⇐⇒
∑
l∈Pi

(vlj − δji)2 ≤
∑
l∈Pi

v2lj .
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Hence, we have that it holds

φ
(
C∗ | U⊥K−1

)
=

r∑
j=K

λj

K∑
i=1

∑
l∈Pi

(vlj − δji)2

≤
r∑

j=K

λj

K∑
i=1

∑
l∈Pi

v2lj =

r∑
j=K

λj

= ‖H −HK−1‖1 .
The claim follows by combining the latter inequality with
the fact that

φ (C∗ | UK−1) =

K−1∑
j=1

λj

K∑
i=1

∑
l∈Pi

(vlj − δji)2 .

Theorem 5. Let H be a kernel matrix with a finite rank
factorization H = Φ (X)

>
Φ (X). Denote with HK the

optimal rank K approximation of H and let H̃K be the
Nyström approximation of the same rank obtained using
kernel K-means++ samples as landmarks. Then, it holds

E

[
‖H − H̃K‖2
‖H −HK‖2

]
≤ 8(ln(K + 1) + 2)(

√
n−K + ΘK),

with ΘK = φ(C∗|UK)/‖H−HK‖2, where UK denotes the top
K left singular vectors of Φ (X) and C∗ an optimal kernel
K-means clustering with (K + 1) clusters.

Proof. Let us assume that (K + 1) landmarks, Z ⊂ X , are
selected using the kernel K-means++ sampling scheme.
Then, for the clustering potential defined with Z we have
that it holds

φ (Z) =

n∑
i=1

min
z∈Z
‖Φ (xi)− Φ (z)‖2

≥ min
α∈R(K+1)×n

n∑
i=1

∥∥∥∥∥∥Φ (xi)−
K+1∑
j=1

αjiΦ (zj)

∥∥∥∥∥∥
2

=
∥∥∥H − H̃K

∥∥∥
1
,

where H̃K is the Nyström approximation matrix (e.g.,
see Section 2) of rank K defined with landmarks Z =
{z1, . . . , zK+1} and Φ (x) is the image of instance x in the
factorization space. The latter inequality follows from the
fact that the distance of a point to its orthogonal projection
onto span {Φ (z1) , . . . ,Φ (zK+1)} is not greater than the
distance between that point and the closest landmark from
{Φ (z1) , . . . ,Φ (zK+1)}.

Now, combining this result with Proposition 3 and Theo-
rem 4, we deduce

E
[
‖H − H̃K‖1

]
≤ E [φ (Z)] ≤ 8 (ln(K + 1) + 2)φ(C∗)

≤ 8 (ln (K + 1) + 2) (‖H −HK‖1 + φ(C∗ | UK)) .

From this and the Schatten p-norm inequalities,

‖H −HK‖1 ≤
√
n−K ‖H −HK‖2 ∧ ‖H‖2 ≤ ‖H‖1 ,

we obtain the following bound

E
[
‖H − H̃K‖2

]
≤

8(ln(K + 1) + 2)(
√
n−K ‖H −HK‖2 + φ(C∗ | UK)).

The result follows after division with ‖H −HK‖2.

Corollary 7. Assume that the conditions of Theorem 5 and
Corollary 6 are satisfied together with λi ∈ O (i−a) and
a ≥ 2. The low-rank approximation error in the Frobe-
nius norm of the Nyström method with kernel K-means++
samples as landmarks decreases with K > 1.

Proof. First observe that

n∑
l=K

1

l2a
=

1

K2a

n∑
l=K

1

(l/K)
2a =

1

K2a

n−K∑
l=0

1

(1 + l/K)
2a <

1

K2a

n−K∑
l=0

1

(1 + l/K)
2 <

1

K2(a−1)

n−K∑
l=0

1

(1 + l)
2 <

1

K2(a−1)

∑
l≥0

1

(1 + l)
2 ∈ O

(
1

K2(a−1)

)
.

Hence, we have that the approximation error in the Frobe-
nius norm of the optimal rank K subspace satisfies

‖H −HK‖2 ∈ O

(
1

(K + 1)
a−1

)
.

From here it then follows that the low-rank approximation
error in Frobenius norm of the Nyström method with kernel
K-means++ samples as landmarks satisfies∥∥∥H − H̃K

∥∥∥
2
∈ O

(√
n−K (ln (K + 1) + 1)

(K + 1)
a−1

)
.

The claim follows by observing that for a ≥ 2 the function
ln(K+1)/(K+1)a−1 decreases with K > 1.

B. Addendum
Proposition 2. In contrast to the claim by Ding & He (2004)
and Xu et al. (2015), it is possible that no basis of the
subspace spanned by optimal K-means centroids consists
of left singular vectors of X . In that case, the subspace
spanned by the top (K − 1) left singular vectors is different
from that spanned by optimal K-means centroids.

Proof. If no basis of span {c1, c2, . . . , cK} is given by a
subset of left singular vectors, then (using the notation from
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the proof of Proposition 1) there are at least K rows with
non-zero entries in matrix Γ. Let us now show that this is
indeed possible. The fact that a left singular vector ui is
orthogonal to the span is equivalent to

(
∀β ∈ RK

)
: 0 = u>i

 K∑
j=1

βjcj

 =

u>i

 K∑
j=1

r∑
l=1

βjδljσlul

 =

K∑
j=1

βjσiδij =

K∑
j=1

βjσi
1

nj

∑
l∈Pj

vli ,

where vi is the ith right singular vector. As the latter equa-
tion holds for all vectors β = (β1, . . . , βK) ∈ RK , the
claim ui ⊥ span {c1, . . . , cK} is equivalent to∑

l∈Pj

vli = 0 (∀j = 1, . . . ,K) . (10)

Moreover, as the data matrix is centered vector vi also satis-
fies v>i e = 0.

To construct a problem instance where no basis of the sub-
space spanned by optimal K-means centroids consists of
left singular vectors, we take a unit vector vr such that, for
any cluster in any clustering, none of the conditions from
Eq. (10) is satisfied. Then, we can construct a basis of right
singular vectors using the Gram–Schmidt orthogonalization
method. For instance, we can take ṽ with ṽi = −2i for
1 ≤ i < n and ṽn = 2n− 2, and then set vr = ṽ/‖ṽ‖, where
r is the rank of the problem. Once we have constructed a
right singular basis that contains vector vr, we pick a small
positive real number as the singular value corresponding to
vector vr and select the remaining singular values so that
there are sufficiently large gaps between them (e.g., see the
proof of Proposition 1). By choosing a left singular basis of
rank r, we form a data matrix X and the subspace spanned
by optimal K-means centroids in this problem instance is
not the one spanned by the top (K− 1) left singular vectors.
To see this, note that from Eq. (10) and the definition of vr
it follows that ur 6⊥ span {c1, . . . , cK}.

Having shown that an optimal centroid subspace of data
matrix X is not the one spanned by the top (K − 1) left
singular vectors, let us now show that there is no basis
for this subspace consisting of left singular vectors. For
simplicity, let us take K = 2. According to our assump-
tion σ1 � σ2 � σr−1 � σr. Now, from Eq. (8) it fol-
lows that the largest reduction in the clustering potential
is obtained by partitioning data so that the centroids for
the top components are far away from the zero-vector. As
the basis of span {c1, c2} consists of one vector and as
ur 6⊥ span {c1, c2} it then follows that the basis vector is

given by
∑r
j=1 βjuj with βj ∈ R and at least β1, βr 6= 0.

Hence, for K = 2 and data matrix X there is no basis of
span {c1, c2} that consists of a left singular vector.

Thus, there are K-means clustering problems in which opti-
mal K-means centroids span a subspace different from the
one spanned by the top (K−1) left singular vectors. In such
problems, similar to Proposition 1, an optimal clustering
partitions the data so that the components of the centroids on
the top left singular vectors are not zero. For some data dis-
tributions, the latter amounts to selecting optimal centroids
so that the corresponding centroid subspace is close to the
one spanned by the top (K − 1) left singular vectors.
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C. Additional Figures
In this appendix, we provide the detailed results of our empirical study. The appendix is organized such that the results are
presented by datasets that are listed in ascending order with respect to the number of instances and dimension. The empirical
study provided below compares the following approaches: i) uniform sampling of landmarks, ii) approximate leverage score
sampling with uniform sketch matrix, iii) approximate leverage score sampling with the sketch matrix selected by sampling
instances proportional to the diagonal entries in the kernel matrix, iv) K-DPP Nyström method with 1 000 and 10 000 MC
steps and the initial state chosen by sampling landmarks uniformly at random, v) K-means clustering in the input space
(Lloyd ⊕ K-means++), vi) kernel K-means++ sampling, vii) kernel K-means++ sampling with restarts, viii) kernel
K-means++ sampling with restarts and Lloyd refinements in the instance space (Lloyd ⊕ kernel K-means++).

C.1. Parkinsons

The number of instances in this dataset is n = 5 875 and the dimension of the problem is d = 21.
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(a) l = k logn

kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++
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Figure 4. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++ uniform

kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernel K-means++
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Figure 5. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.2. Delta-ailerons

The number of instances in this dataset is n = 7 129 and the dimension of the problem is d = 5.
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(a) l = k logn

kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++
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Figure 6. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++ uniform

kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernel K-means++
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Figure 7. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.3. Kinematics

The number of instances in this dataset is n = 8 192 and the dimension of the problem is d = 8.
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kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++
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Figure 8. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.

-7.6 -3.8 0. 3.8 7.6

-17.

-11.25

-5.5

0.25

6.

log time

lo
g

Fr
ob

en
iu

s
er

ro
r

(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++ uniform

kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernel K-means++

-7.6 -3.8 0. 3.8 7.6

-17.

-11.25

-5.5

0.25

6.

log time

(b) l = k log k

-7.6 -3.8 0. 3.8 7.6

-17.

-11.25

-5.5

0.25

6.

log time

(c) l = k

Figure 9. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.4. CPU-activity

The number of instances in this dataset is n = 8 192 and the dimension of the problem is d = 21.
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Figure 10. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 11. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.5. Bank

The number of instances in this dataset is n = 8 192 and the dimension of the problem is d = 32.
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kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++
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Figure 12. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 13. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.6. Pumadyn

The number of instances in this dataset is n = 8 192 and the dimension of the problem is d = 32.
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kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++
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Figure 14. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 15. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.7. Delta-elevators

The number of instances in this dataset is n = 9 517 and the dimension of the problem is d = 6.
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Figure 16. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 17. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.8. Ailerons

The number of instances in this dataset is n = 13 750 and the dimension of the problem is d = 40.
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Figure 18. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 19. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.9. Pole-telecom

The number of instances in this dataset is n = 15 000 and the dimension of the problem is d = 26.
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Figure 20. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 21. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.10. Elevators

The number of instances in this dataset is n = 16 599 and the dimension of the problem is d = 18.
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Figure 22. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 23. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.11. Cal-housing

The number of instances in this dataset is n = 20 640 and the dimension of the problem is d = 8.
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Figure 24. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 25. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.12. UJIL

The number of instances in this dataset is n = 21 048 and the dimension of the problem is d = 527.

-23.2 -17.4 -11.6 -5.8 0.

-0.2

0.

0.2

0.4

0.6

log γ

lo
g

lif
t

(a) l = k logn

kernelK-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++

kernelK-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernelK-means++

-23.2 -17.4 -11.6 -5.8 0.

-0.2

0.

0.2

0.4

0.6

log γ

(b) l = k log k

-23.2 -17.4 -11.6 -5.8 0.

-0.2

0.

0.2

0.4

0.6

log γ

(c) l = k

Figure 26. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 27. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.
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C.13. CT-slice

The number of instances in this dataset is n = 53 500 and the dimension of the problem is d = 380. Due to the memory
requirements imposed onto our parallel implementation this dataset was sub-sampled to n = 25 000 instances.
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Figure 28. The figure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter of the Gaussian kernel
varies and the approximation rank is fixed to K = 100. The lift of a landmark selection strategy indicates how much better it is to
approximate the kernel matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.

-7.6 -3.8 0. 3.8 7.6

-7.

-3.75

-0.5

2.75

6.

log time

lo
g

Fr
ob

en
iu

s
er

ro
r

(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-DPP (1 000 MC steps) Lloyd ⊕K-means++ uniform

kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-DPP (10 000 MC steps) Lloyd ⊕ kernel K-means++

-7.6 -3.8 0. 3.8 7.6

-7.

-3.75

-0.5

2.75

6.

log time

(b) l = k log k

-7.6 -3.8 0. 3.8 7.6

-7.

-3.75

-0.5

2.75

6.

log time

(c) l = k

Figure 29. The figure shows the time it takes to select landmarks via different schemes together with the corresponding error in the
Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation rank is fixed to K = 100.


