A. Supplementary Materials for Bidirectional Learning for Time-series Models with Hidden Units

Here, we derive specific learning rules suggested by (27)-(28) as well as those with approximation with (29). These learning rule can be derived in a way similar to the learning rules (18)-(22) are derived from (17). We also provide some of the details, which are omitted in the derivation of (18)-(22).

The learning rules for \mathbf{U} and \mathbf{Z} are derived from (27)-(28) as follows:

$$
\begin{align*}
& \mathbf{U}^{[d]} \leftarrow \mathbf{U}^{[d]}+\eta \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \boldsymbol{\alpha}^{[s-1]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}\right)^{\top} \tag{32}\\
& \mathbf{Z}^{[d]} \leftarrow \mathbf{Z}^{[d]}+\eta \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \boldsymbol{\beta}^{[s-1]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}\right)^{\top} \tag{33}\\
& \mathbf{U}^{[\delta]} \leftarrow \mathbf{U}^{[\delta]}+\eta \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \mathbf{x}^{[s-\delta]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}\right)^{\top} \tag{34}\\
& \mathbf{Z}^{[\delta]} \leftarrow \mathbf{Z}^{[\delta]}+\eta \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \mathbf{h}^{[s-\delta]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}\right)^{\top} \tag{35}
\end{align*}
$$

for $1 \leq \delta<d$, where $\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}$ denotes the expected values of $\mathbf{h}^{[s]}$ with respect to the conditional distribution given by the following p_{ϕ} :

$$
\begin{equation*}
p_{\phi}\left(\mathbf{h}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=\frac{1}{Z^{\prime}} \exp \left(-E_{\phi}\left(\mathbf{h}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right) \tag{36}
\end{equation*}
$$

for any binary vectors $\mathbf{h}^{[s]}$, where Z^{\prime} is a normalization factor for the probabilities to sum up to one, and

$$
\begin{equation*}
E_{\phi}\left(\mathbf{h}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=-\sum_{\delta=1}^{d-1}\left(\mathbf{x}^{[s-\delta]}\right)^{\top} \mathbf{U}^{[\delta]} \mathbf{h}^{[s]}-\sum_{\delta=1}^{d-1}\left(\mathbf{h}^{[s-\delta]}\right)^{\top} \mathbf{Z}^{[\delta]} \mathbf{h}^{[s]}-\left(\boldsymbol{\alpha}^{[s-1]}\right)^{\top} \mathbf{U}^{[d]} \mathbf{h}^{[s]}-\left(\boldsymbol{\beta}^{[s-1]}\right)^{\top} \mathbf{Z}^{[d]} \mathbf{h}^{[s]} \tag{37}
\end{equation*}
$$

The energy in (37) can be decomposed into the energy associated with each hidden unit j as follows:

$$
\begin{equation*}
E_{\phi}\left(\mathbf{h}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=\sum_{j \in \mathcal{H}} E_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right) \tag{38}
\end{equation*}
$$

where \mathcal{H} denotes the set of hidden units, and

$$
\begin{equation*}
E_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=-\sum_{\delta=1}^{d-1}\left(\mathbf{x}^{[s-\delta]}\right)^{\top} \mathbf{U}_{:, j}^{[\delta]} h_{j}^{[s]}-\sum_{\delta=1}^{d-1}\left(\mathbf{h}^{[s-\delta]}\right)^{\top} \mathbf{Z}_{:, j}^{[\delta]} h_{j}^{[s]}-\left(\boldsymbol{\alpha}^{[s-1]}\right)^{\top} \mathbf{U}_{:, j}^{[d]} h_{j}^{[s]}-\left(\boldsymbol{\beta}^{[s-1]}\right)^{\top} \mathbf{Z}_{:, j}^{[d]} h_{j}^{[s]} \tag{39}
\end{equation*}
$$

where $\mathbf{U}_{:, j}$ denotes a column vector corresponding to the j-th column of \mathbf{U}, and $\mathbf{Z}_{:, j}$ is defined analogously.
Then (36) can be expressed as

$$
\begin{equation*}
p_{\phi}\left(\mathbf{h}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=\prod_{j \in \mathcal{H}} p_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right), \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
p_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right) & =\frac{\exp \left(-E_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right)}{\exp \left(-E_{\phi, j}\left(h_{j}^{[s]}=0 \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right)+\exp \left(-E_{\phi, j}\left(h_{j}^{[s]}=1 \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right)} \tag{41}\\
& =\frac{\exp \left(-E_{\phi, j}\left(h_{j}^{[s]} \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right)}{1+\exp \left(-E_{\phi, j}\left(h_{j}^{[s]}=1 \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)\right)} . \tag{42}
\end{align*}
$$

The j-th element of $\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}$ is then given by

$$
\begin{equation*}
\left\langle H_{j}^{[s]}\right\rangle_{\phi}=p_{\phi, j}\left(h_{j}^{[s]}=1 \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right) \tag{43}
\end{equation*}
$$

In (32)-(35), the value of $\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi}$ is computed with the latest values of ϕ. Let $\phi^{[t-1]}$ be the value of ϕ immediately before step t. With the recursive computation of (29), the learning rules of (32)-(35) are approximated with the following learning rules:

$$
\begin{align*}
& \mathbf{U}^{[d]} \leftarrow \mathbf{U}^{[d]}+\eta(1-\gamma) \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \boldsymbol{\alpha}^{[s-1]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi^{[s-1]}}\right)^{\top} \tag{44}\\
& \mathbf{Z}^{[d]} \leftarrow \mathbf{Z}^{[d]}+\eta(1-\gamma) \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \boldsymbol{\beta}^{[s-1]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi^{[s-1]}}\right)^{\top} \tag{45}\\
& \mathbf{U}^{[\delta]} \leftarrow \mathbf{U}^{[\delta]}+\eta(1-\gamma) \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \mathbf{x}^{[s-\delta]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi^{[s-1]}}\right)^{\top} \tag{46}\\
& \mathbf{Z}^{[\delta]} \leftarrow \mathbf{Z}^{[\delta]}+\eta(1-\gamma) \log p_{\theta}\left(\mathbf{x}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \mathbf{h}^{[s-\delta]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi^{[s-1]}}\right)^{\top} \tag{47}
\end{align*}
$$

for $1 \leq \delta<d$, where the quantity such as

$$
\begin{equation*}
G_{t-1}^{\prime} \equiv \sum_{s=\ell}^{t-1} \gamma^{t-1-s} \boldsymbol{\alpha}^{[s-1]}\left(\mathbf{h}^{[s]}-\left\langle\mathbf{H}^{[s]}\right\rangle_{\phi^{[s-1]}}\right)^{\top} \tag{48}
\end{equation*}
$$

can be computed recursively as

$$
\begin{equation*}
G_{t}^{\prime} \leftarrow \gamma G_{t-1}^{\prime}+(1-\gamma) \boldsymbol{\alpha}^{[t-1]}\left(\mathbf{h}^{[t]}-\left\langle\mathbf{H}^{[t]}\right\rangle_{\phi^{[t-1]}}\right)^{\top} \tag{49}
\end{equation*}
$$

One may consider real-valued units as well (Dasgupta \& Osogami, 2017; Osogami, 2016). For example, each of $x_{i}^{[t]}$ and $h_{j}^{[t]}$ may have a Gaussian distribution with the following density:

$$
\begin{align*}
p_{\theta, i}\left(x_{i}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) & =\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}^{[t]}-E_{\theta, i}\left(x_{i}^{[t]}=1 \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right)\right)^{2}}{2 \sigma_{i}^{2}}\right) \tag{50}\\
p_{\phi, i}\left(h_{j}^{[t]} \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right) & =\frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left(-\frac{\left(h_{j}^{[t]}-E_{\phi, j}\left(h_{j}^{[t]}=1 \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right)\right)^{2}}{2 \sigma_{j}^{2}}\right) \tag{51}
\end{align*}
$$

where σ_{i}^{2} and σ_{j}^{2} are variance parameters, $E_{\phi, j}$ is given by (39), and $E_{\theta, i}\left(x_{i}^{[t]}=1 \mid \mathbf{x}^{[<t]}, \mathbf{h}^{[<t]}\right)$ is given by

$$
\begin{equation*}
E_{\theta, i}\left(x_{i}^{[s]}=1 \mid \mathbf{x}^{[<s]}, \mathbf{h}^{[<s]}\right)=-b_{i}-\sum_{\delta=1}^{d-1}\left(\mathbf{x}^{[s-\delta]}\right)^{\top} \mathbf{W}_{:, i}^{[\delta]}-\sum_{\delta=1}^{d-1}\left(\mathbf{h}^{[s-\delta]}\right)^{\top} \mathbf{V}_{:, i}^{[\delta]}-\left(\boldsymbol{\alpha}^{[s-1]}\right)^{\top} \mathbf{W}_{:, i}^{[d]}-\left(\boldsymbol{\beta}^{[s-1]}\right)^{\top} \mathbf{V}_{:, i}^{[d]} \tag{52}
\end{equation*}
$$

