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1 Introduction

In this supplementary material we provide details for the proposed methods presented in the
main paper, and additional experimental results.

2 Sparse Spectral Reprsentation of Gaussian processes

To assist later deriviations and avoid reiterating the material in the main paper, we briefly
present important equations for Sparse Spectrum GPs (SSGPs). Based on Bochner’s theo-
rem, continuous shift-invariant kernels can be unbiasedly approximated by an explicit finite-
dimensional feature map. Leveraging this approximation, we consider SSGPs which is a class
of Gaussian processes with kernel in the form:

k(x, x′) = φ(x)Tφ(x′) + σ2
nδ(x− x′), φ(x) =

[
φc(x)
φs(x)

]
, (1)

φci(x) = σk cos(ωTi x), φsi (x) = σk sin(ωTi x), ωi ∼ p(ω),

where function φ : Rd → R2m is the explicit finite-dimensional feature map, scalar σk is a
scaling coefficient, function δ is the Kronecker delta function, and vectors ωi are sampled
according to the spectral density of the kernel to approximate. Consider the task of learning
the function f : Rd → R, given IID data D = {xi, yi}ni=1, with each pair related by

y = f(x) + ε, ε ∼ N (0, σ2
n), (2)

where ε is IID additive Gaussian noise, using Gaussian process regression (GPR). Because
of the explicit finite-dimensional feature map φ, each SSGP is equivalent to a Gaussian
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distribution over the weights of the features w ∈ R2m. Assuming that prior distribution of
weights w is N (0, I), and the feature map is fixed, after conditioning on data D = {xi, yi}ni=1

the posterior distribution of w is

w ∼ N (α, σ2
nA
−1), (3)

α = A−1ΦY, A = ΦΦT + σ2
nI, (4)

which can be derived through Bayesian linear regression. In (4), the column vector Y and

the matrix Φ are specified by the data D: Y =
[
y1 . . . yn

]T
, Φ =

[
φ(x1) . . . φ(xn)

]
.

Consequently, the posterior distribution over the output y in (2) at a test point x is ex-
actly Gaussian, in which the posterior variance explicitly captures the model uncertainty in
prediction with input x:

p(y|x) = N (αTφ(x), σ2
n + σ2

n‖φ(x)‖2
A−1). (5)

We consider multivariate outputs by utilizing conditionally independent scalar models
for each output dimension, i.e., assuming for outputs in different dimension ya and yb,
p(ya, yb|x) = p(ya|x)p(yb|x).

3 Prediction with uncertain input

In this section, we detail the two proposed methods of propogating uncertainty of x through
the probabilitic model p(y|x), with the assumption that 1) the input x is Gaussian dis-
tributed: x ∼ N (µ,Σ), and 2) the probabilistic model is represented as a SSGP. Through
marginalization, the probability density function of the output is:

p(y) =

∫
p(y|x)p(x) dx.

Computing this double integral exactly is intractable. Hence we apply analytically computed
Gaussian approximation of the output distribution through: 1) exact moment matching, and
2) linearization.

3.1 Preliminaries

We first provide some identities to facilitate later exposition of the closed-form expressions
of exact moment matching (§3.4) and linerization (§3.5). We start with the derivatives for
the feature map φ (1) using shorthand notation:

D cos(ωTx) = − sin(ωTx)ωT = cdω, D sin(ωTx) = cos(ωTx)ωT = sdω,

Dcdω = −sTdωωT , Dsdω = cTdωω
T ,

Dφ(x) = Mx =

[
Dφc(x)
Dφs(x)

]
, Dφci(x) = σkcdωi

, Dφsi (x) = σksdωi
.
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Then Proposition 1 in the main paper for the expectation of sinusoids over multivariate
Gaussian distributions can be expressed as

E cos(ωTx) = exp(−1

2
‖ω‖2

Σ) cos(ωTµ) = cω, E sin(ωTx) = exp(−1

2
‖ω‖2

Σ) sin(ωTµ) = sω.

Proposition 2 for the expectation of the multiplication of sinusoids and linear functions over
multivariate Gaussian distributions can be presented similarly:

E
(
cos(ωTx)x

)
= cωµ− sωΣω = cxω, E

(
sin(ωTx)x

)
= sωµ+ cωΣω = sxω.

We can further derive the expectations related to the feature map φ defined in (1):

Eφ(x) = ψ, ψ =

[
ψc

ψs

]
, ψci = Eφci(x) = σkcωi

,

E
(
φ(x)φ(x)T

)
= Ψ, Ψ =

[
Ψcc Ψcs

Ψsc Ψss

]
, Ψcc

ij =
σ2
k

2
(cωi+ωj

+ cωi−ωj
),

Ψcs
ij =

σ2
k

2
(sωi+ωj

− sωi−ωj
), Ψss

ij =
σ2
k

2
(−cωi+ωj

+ cωi−ωj
),

E
(
((αTφ(x))x)

)
= Υα, Υ =

[
Υc

1 . . . Υc
m Υs

1 . . . Υs
m

]
, Υc

i = σkcxωi
.

The derivatives of the preceding expectations to input statistics can be computed, with the
notation Dµf denoting the derivative of function f with respect to µ:

Dµcω = −swωT , Dµsω = cwω
T ,

DΣcω = −1

2
cωωω

T , DΣsω = −1

2
sωωω

T ,

Dµcxω = µDµcω + cωI − ΣωDµsω,

Dµsxω = µDµsω + sωI + ΣωDµcω,

DΣcxω = µ⊗DΣcω − Σω ⊗DΣsω − sω(DΣΣ)ω, DΣΣi,j = Jji,

DΣsxω = µ⊗DΣsω + Σω ⊗DΣcω + cω(DΣΣ)ω,

where Jij is the matrix with all zeros except ijth entry being 1, ⊗ is tesnor product, and
assuming the operators’ precedence: D > matrix multiplication > ⊗.

3.2 Proof for Proposition 1

The three useful identities involving quadratic exponentials to prove Proposition 1 and 2
are: ∫

exp(−xTAx+ vTx) dx = π
d
2 det(A)−

1
2 exp(

1

4
vTA−1v) = η, (6)∫

(aTx) exp(−xTAx+ vTx) dx = aT (
1

2
A−1v)η, (7)

p(x) = (2π)−
d
2 det(Σ)−

1
2 exp(−1

2
‖x− µ‖2

Σ−1) x ∼ N (µ,Σ). (8)
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Proof for E cos(ωTx) = exp(−1
2
‖ω‖2

Σ) cos(ωTµ):∫
cos(ωTx) p(x) dx, x ∼ N (µ,Σ)

= Re

(∫ (
cos(ωTx) + i sin(ωTx)

)
p(x) dx

)
= Re

(∫
exp(iωTx)(2π)−

d
2 det(Σ)−

1
2 exp(−1

2
(x− µ)TΣ−1(x− µ))dx

)
(Use (8))

= Re

(∫
exp(iωTµ) exp(iωT (x− µ))(2π)−

d
2 det(Σ)−

1
2 exp(−(x− µ)T (2Σ)−1(x− µ))dx

)
=(2π)−

d
2 det(Σ)−

1
2 Re

(
exp(iωTµ)

∫
exp(−(x− µ)T (2Σ)−1(x− µ) + (iω)T (x− µ))dx

)
=(2π)−

d
2 det(Σ)−

1
2 Re

(
exp(iωTµ)π

d
2 det(

1

2
Σ−1)−

1
2 exp(

1

4
(iω)T2Σ(iω))

)
(Use (6))

= exp(−1

2
‖ω‖2

Σ) cos(ωTµ).

The other part of Proposition 1: E sin(ωTx) = exp(−1
2
‖ω‖2

Σ) sin(ωTµ) can be shown in a
similar fashion, except that the imaginary operator Im will be used, instead of Re.

3.3 Proof for Proposition 2

To prove Proposition 2, we first prove that:∫
aTx cos(ωTx) p(x) dx, x ∼ N (µ,Σ)

= exp

(
−ω

TΣω

2

)
cos(ωTµ)aTµ− exp

(
−ω

TΣω

2

)
sin(ωTµ)aTΣω.

(9)

∫
aTx cos(ωTx) p(x) dx, x ∼ N (µ,Σ)

= Re

(∫
aTx exp(iωTx)(2π)−

n
2 det(Σ)−

1
2 exp(−1

2
‖x− µ‖2

Σ−1)dx

)
(Use (8))

=(2π)−
n
2 det(Σ)−

1
2 Re

(∫ (
aTµ+ aT (x− µ)

)
exp(iωTµ) exp(iωT (x− µ)) exp(−‖x− µ‖2

(2Σ)−1)dx

)
=aTµ exp(−1

2
‖ω‖2

Σ) cos(ωTµ) + (2π)−
n
2 det(Σ)−

1
2 Re

((
exp(iωTµ

) ∫
aTx exp(−1

2
‖x‖Σ−1 + (iω)Tx)dx

)
=aTµ exp(−1

2
‖ω‖2

Σ) cos(ωTµ) + (2π)−
n
2 det(Σ)−

1
2 Re

(
exp(iωTµ) iaTΣω π

n
2 det(

1

2
Σ−1)−

1
2 exp(

1

4
‖iω‖2

2Σ)

)
=aTµ exp(−1

2
‖ω‖2

Σ) cos(ωTµ)− aTΣω exp(−1

2
ωTΣω) sin(ωTµ),

(10)
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where the fourth equality uses (7). Then we can select a as indicator vectors ei which
contains zeros, except with the ith element being 1. After stacking these elements together,
we recover the identity of cosine part in Proposition 2. For the sine part, the same techniques
apply.

3.4 Exact moment matching

In exact moment matching, we match the mean and variance of the approximated Gaussian
distribution with the ones of the true output distribution exactly. For simplicity of notations,
henceforth, we suppress the dependency of φ(x) on x, and keep using y for scalar function
values. The predictive mean, variance, covariance between outputs, and cross-covariance
between inputs and outputs are

E y = E E(y|x) = E
(
αTφ

)
= αTψ,

Var y = E Var(y|x) + Var E(y|x) = σ2
n + σ2

n E ‖φ‖2
A−1 + E(αTφ)2 − (E y)2

= σ2
n + Tr

(σ2
nA
−1 + ααT )︸ ︷︷ ︸
P

Ψ

− (E y)2,

Cov(ya, yb) = Cov (E(ya|x),E(yb|x)) = αTaΨabαb − (E ya)(E yb),

Cov(x, y) = Cov(x,E(y|x)) = E (xE(y|x))− (Ex)(E y) = Υα− (E y)µ,

where Ψab denotes that ωi and ωj in the definition of Ψ come from the models for ya and
yb respectively, since different output dimenstions can have different feature maps, and the

constant
σ2
k

2
is changed to

σk,aσk,b
2

accordingly. The corresponding derivatives are derived
using the chain rule:

Dµ(E y) = αTDµψ,

Dµ(Var y) = Tr (PDµΨ)− 2(E y)(Dµ E y),

Dµ Cov(ya, yb) = αTa (DµΨab)αb − (E ya)(Dµ E yb)− (E yb)(Dµ E ya),

Dµ Cov(x, y) = (DµΥ)α− (E y)I − µDµ(E y), DΣ Cov(x, y) = (DΣΥ)α− µ⊗DΣ(E y),

where I is an identity matrix with proper size. Substituting Dµ with DΣ yields the derivatives
to the input covariance matrix Σ if the expressions for DΣ are not explicitly provided above.

3.5 Linearization

An alternative approach to Gaussian approximations of the predictive distribution is based
on the linearization of the posterior mean function in (5) at the input mean µ:

m(x) ≈ m(µ) +Dm(µ)(x− µ), Dm(µ) = αTMµ.
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Then the mean, (co)variance, and cross-covariance for the approximated Gaussian distribu-
tion can be computed as

E y = E E[y|x] ≈ E
(
m(µ) + αTM(x− µ)

)
= m(µ),

Var y = E Var(y|x) + Var E(y|x) ≈ σ2
n + σ2

n‖φ(µ)‖2
A−1 + αTMΣMTα,

Cov(ya, yb) = Cov (E(ya|x),E(yb|x)) = E
(
αTaMa(x− µ)(x− µ)TMT

b αb
)

= αTaMaΣM
T
b αb,

Cov(x, y) = Cov(x,E(y|x)) = E
(
(x− µ)(αTM(x− µ))

)
= αTMΣ,

where we omit the subscript µ for Mµ, and Ma, Mb stand for Mµ for model ya, yb respectively.
Their derivatives to the input statistics are

Dµ(E y) = αTM, DΣ(E y) = 0,

Dµ(Var y) = 2σTnφ(µ)TA−1M + 2αT (DµM)ΣMTα, DΣ(Var y) = αTM(DΣΣ)MTα,

Dµ Cov(ya, yb) = αTa ((DµMa)ΣMb +MaΣ(DµMb))αb, DΣ Cov(ya, yb) = αTaMa(DΣΣ)MT
b αb,

Dµ Cov(x, y) = αT (DµM)Σ, DΣ Cov(x, y) = αTM(DΣΣ),

where for simplicity in notation, we omit the fact that approximation has been made in the
equations for the derivatives.

4 Trajectory Optimization

4.1 Belief space representation of dynamics

Given samples from the state space dynamics,

xk+1 = xk + f(xk, uk) + wk, wk ∼ N (0,Σw), (11)

We create a SSGP model over f . Given a distribution p(xk) = N (µk,Σk) , we can compute
the predictive distribution p(xk+1) ≈ N (µk+1,Σk+1) as follows

µk+1 = µk + E fk

Σk+1 = Σk + Cov fk + Cov(xk, fk) + Cov(fk, xk).
(12)

Note that we use subscript k to denote time step. We define the belief as the predictive
distribution bk = [µk vec(Σk)]

T over state xk, where vec(Σk) is the vectorization of Σk.
Therefore eq (12) can be written in a compact form

bk+1 = F(bk, uk), (13)

where F is defined by (12). The above equation corresponds to the belief space representation
of the unknown dynamics (12) in discrete-time.
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4.2 Trajectory optimization in belief space

In order to incorporate dynamics model uncertainty explicitly, we perform trajectory op-
timization in the Gaussain belief space. Our proposed framework is based on Differential
Dynamic Programming (DDP) [JM70], at each iteration we create a local model along a
nominal trajectory through the belief space (b̄k, ūk) including: 1) a linear approximation
of the belief dynamics model; 2) a second-order local approximation of the value function.
We denote the belief and control nominal trajectory as (b̄1:N , ū1:N) and deviations from this
trajectory as δbk = bk − b̄k, δuk = uk − ūk. The linear approximation of the belief dynamics
along the nominal trajectory is

δbk+1 ≈

[
∂µk+1

∂µk

∂µk+1

∂Σk
∂Σk+1

∂µk

Σk+1

∂Σk

]
δbk +

[
∂µk+1

∂uk
∂Σk+1

∂uk

]
δuk = F bkδbk + Fuk δuk. (14)

For a general non-quadratic cost function we approximate it as a quadratic function along
the nominal belief and control trajectory (b, u), i.e.,

L(bk, uk) ≈ L0
k + (Lbk)Tδbk + (Luk)Tδuk +

1

2

[
δbk
δuk

]T [ Lbbk Lbuk
Lubk Luuk

] [
δbk
δuk

]
, (15)

where superscripts denote partial derivatives, e.g., Lbk = ∇bLk(bk, uk) and L0
k = L(bk, uk). We

will use this superscript rule for all cost-related terms. All partial derivatives are computed
analytically. Based on the dynamic programming principle, the value function is the solution
to the Bellman equation

V (bk, k) = min
uk

(
L(bk, uk) + V

(
F(bk, uk), k + 1

)︸ ︷︷ ︸
Q(bk,uk)

)
. (16)

where V is the value function for the belief b at time step k. At the terminal time step
V (bN , N) = Eh(x(N)) where h(x(N)) is the final cost. L(bk, uk) = E l(xk, uk) with l the
running cost function. Given the state dynamics in (11) and the cost in (15), our goal is to
obtain a quadratic approximation of the value function along the nominal trajectory b̄1:N .
We wil write this second order approximation as

V (bk, k) ≈ V 0
k + (V b

k )Tδbk +
1

2
δbTkV

bb
k δbk. (17)

where again superscripts denote partial derivatives, e.g., V b
k = ∇bVk(bk, uk) and V 0

k =
V (bk, uk). We can do so by expanding the Q-function defined in (16) along (b1:N , u1:N)

Qk(bk + δbk, uk + δuk) ≈ Q0
k +Qb

kδbk +Qu
kδuk +

1

2

[
δbk
δuk

]T [
Qbb
k Qbu

k

Qub
k Quu

k

] [
δbk
δuk

]
, (18)
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where

Qb
k = Lbk + V b

kF bk, Qu
k = Luk + V b

kFuk ,
Qbb
k = Lbbk + (F bk)TV bb

k F bk, Qub
k = Lubk + (Fuk )TV bb

k F bk,
Quu
k = Luuk + (Fuk )TV bb

k Fuk , (19)

The local optimal control law is computed by minimizing the approximated Q function

δûk = arg min
δuk

[
Qk(bk + δbk, uk + δuk)

]
= −(Quu

k )−1Qu
k − (Quu

k )−1Qub
k δbk,

(20)

where the superscripts of Q indicate partial derivatives. The new optimal control is obtained
as ûk = ūk + δûk. Plugging the optimal control of (20) into the approximated Q-function
given by (18) results in the following backward propagation of the value function

Vk−1 = Vk −Qu
k(Q

uu
k )−1Qu

k , V b
k−1 = Qb

k −Qu
k(Q

uu
k )−1Qub

k , V bb
k−1 = Qbb

k −Qvu
k (Quu

k )−1Qub
k .

The optimized control policy û1:N is applied to the belief dynamics to generate a new nominal
trajectory in a forward pass. We keep optimizing the control policy using this backward-
forward scheme iteratively until convergence.

5 Experiments

5.1 Additional experiments on approximate inference

We compare the proposed approximate inference methods with three existing approaches:
the full GP exact moment matching (GP-EMM) approach [CGLR03, GRQCMS03, Kus06],
Subset of Regressors GP (SoR-GP) [WR06] used in AGP-iLQR [BSWR14], and LWPR
[VDS05] used in iLQG-LD [MKV10]. Note that SoR-GP and LWPR do not take into account
input uncertainty when performing regressions. We consider two multi-step prediction tasks
using the dynamics models of a quadrotor (16 state dimensions, 4 control dimensions) and
a Puma-560 manipulator (12 state dimensions, 6 control dimensions).

5.1.1 Accuracy of multi-step prediction

In the following, we evaluate the performance in terms of prediction accuracy. We collected
training sets of 1000 and 2000 data points for the quadrotor and puma task, respectively. We
used 100 and 50 random features for our methods. We used 100 and 50 reference points for
SoR-GP. Based on the learned models, we used a set of 10 initial states and control sequences
to perform rollouts (200 steps for quadrotor and 100 steps for Puma) and compute the cost
expectations at each step. Fig.1(a)(b) shows the cost prediction errors, i.e.(L(xk)−EL(xk))

2.
It can be seen that SSGP-EMM is very close to GP-EMM and SSGP-EMM performs slightly
better than SSGP-Lin in all cases. Since SoR-GP and LWPR do not take into account input
uncertainty when performing regression, our methods outperform them consistently.
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Figure 1: (a)-(b): Approximate inference accuracy test. The vertical axis is the squared error of
cost predictions for (a) quadrotor system and (b) Puma 560 system. Error bars represent standard
deviations over 10 independent rollouts. (c)-(d): Comparison of computation time on a log scale
between (c) SSGP-Lin and GP-EMM; (d) SSGP-EMM and GP-EMM. The horizontal axis is the
input and output dimension (equal in this case). Vertical axis is the CPU time in seconds.

5.1.2 Computational efficiency

In terms of the computational demand, we tested the CPU time for one-step prediction
using SSGP-EMM and SSGP-Lin and full GP-EMM. We used sets of 800 random data
points of 1,10,20,30,40,50,60,70,80,90 and 100 dimensions to learn SSGP and GP models.
The results are shown in fig.1c,1d. Both SSGP-EMM and SSGP-Lin show significantly less
computational demand than GP-EMM with similar prediction performance (fig.1c,1d). Our
methods are more scalable than GP-EMM, which is the major computational bottleneck for
probabilistic model-based RL approaches [DFR15, PT14].
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5.2 Model Predictive Control Task descriptions

In the following we describe the model predictive control tasks considered in the main paper.
The Bayesian filtering tasks are self-contained therefore we omit further discussions here. In
our experiments, we use the popular squared exponential (SE) kernel for SSGPs in order to
compare with related methods that are based on the SE kernel. However, as we mentioned
in the paper, our proposed methods can be generalized to any continuous, shift-invariant and
positive definite kernels. In contrast, analytic moment-based methods for GPs [CGLR03,
GRQCMS03, Kus06, DFR15] are restricted to the SE kernel.

5.2.1 PUMA-560 task: moving target and model parameter changes

The task is to steer the end-effector to the desired position and orientation. The desired
state is time-varying over 800 time steps as shown in fig.2a. We collected 1000 data points
offline and sampled 50 random features for both of our methods. Similarly for AGP-iLQR
we used 50 reference points. In order to show the effect of online adaptation, we increased
the mass of the end-effector by 500% at the beginning of online learning (it is fixed during
learning). In the main paper we show the cost reduction results averaged over 3 independent
trials. Our method based on SSGP-EMM slightly outperforms SSGP-lin based method.

5.2.2 Quadrotor task: time-varying tasks and dynamics

The objective is to start at (-1, 1, 0.5) and track a moving target as shown in fig.?? for 400
steps. The mass of the quadrotor is decreasing at a rate of 0.02 kg/step. The controls are
thrust forces of the 4 rotors and we consider the control constraint umin = 0.5, umax = 3. We
collected 3000 data points offline, and sampled 100 and 400 features for online learning. The
forgetting factor for online learning λ = 0.992. SSGP-Lin was used for approximate inference.
The receding-horizon DDP (RH-DDP) [TES07] with full knowledge of the dynamics model
was used as a baseline.

5.2.3 Autonomous drifting: steady-state stabilization

In this example, we study the control of a wheeled vehicle during extreme operation condi-
tions (powerslide). The task is to stabilize the vehicle to a specified steady-state using purely
longitudinal control. The desired steady-state consists of velocity V , side slip angle β, and
yaw rate V

R
where R is the path radius. This problem has been studied in [VFT10] where

the authors developed a LQR control scheme based on analytic linearization of the dynamics
model. However, this method is restrictive due to the assumption of full knowledge of the
complex dynamics model. We applied our method to this task under unknown dynamics with
2500 offline data points, which were sampled from the empirical vehicle model in [VFT10].
We used 50, 150, and 400 random features and SSGP-Lin for approximate inference in our
experiments. Results and comparisons with the solution in [VFT10] are shown in the main
paper.
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Figure 2: PUMA-560 and quadrotor tasks

5.3 Comparison with other methods

Our proposed algorithm is related to several algorithms and differs (listed in Table 1). First,
SSGPs are more robust to modeling error than Locally Weighted Projection Regression
(LWPR) used in iLQG-LD [MKV10]. See a numerical comparison in [GM13]. Receptive
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Field Weighted Regression (RFWR) used by Minimax DDP [MA02] is very similar to LWPR
so the conclusion is analogous. Second, we efficiently propagate uncertainty in multi-step
prediction which is crucial in MPC. In contrast, AGP-iLQR [BSWR14] drops the input
uncertainty and uses subset of regressors (SoR-GP) which lacks a principled way to select
reference points. PDDP [PT14] uses GPs which are computationally expensive for online
optimization. Two deep neural networks are used for modeling in [YA16], which make it
difficult to perform online incremental learning, as we do here.

Our
method

iLQG-LD PDDP AGP-iLQR Minimax
DDP

SDDP with
NN

Uncertainty propa-
gation

Yes No Yes No No Yes

Dynamics model SSGP LWPR GP SoR-GP RFWR (par-
tial)

Neural Net-
work

Online
model/policy
update

Yes/Yes Yes/No No/No Yes/Yes No/No No/No

Table 1: Comparison of trajectory optimization-related methods with learned dynamics models.
They include: our proposed algorithm, iLQG-LD [MKV10], PDDP [PT14], AGP-iLQR [BSWR14],
Minimax DDP [MA02] and SDDP with NN [YA16].

6 Discussion

6.1 Conditional independence between outputs

To deal with multivariate outputs, the assumption of conditional independence between any
two output dimensions is imposed, which implies that 1) the noise for different outputs are
independent, e.g., Gaussian noise with diagonal covariance matrix, and 2) there’s no cross-
dependence between channels in the prior, e.g., a vector-valued Gaussian process (GP) prior
with a matrix-valued kernel function that only has nonzero entries on the diagonal. These two
conditions may be violated in practice. On one hand, the noise may not be independent in
general, e.g., wind blowing in some direction causes coupled noise on acceleration for aircraft.
On the other hand, one may wish to exploit useful structure between different channels by
incorporating them in the prior, e.g., dependence of velocity and acceleration in learning
dynamics, and the relation between inverse dynamics models for different loads [WKVC09].
But, nevertheless, conditional independence is assumed in most of the related work [DFR15,
KF09]. And we made this assumption in our experiments as well.

To accommodate conditional dependence in a principled way, vector-valued Gaussian
processes can be used [BF05, ARL+12]. This generally results in a more complicated model
with additional computational cost. Incorporating vector-valued GPs would be an interesting
extension of this work.
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6.2 SSGP-EKF vs. SSGP-ADF

Given the results shown in fig. 1 in the main paper, SSGP-EKF seems to underestimate the
variance of the filtered distribution when the input is around zero compared with GP-EKF.
In this experiment, only 10 random Fourier features were used to approximate an SE kernel.
As the number of features increases, the filtered distributions using GP-EKF and SSGP-EKF
look more similar.

In general, we hypothesize that SSGP-Lin is more sensitive to a small number of features
than SSGP-EMM. In SSGP-Lin we use a locally linear approximation of a nonlinear func-
tion, and map a Gaussian distribution through this linear function. Intuitively, this locally
linear approximation may vary significantly with the number of features, especially when
the number of features is small. In contrast, in SSGP-EMM we compute the moments of the
predictive distribution without this locally linear approximation. In order to validate this
hypothesis, we performed additional experiments on a one-step approximate inference task,
shown in fig. 3. This exact phenomenon was observed in these experimental results. More
precisely, when a small number of features are used (less than 20), the difference between
SSGP-Lin and GP-Lin is greater than the difference between SSGP-EMM and GP-EMM,
where the difference is measured by the KL divergence between the predictive distributions.
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Figure 3: KL divergences between SSGP-EMM and GP-EMM, SSGP-Lin and GP-Lin
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