
Appendix of Distributed Asynchronous Variational Gaussian Processes

A Derivatives

A.1 Objective

As described in the paper, the objective function to be minimized is −L =
∑n

i=1 gi + h, where
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)
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and we define β = σ−2 and φi = φ(xi).

A.2 Kernel

A common choice for the kernel is the anisotropic squared exponential covariance function:

k(xi,xj) = a20 exp
(
− 1

2
(xi − xj)

T diag(η)(xi − xj)
)
, (3)

in which the hyperparameters are the signal variance a0 and the lengthscales η = {1/a2k}dk=1, controlling how fast the
covariance decays with the distance between inputs. Using this covariance function, we can prune input dimensions by
shrinking the corresponding lengthscales based on the data (when ηd = 0, the d-th dimension becomes totally irrelevant
to the covariance function value). This pruning is known as Automatic Relevance Determination (ARD) and therefore this
covariance is also called the ARD squared exponential.

A.3 Derivative over lnσ (ln β−1/2)

The derivative of gi over lnσ is
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A.4 Derivative over ln a0

The derivative of gi over ln a0 is
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A.5 Derivative over Z

By defining L the lower triangular Cholesky factor of K−1
mm, the derivative of gi over Z is
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where

pi = −µyi + (µµT + Σ)φ(xi)− φ(xi), (7)
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The symbol ◦ denotes the Hadamard product, and Ψ is an upper triangular matrix with diagonal elements all equal to 0.5
and strictly upper triangular elements all equal to 1, as follows:

Ψ =



0.5 1 . . . 1 1

0 0.5
. . . 1 1

...
. . .

. . .
. . .

...

0 0
. . . 0.5 1

0 0 . . . 0 0.5


. (9)

A.6 Derivative over lnη

The derivative of gi over lnη is

∂gi
∂ lnη

=
1

2σ2

{
21T

m

[
Z ◦

(
((Lpi) ◦ km(xi))x

T
i

)]
− 1T

m ((Lpi) ◦ km(xi)) (xi ◦ xi)
T − ((Lpi) ◦ km(xi))

T
(Z ◦Z)

− 1T
m

[
Z ◦ ((T i + TT

i )Z)
]

+ 1T
m

[
(T i + T T

i )(Z ◦Z)
]}
◦ η. (10)

B Properties of the ELBO of ADVGP

By defining U as the upper triangular Cholesky factor of Σ, i.e., Σ = UTU , we have

Lemma B.1 The gradient of gi in Equation 1, ∇gi, is Lipschitz continuous with respect to each element in µ and U .

We can prove this by showing the first derivative of ∇gi with respect to each element of µ and U is bounded, which is
constant in our case. As shown in our paper, the gradients of gi with respect to µ and U are:
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which are affine functions for µ and Σ respectively. Therefore, the first derivative of ∇gi is constant.

Lemma B.2 h in Equation 2 is a convex function with respect to µ and U .

This can be proved by verifying that the Hessian matrices of h with respect to µ and vec(U) are both positive semidefinite,
where we denote vec(·) as the operator that stacks the columns of a matrix as a vector. To show this, we first compute the
partial derivatives of h with respect to µ and U as
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The Hessian matrix of h with respect to µ is

H(µ) = Im×m � 0. (15)

The Hessian matrix of h with respect to vec(U) is
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C Negative Log Evidences on US Flight Data
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Figure C.1: Negative log evidences for 700K/100K US Flight data as a function of training time.

Method m = 100 m = 200
ADVGP 925236 922907

DistGP-GD 927414 924208
DistGP-LBFGS 932179 927331

Table C.1: Negative log evidences for 700K/100K US Flight data.
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Figure C.2: Negative log evidences for 2M/100K US Flight data as a function of training time.

Method m = 100 m = 200
ADVGP 2.58921× 106 2.58267× 106

DistGP-GD 2.59471× 106 2.58601× 106

DistGP-LBFGS 2.59971× 106 2.59817× 106

Table C.2: Negative log evidences for 2M/100K US Flight data.
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D Mean Negative Log Predictive Likelihoods (MNLPs) on US Flight Data
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Figure D.1: Mean negative log predictive likelihoods for 700K/100K US Flight data as a function of training time.

Method m = 100 m = 200
ADVGP 1.3106 1.3066

DistGP-GD 1.3099 1.3062
DistGP-LBFGS 1.3237 1.3136

SVIGP 1.3157 1.3096

Table D.1: Mean negative log predictive likelihoods for 700K/100K US Flight data.
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Figure D.2: Mean negative log predictive likelihoods for 2M/100K US Flight data as a function of training time.
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Method m = 100 m = 200
ADVGP 1.3301 1.3258

DistGP-GD 1.3317 1.3297
DistGP-LBFGS 1.3380 1.3355

SVIGP 1.3335 1.3306

Table D.2: Mean negative log predictive likelihoods for 2M/100K US Flight data.
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