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1. Preliminaries
In this section we list a few results from the literature that will be utilized in the proof of Theorem 1.
Proposition 1 (Lemma 1 in (Ben-David et al., 2010)). Let d be the VC dimension of the hypothesis set H and S1, S2 be
two i.i.d. samples of size n from D1 and D2 respectively. Then for any δ > 0 with probability at least 1− δ:

disc(D1, D2)≤disc(S1, S2)+2

√
2d log(2n) + log(2/δ)

n
.

Lemma 1 (Theorem 1 in (Maurer, 2006)). Let X1, . . . , Xn be independent random variables taking values in the set X
and f be a function f : Xn → R. For any x = (x1, . . . , xn) ∈ Xn and y ∈ X define:

xy,k = (x1, . . . , xk−1, y, xk+1, . . . , xn)

(inf
k
f)(x) = inf

y∈X
f(xy,k)

∆+,f =

n∑
i=1

(f − inf
k
f)2.

Then for t > 0:

Pr{f − E f ≥ t} ≤ exp

(
−t2

2‖∆+‖∞

)
. (1)

Lemma 2 (Corollary 6.10 in (McDiarmid, 1989)). LetWn
0 be a martingale with respect to a sequence of random variables

(B1, . . . , Bn). Let bn1 = (b1, . . . , bn) be a vector of possible values of the random variables B1, . . . , Bn. Let

ri(b
i−1
1 ) = sup

bi

{Wi : Bi−1
1 = bi−1

1 , Bi = bi} − inf
bi
{Wi : Bi−1

1 = bi−1
1 , Bi = bi}. (2)

Let r2(bn1 ) =
∑n
i=1(ri(b

i−1
1 ))2 and R̂2 = supbn1 r

2(bn1 ). Then

Pr
Bn

1

{Wn −W0 > ε} < exp

(
−2ε2

R̂2

)
. (3)

Lemma 3 (Originally (Hoeffding, 1963); in this form Theorem 18 in (Tolstikhin et al., 2014)). Let {U1, . . . , Um} and
{W1, . . . ,Wm} be sampled uniformly from a finite set of d-dimensional vectors {v1, . . . , vN} ⊂ Rd with and without
replacement respectively. Then for any continuous and convex function F : Rd → R the following holds:

E

[
F

(
m∑
i=1

Wi

)]
≤ E

[
F

(
m∑
i=1

Ui

)]
(4)
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Lemma 4 (Part of Lemma 19 in (Tolstikhin et al., 2014)). Let x = (x1, . . . , xl) ∈ Rl. Then the following function is
convex:

F (x) = sup
i=1...l

xi. (5)

2. Proof of Theorem 1
We start with bounding the multi-task error by the errors on the source tasks, and transition to empirical quantities while
keeping the effect of random sampling controlled.

Fix a subset of labeled tasks I = {i1, . . . , ik}, a task 〈Dt, ft〉 and a weight vector α ∈ ΛI . Let h∗i ∈ arg minh∈H(ert(h) +
eri(h)).1 Writing `(h, h′) as shorthand for `(h(x), h′(x)), we have

| erα(h)− ert(h)| =
∣∣∣∑
i∈I

αi eri(h)− ert(h)
∣∣∣ ≤∑

i∈I
αi
∣∣ eri(h)− ert(h)

∣∣ (6)

≤
∑
i∈I

αi

(∣∣ eri(h)− E
x∼Di

`(h, h∗i )
∣∣+
∣∣ E
x∼Di

`(h, h∗i )− E
x∼Dt

`(h, h∗i )
∣∣+
∣∣ ert(h)− E

x∼Dt

`(h, h∗i )
∣∣) = (∗)

(7)

We can bound each summand:

| eri(h)− E
x∼Di

`(h, h∗i )| ≤ eri(h
∗)

| E
x∼Di

`(h, h∗i )− E
x∼Dt

`(h, h∗i )
∣∣ ≤ disc(Di, Dt)

| ert(h)− E
x∼Dt

`(h, h∗i )
∣∣ ≤ ert(h

∗
i )

where the first and the last inequalities hold by the triangular inequality for ` and the second one follows from the definition
of discrepancy. Therefore,

(∗) ≤
∑
i∈I

αi(eri(h
∗
i ) + disc(Di, Dt) + ert(h

∗
i )) =

∑
i∈I

αi(λit + disc(Di, Dt)). (8)

Consequently, assuming that every task t has its own weights αt we obtain that:

1

T

T∑
t=1

ert(h) ≤ 1

T

T∑
t=1

erαt(ht) +
1

T

T∑
t=1

∑
i∈I

αti disc(Dt, Di) +
1

T

T∑
t=1

∑
i∈I

αtiλti. (9)

We continue with bounding every expectation on the right hand side of (9) by its empirical counterpart.

2.1. Bound 1
T

∑T
t=1

∑
i∈I α

t
i disc(Dt, Di)

We apply Proposition 1 to every summand and combine the results using a union bound argument. We obtain that with
probability at least 1− δ/2 uniformly for all choices of I and α1, . . . , αT ∈ ΛI :

1

T

T∑
t=1

∑
i∈I

αti disc(Dt, Di) ≤
1

T

T∑
t=1

∑
i∈I

αti disc(St, Si) + 2

√
2d log(2n) + log(4T 2/δ)

n
. (10)

2.2. Bound 1
T

∑T
t=1 erαt(ht)

Now we upper-bound the error term in two steps.

1If the minimum is not attained, the same inequality follows by an argument of arbitrary close approximation.
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2.2.1. RELATE 1
T

∑T
t=1 erαt(ht) TO 1

T

∑T
t=1 ẽrαt(ht)

We start with relating the multi-task error to the hypothetical empirical error, if the learner would receive labels for all
examples in the selected labeled tasks:

ẽrα(h) =
∑
i∈I

αiêrSu
i

(h) (11)

for

êrSu
i

(h) =
1

n

n∑
j=1

`(h(xij), fi(x
i
j)). (12)

Clearly, if m = n this part is not necessary and we can avoid the resulting complexity terms.

Because the choice of the tasks to label, I , their weights, α = (α1, . . . , αT ), and the predictors, h = (h1, . . . , hT ), all
depend on the unlabeled data, we aim for a bound that is holds simultaneous for all choices of these quantities, under the
condition that I and α depend only on the unlabeled samples, while h can be chosen based also on the labeled subsets.

Our main tool is a refined version of McDiarmid’s inequality, due to Maurer (Maurer, 2006) (Lemma 1), which allows us
to make use of the internal structure of the weights, α, while deriving a large deviation bound.

For any S = (Su1 , . . . , S
u
T ) define:

Ψ(S) = sup
I={i1,...,ik}

sup
α1,...,αn∈ΛI

sup
h1,...,hT

1

T

T∑
t=1

T∑
i=1

αti(eri(ht)− êrSu
i

(ht)) = sup
I

sup
α

sup
h

g(α,h,S) (13)

for

g(α,h,S) =

T∑
i=1

n∑
j=1

(
1

Tn

T∑
t=1

αti(eri(ht)− `(ht(xij), ft(xij)))

)
. (14)

For notational simplicity we will sometimes think of every Sut as a set of pairs (xti, y
t
i), where yti = ft(x

t
i). To apply

Lemma 1 we establish a bound on ∆+,Ψ(S) =
∑
i

∑
j(Ψ(S)−Ψij(S))2, with

Ψij(S) = inf
(x,y)

sup
α

sup
h

g(α,h,S \ {(xij , yij)} ∪ {(x, y)}, (15)

i.e. the possible smallest value for Ψ when changing only the data point (xij , y
i
j). Let α∗,h∗ be the point where the sup in

the (13) is attained2, i.e. Ψ(S) = g(α∗,h∗,S). Then:

Ψij(S) ≥ inf
(x,y)

g(α∗,h∗,S \ {(xij , yij)} ∪ {(x, y)} ) (16)

and therefore

Ψ(S)−Ψij(S) ≤ g(α∗,h∗,S)− inf
(x,y)

g(α∗,h∗,S \ {(xij , yij)} ∪ {(x, y)}) (17)

≤ sup
(x,y)

1

Tn

T∑
t=1

α∗ti (−`(h∗t (xij), yij) + `(h∗t (x), y)) ≤ 1

Tn

T∑
t=1

α∗ti , (18)

where for the last inequality we use that ` is bounded in [0, 1]. Because also Ψ(S)−Ψij(S) ≥ 0, we obtain

∆+,Ψ(S) =

T∑
i=1

n∑
j=1

(Ψ(S)−Ψij(S))2 ≤
T∑
i=1

n∑
j=1

1

T 2n2

(
T∑
t=1

α∗ti

)2

≤ 1

T 2n

(
T∑
i=1

T∑
t=1

α∗ti

)2

=
1

n
, (19)

2If the supremum is not attained the subsequent inequality still follows from an argument of arbitrarily close approximation.
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(remember that
∑
i αi = 1 for any α ∈ ΛI ). Therefore, according to Lemma 1 with probability at least 1− δ/4:

Ψ(S) ≤ E Ψ(S) +

√
2

n
log

4

δ
. (20)

To bound ES Ψ(S) we use symmetrization and Rademacher variables, σij :

E
S

Ψ(S) = E
S

sup
I

sup
α1,...,αT∈ΛI

sup
h1,...,hT

T∑
i=1

n∑
j=1

(
1

Tn

T∑
t=1

αti(eri(ht)− `(ht(xij), yij))

)
(21)

≤ 2E
S
E
σ

sup
I

sup
α1,...,αT∈ΛI

sup
h1,...,hT

T∑
i=1

n∑
j=1

(
σij
Tn

T∑
t=1

αti`(ht(x
i
j), y

i
j)

)
(22)

≤ 2E
S
E
σ

1

T

T∑
t=1

sup
αt∈Λ,ht

T∑
i=1

n∑
j=1

σijα
t
i

n

T∑
t=1

`(ht(x
i
j), y

i
j) (23)

≤ 2E
S
E
σ

sup
α,h

T∑
i=1

n∑
j=1

σijαi
n

`(h(xij), y
i), (24)

where line (23) is obtained from line (22) by dropping the assumption of a common sparsity pattern between the α-s. Note
that the function inside the last sup is linear in α ∈ Λ, therefore supα can be reduced to the sup over the corners of the
simplex, {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. At the same time, by Sauer’s lemma, the number of different choices of h on
S is bounded by

(
eTn
d

)d
. Therefore, the total number of different choices in (24) is bounded by T

(
enT
d

)d
. Furthermore,

for any choice of α and h, the norm of the Tn-vector formed by the summands of (24) is bounded by 1/
√
n, because

T∑
i=1

n∑
j=1

(σijαi
n

`(h(xij), y
i)
)2

=
1

n2

T∑
i=1

n∑
j=1

(
αi`(h(xij), y

i)
)2 ≤ 1

n2

n∑
j=1

(
T∑
i=1

αi

)2

=
1

n
. (25)

Therefore, by Massart’s lemma:

E
σ

sup
α,h

T∑
i=1

n∑
j=1

σilαi
n

`(h(xil), y
i
l) ≤

√
2(log T + d log(enT/d))√

n
. (26)

Combining (20) and (26) we obtain that with probability at least 1 − δ/4 simultaneously for all choices of tasks to be
labeled, I , weights α and hypotheses h:

1

T

T∑
t=1

erαt(ht) ≤
1

T

T∑
t=1

ẽrαt(ht) +

√
8(log T + d log(enT/d))

n
+

√
2

n
log

4

δ
. (27)

2.2.2. RELATE 1
T

∑T
t=1 êrαt(ht) TO 1

T

∑T
t=1 ẽrαt(ht)

Fix the unlabeled samples Su1 , . . . , S
u
T . This uniquely determines the chosen tasks I and the weights α1, . . . , αT ∈ ΛI , so

the only remaining source of randomness is the uncertainty which subsets of the selected tasks are labeled.

For notational simplicity we pretend that exactly the first k tasks were selected, i.e. I = {1, . . . , k}. The general case can
be obtained by changing the indices in the proof from 1, . . . , k to i1, . . . , ik.

To deal with the dependencies between the labeled data points we first note that any random labeled subset Sli =
(s̄i1, . . . , s̄

i
m) can be described as the first m elements of a random permutation Zi = (zi1, . . . , z

i
n) over n elements that

correspond to the unlabeled sample Sui , i.e. s̄ij = (x̄ij , ȳ
i
j) = (xi

zij
, yi
zij

). With this notation and writing Z = (Z1, . . . , Zk)

and `(h, zij) = `(h(x̄ij), ȳ
i
j) we define the following function

Φ(Z) = sup
h1,...,hT

1

T

T∑
t=1

ẽrαt(ht)− êrαt(ht) = sup
h1,...,hT

k∑
i=1

1

T

T∑
t=1

αti

( 1

n

n∑
j=1

`(ht, z
i
j)−

1

m

m∑
j=1

`(ht, z
i
j)
)
. (28)

Our main tool is McDiarmid’s inequality (Lemma 2) for martingales.
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Construct a martingale sequence

For this, we interpret Z = (z1
1 , z

1
2 , . . . , z

k
n) as a sequence of kn dependent variables, z11, . . . , zkn. For the sake of no-

tational consistency we will keep using double indices, with the convention that the sample index, j = 1, . . . , n, runs
faster than the task index, i = 1, . . . , k. Segments of a sequence will be denoted by upper and lower double indices,
z ı̄̄ij = (zij , zi(j+1), . . . , zı̄̄) for ij ≤ ı̄̄ and z ı̄̄ij = ∅ otherwise. We now create a martingale sequence using Doob’s
construction (Doob, 1940):

Wij = E
Z
{Φ(Z)| zij11 }. (29)

where here and in the following when taking expectations over Z it is silently assumed that the expectation is taken only
with respect to variables that are not conditioned on. Note that because of this convention, the expectations in (29) is only
with respect to zi(j+1), . . . , zkn, so each Wij is a random variable of z11, . . . , zij . In particular, W00 = EZ Φ(Z) and
Wkn = Φ(Z), and the in between sequence is a martingale with respect to z11, . . . , zkn:

E
Z
{Wij |zi(j−1)

11 } = E
Z

{
E
Z
{Φ(Z)| zij11}

∣∣ zi(j−1)
11

}
= E

Z
{Φ(Z)|zi(j−1)

11 } = Wi(j−1). (30)

Upper-bound R̂2

In order to apply Lemma 2 we need an upper bound on the coefficient R̂2 defined there.

Let i ∈ {1, . . . , k} and j ∈ {1, . . . , n} be fixed and let π = (π1, . . . , πk) be specific permutations of n elements for which
we use the same index conventions as for Z. By σ and τ will denote elements in πini(j+1), i.e. σ and τ do not occur in any
of the first j positions of the permutation πi. Then

rij(π
i(j−1)
11 ) = sup

σ∈πin
i(j+1)

{Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ} − inf

σ∈πin
i(j+1)

{Wij : z
i(j−1)
11 = π

i(j−1)
11 , zij = σ}

= sup
σ∈πin

i(j+1)

sup
τ∈πin

i(j+1)

[
E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))} − E

zkn
i(j+1)

{Φ(π
i(j−1)
11 , τ, zkni(j+1))}

]
. (31)

To analyze (31) further, recall that:

E
zkn
i(j+1)

{Φ(π
i(j−1)
11 , σ, zkni(j+1))} =

∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1))× Pr( zkni(j+1) = πkni(j+1) |z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ),

where here and in the following we use the convention that sums over parts of π run only over values that lead to valid
permutations. Because the permutations of different task are independent, this is equal to

=
∑

πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1) Pr( zini(j+1) = πini(j+1) |z

i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ ) Pr(zkn(i+1)1 = πkn(i+1)1) (32)

We make the following observation: for any fixed πiji1 and any τ 6∈ πiji1, we can rephrase a summation over πini(j+1) into a
sum over all positions where τ can occur, and a sum over all configuration for the entries that are not τ :∑

πin
i(j+1)

F (πini(j+1)) =

n∑
l=j+1

∑
π
i(l−1)

i(j+1)

∑
πin
i(l+1)

F (π
i(l−1)
i(j+1), τ, π

in
i(l+1)) (33)

for any function F . Applying this to the summation in (32), we obtain∑
πkn
i(j+1)

Φ(π
i(j−1)
11 , σ, πkni(j+1)) Pr( zini(j+1) = πini(j+1) |z

i(j−1)
i1 = π

i(j−1)
i1 ∧ zij = σ )

× Pr(zkn(i+1)1 = πkn(i+1)1) =

n∑
l=j+1

∑
π
i(l−1)

i(j+1)

∑
πkn
i(l+1)

Φ(π
i(j−1)
11 , σ, π

i(l−1)
i(j+1), τ, π

kn
i(l+1))
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× Pr( z
i(l−1)
i(j+1) = π

i(l−1)
i(j+1) ∧ z

kn
i(l+1) = πkni(l+1)|z

i(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ)

× Pr(zkn(i+1)1 = πkn(i+1)1) = E
l∼Un

j+1

E
Z

Φ(Z|zi(j−1)
11 = π

i(j−1)
11 ∧ zij = σ ∧ zil = τ),

where Unj+1 denotes the uniform distribution over the set {j + 1, . . . , n}. The analogue derivation can be applied to the
quantity in line (31) with σ and τ exchanged.

For any Z denote by Zij↔il the permutation obtained by switching zij and zil. Then, due to the linearity of the expectation:

rij(π
i(j−1)
11 ) = sup

σ,τ
{ E
l∼Un

j+1

E
Z
{Φ(Z)− Φ(Zij↔il)|zi(j−1)

11 = π
i(j−1)
11 , zij = σ, zil = τ). (34)

From the definition of Φ we see that Φ(Z) − Φ(Zij↔il) = 0 when j, l ∈ {1, . . . ,m} or j, l ∈ {m + 1 . . . , n}. Since
l > j in (34) this implies rij(π

i(j−1)
11 ) = 0 for j ∈ {m + 1, . . . , n}. The only remaining cases are j ∈ {1, . . . ,m} and

l ∈ {m+ 1, . . . , n}, for which we obtain

Φ(Z)− Φ(Zij↔il) ≤ sup
h1,...,hT

1

T

T∑
t=1

αti
1

m
(−`(ht, zij) + `(ht, z

i
l )) ≤

1

Tm

T∑
t=1

αti.

where for the first inequality we used that supF − supG ≤ sup(F − G) for any F,G, and for the second inequality we
used that ` is bounded by [0, 1]. Consequently, rij(π

i(j−1)
11 ) ≤ n−m

n−j
1
Tm

∑T
t=1 α

t
i in this case. Therefore3

R̂2 =

k∑
i=1

n∑
j=1

(
rij(π

i(j−1)
11 )

)2 ≤ 1

T 2m2

m∑
j=1

(n−m
n− j

)2 k∑
i=1

(
T∑
t=1

αti

)2

≤ 1

T 2m

k∑
i=1

(
T∑
t=1

αti

)2

. (35)

Upper-bound EZ Φ(Z)

The main tool here is Lemma 3. First we rewrite Φ(Z) in the following way:

Φ(Z) =
1

T

T∑
t=1

sup
h

k∑
i=1

αti(êrSu
i

(h)− êrSl
i
(h)) =

1

Tm

T∑
t=1

Φt(Z)

Φt(Z) = sup
h

k∑
i=1

mαti(êrSu
i

(h)− êrSl
i
(h)).

Note that even though H can be infinitely large, we can identify a finite subset that represents all possible predictions of
hypothesis inH on Su1 ∪ · · · ∪ Suk . We denote their number by L ≤ 2kn and the corresponding hypotheses by h1, . . . , hL.

Let t ∈ {1, . . . , T} be fixed. For every i ∈ {1, . . . , k} define a set of n L-dimensional vectors, V ti = {vti1, . . . , vtin}, where
for every j ∈ {1, . . . , n}:

vtij =
[
αti
(
ẽri(h

1)− `(h1(xij), y
i
j)
)
, . . . , αti

(
ẽri(h

L)− `(hL(xij), y
i
j)
)]
. (36)

With this notation, for every i ∈ {1, . . . , k} choosing a random subset Sli ⊂ Sui corresponds to sampling m vectors from
V ti uniformly without replacement.

For every i ∈ {1, . . . , k}, let Ui = {ui1, . . . , uim} be sampled from V ti in that way. Then

Φt(Z) = F

 k∑
i=1

m∑
j=1

uij

 , (37)

3We generously bound n−m
n−j

≤ 1 in this step. By keeping the corresponding factor in the analysis one obtains that the constant B in

the theorem can be improved at least by a factor of (n−m)2

(n−0.5)(n−m−0.5)
.
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where the function F takes as input an L-dimensional vector and returns the value of its maximum component. We now
bound EZ Φt(Z) by applying Lemma 3 k times:

E
Z

Φt(Z) = E
U1,...,Uk

F
( k∑
i=1

m∑
j=1

uij

)
(38)

= E
U1,...,Uk−1

E
Uk

[
F
( k−1∑
i=1

m∑
j=1

uij +

m∑
j=1

ukj

)∣∣∣U1, . . . , Uk−1

] (39)

By Lemma 4 F (x) is a convex function. Thus F (const + x) is also convex and we can apply Lemma 3 with respect to Uk.

≤ E
U1,...,Uk−1

 Ê
Uk

[
F

k−1∑
i=1

m∑
j=1

uij +

m∑
j=1

ûkj

∣∣∣U1, . . . , Uk−1

] (40)

where Ûk = {uki, . . . , ukm} is a set of m vectors sampled from V tk with replacement.

= E
U1,...,Uk−1,Ûk

F
k−1∑
i=1

m∑
j=1

uij +

m∑
j=1

ûkj

 . (41)

Repeating the process k times, we obtain

≤ · · · ≤ E
Û1,...,Ûk

F
 k∑
i=1

m∑
j=1

ûij

 . (42)

Note that writing the conditioning in the above expressions is just for clarity of presentation, since the U1, . . . , Uk are
actually independent of each other.

Switching from the U sets by the Û sets in Φ corresponds to switching from random subsets Sli to random sets S̃i consisting
of m points sampled from Sui uniformly with replacement. Therefore we obtain

E
Z

Φt(Z) = E
Sl
1,...,S

l
k

Φt(S
l
1, . . . , S

l
k) ≤ E

S̃1,...,S̃k

Φt(S̃1, . . . , S̃k), (43)

which allows us to continue analyzing EZ Φt(Z) in the standard way using Rademacher complexities and independent
samples. Applying the common symmetrization trick and introducing Rademacher random variables σij we obtain

Φt(S̃1, . . . , S̃k) ≤ 2E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j).

We can rewrite this using the fact that `(y, y′) = Jy 6= y′K = 1−yy′
2 :

E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j) = E

σ
sup
h

k∑
i=1

m∑
j=1

σijα
t
i

1− h(xij)y
i
j

2
=

1

2
E
σ

sup
h

k∑
i=1

m∑
j=1

−σijyijαtih(xij)

Since −σijyij has the same distribution as σij :

=
1

2
E
σ

sup
a(h)∈A

k∑
i=1

m∑
j=1

σijaij(h),
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where aij(h) = αtih(xij) and A = {a(h) : h ∈ H}. According to Sauer’s lemma (Corollary 3.3 in (Mohri et al., 2012)):

|A| ≤
(
ekm

d

)d
. (44)

At the same time:

‖a‖2 =

√√√√ k∑
i=1

m∑
j=1

(αtih(xij))
2 =
√
m

√√√√ k∑
i=1

(αti)
2. (45)

Therefore, by Massart’s lemma (Theorem 3.3 in (Mohri et al., 2012)):

E
σ

sup
h

k∑
i=1

m∑
j=1

σijα
t
i`(h(xij), y

i
j) ≤

1

2

√√√√ k∑
i=1

(αti)
2 ·
√

2dm log(ekm/d). (46)

By applying this result for all t we obtain:

E
Z

Φ(Z) =
1

Tm

T∑
t=1

E
Z

Φt(Z) ≤ 1

Tm

T∑
t=1

Ẽ
S

Φt(S̃) ≤ 1

T

T∑
t=1

√√√√ k∑
i=1

(αti)
2 ·
√

2d log(ekm/d)

m
. (47)

Combining (35) and (47) with Lemma 2 we obtain that for fixed unlabeled samples Su1 , . . . , S
u
T with probability at least

1− δ/4 for all choices of h1, . . . , hT :

1

T

T∑
t=1

ẽrαt(ht) ≤
1

T

T∑
t=1

êrαt(ht) +
1

T
‖α‖2,1

√
2d log(ekm/d)

m
+

1

T
‖α‖1,2

√
log(4/δ)

2m
.

By further combining it with (27) we obtain that the following inequality holds uniformly in h1, . . . , hT ∈ H with prob-
ability at least 1 − δ/2 over the sampling of the unlabeled training sets, Su1 , . . . , S

u
T , and labeled training sets, (Sli)i∈I ,

provided that the subset of labeled tasks, I ⊂ {1, . . . , T}, and the task weights, α1, . . . , αT ∈ ΛI , depend deterministically
on the unlabeled training only.

1

T

T∑
t=1

erαt(ht) ≤
1

T

T∑
t=1

êrαt(ht)+
1

T
‖α‖2,1

√
2d log(ekm/d)

m
+

1

T
‖α‖1,2

√
log(4/δ)

2m

+

√
8(log T + d log(enT/d))

n
+

√
2

n
log

4

δ
. (48)

The statement of Theorem 1 follows by combining (9) with (10) and (48).
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