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A. Proofs of Theorems

In this section, we give the proofs of Theorems in Section 4.

A.1. Proof of Theorem 1

Recall that

Rγ
N-PUNU

(g) = (1− γ)RN-PU(g) + γRN-NU(g)

= (2− 2γ)θPRP(g) + 2γθNRN(g) + (1− γ)RU,N(g) + γRU,P(g) + Const,

Rγ
N-PNPU

(g) = (1− γ)RPN(g) + γRN-PU(g)

= (1 + γ)θPRP(g) + (1− γ)θNRN(g) + γRU,N(g) + Const,

Rγ
N-PNNU

(g) = (1− γ)RPN(g) + γRN-NU(g)

= (1− γ)θPRP(g) + (1 + γ)θNRN(g) + γRU,P(g) + Const.

Let R̂P(g), R̂N(g), R̂U,P(g) and R̂U,N(g) be the empirical risks. In order to prove Theorem 1, the following concentration

lemma is needed:

Lemma 1 For any δ > 0, we have these uniform deviation bounds with probability at least 1− δ/3:

supg∈G(RP(g)− R̂P(g)) ≤
CwCφ√
nP

+

√
ln(3/δ)

2nP
,

supg∈G(RN(g)− R̂N(g)) ≤
CwCφ√
nN

+

√
ln(3/δ)

2nN
,

supg∈G(RU,P(g)− R̂U,P(g)) ≤
CwCφ√
nU

+

√
ln(3/δ)

2nU
,

supg∈G(RU,N(g)− R̂U,N(g)) ≤
CwCφ√
nU

+

√
ln(3/δ)

2nU
.

All inequalities in Lemma 1 are from the basic uniform deviation bound using the Rademacher complexity (Mohri et al.,

2012), Talagrand’s contraction lemma (Ledoux & Talagrand, 1991), as well as the fact that the Lipschitz constant of ℓR is

1/2. For these reasons, the detailed proof of Lemma 1 is omitted.
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Consider Rγ
N-PNPU

(g). It is clear that

supg∈G(R
γ
N-PNPU

(g)− R̂γ
N-PNPU

(g))

≤ (1 + γ)θP supg∈G(RP(g)− R̂P(g)) + (1− γ)θN supg∈G(RN(g)− R̂N(g)) + γ supg∈G(RU,N(g)− R̂U,N(g)).

Therefore, by applying Lemma 1, for any δ > 0, it holds with probability at least 1− δ that

supg∈G(R
γ
N-PNPU

(g)− R̂γ
N-PNPU

(g)) ≤ 1

2
Cw,φ,δ · χ(1 + γ, 1− γ, γ).

Since I(g) ≤ 2Rγ
N-PNPU

, with the same probability,

supg∈G(I(g)−2R̂γ
N-PNPU

(g)) ≤ Cw,φ,δ ·χ(1 + γ, 1− γ, γ).

Similarly, supg∈G(I(g)− 2R̂γ
N-PNNU

(g)) ≤ Cw,φ,δ · χ(1− γ, 1 + γ, γ) with probability at least 1− δ.

Finally, Rγ
N-PUNU

(g) is slightly more involved, for that there are bothRU,P(g) andRU,N(g). From ℓR(m)+ℓR(−m) = 1,

we can know RU,P(g) +RU,N(g) = 1 and then

(1− γ)RU,N(g) + γRU,P(g) =

{
(2γ − 1)RU,P(g) + Const γ ≥ 1/2,

(1− 2γ)RU,N(g) + Const γ < 1/2.

As a result, supg∈G(I(g)− 2R̂γ
N-PUNU

(g)) ≤ Cw,φ,δ · χ(2− 2γ, 2γ, |2γ − 1|) with probability at least 1− δ.

A.2. Proof of Theorem 2

In fact,

ℓTS(m) =





1/4 m ≤ 0,

(m− 1)2/4 0 < m ≤ 1,

0 m > 1,

and after plugging this ℓTS(m) into ℓ̃TS(m),

ℓ̃TS(m) = ℓTS(m)− ℓTS(−m)

=





1/4 m ≤ −1,

1/4− (m+ 1)2/4 −1 < m ≤ 0,

(m− 1)2/4− 1/4 0 < m ≤ 1,

−1/4 m > 1.

It is easy to see that ℓTS(m) and ℓ̃TS(m) are Lipschitz continuous with the same Lipschitz constant 1/2.

Next, recall that

Rγ
C-PUNU

(g) = (1− γ)RC-PU(g) + γRC-NU(g)

= (1− γ)θPR
′
P(g) + γθNR

′
N(g) + (1− γ)RU,N(g) + γRU,P(g),

Rγ
C-PNPU

(g) = (1− γ)RPN(g) + γRC-PU(g)

= (1− γ)θPRP(g) + (1− γ)θNRN(g) + γθPR
′
P(g) + γRU,N(g),

Rγ
C-PNNU

(g) = (1− γ)RPN(g) + γRC-NU(g)

= (1− γ)θPRP(g) + (1− γ)θNRN(g) + γθNR
′
N(g) + γRU,P(g).

Let R̂P(g), R̂N(g), R̂U,P(g), R̂U,N(g), R̂
′
P
(g) and R̂′

N
(g) be the empirical risks. Again, the following concentration

lemma is needed:
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Lemma 2 For any δ > 0, we have these uniform deviation bounds with probability at least 1− δ/4:

supg∈G(RP(g)− R̂P(g)) ≤
CwCφ√
nP

+

√
ln(4/δ)

32nP
,

supg∈G(RN(g)− R̂N(g)) ≤
CwCφ√
nN

+

√
ln(4/δ)

32nN
,

supg∈G(RU,P(g)− R̂U,P(g)) ≤
CwCφ√
nU

+

√
ln(4/δ)

32nU
,

supg∈G(RU,N(g)− R̂U,N(g)) ≤
CwCφ√
nU

+

√
ln(4/δ)

32nU
,

supg∈G(R
′
P(g)− R̂′

P(g)) ≤
CwCφ√
nP

+

√
ln(4/δ)

8nP
,

supg∈G(R
′
N(g)− R̂′

N(g)) ≤
CwCφ√
nN

+

√
ln(4/δ)

8nN
.

The detailed proof of Lemma 2 is omitted for the same reason as Lemma 1. The difference is due to that 0 ≤ ℓTS(m) ≤ 1/4

and −1/4 ≤ ℓ̃TS(m) ≤ 1/4 whereas 0 ≤ ℓR(m) ≤ 1 just like 0 ≤ ℓ0-1(m) ≤ 1. For convenience, we will relax 1/32 to

1/8 in the square root for RP(g), RN(g), RU,P(g), RU,N(g).

Consider Rγ
C-PUNU

(g). By applying Lemma 2, for any δ > 0, it holds with probability at least 1− δ that

supg∈G(R
γ
C-PUNU

(g)− R̂γ
C-PUNU

(g)) ≤ 1

4
C ′

w,φ,δ · χ(1− γ, γ, 1).

Since I(g) ≤ 4Rγ
C-PUNU

, with the same probability,

supg∈G(I(g)− 4R̂γ
C-PUNU

(g)) ≤ C ′
w,φ,δ · χ(1− γ, γ, 1).

The other two generalization error bounds can be proven similarly.

A.3. Proofs of Theorems 3 and 4

Note that g is independent of the data for evaluating R̂γ
N-PUNU

(g), since it is fixed in the evaluation. Thus, VarP[R̂P(g)] =

σ2

P
(g)/nP and VarN[R̂N(g)] = σ2

N
(g)/nN. When nU → ∞,

Var[R̂γ
N-PUNU

(g)] = 4(1− γ)2θ2P VarP[R̂P(g)] + 4γ2θ2N VarN[R̂N(g)]

= 4(1− γ)2ψP + 4γ2ψN

= 4(ψP + ψN)γ
2 − 8ψPγ + 4ψP,

and it is obvious that γN-PUNU ∈ [0, 1]. All other claims in Theorem 3 follow from that Var[R̂γ
N-PUNU

(g)] is quadratic

in γ, that Var[R̂γ
N-PUNU

(g)] = Var[R̂PN(g)] at γ = 1/2, and that γN-PUNU < 1/2 if ψP < ψN or γN-PUNU > 1/2 if

ψP > ψN.

Likewise, when nU → ∞,

Var[R̂γ
N-PNPU

(g)] = (1 + γ)2ψP + (1− γ)2ψN,

Var[R̂γ
N-PNNU

(g)] = (1− γ)2ψP + (1 + γ)2ψN,

and γN-PNPU ≥ 0 if ψP ≤ ψN or γN-PNNU ≥ 0 if ψP ≥ ψN. The rest of proof of Theorem 4 is analogous to that of

Theorem 3.
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B. Experimental Setting

Here, we summarized the experimental settings.

B.1. Implementation in Our Experiments

We implemented the ER by ourselves, and for the other methods, we used the codes available at the authors’ websites:

• LapSVM: http://www.dii.unisi.it/~melacci/lapsvmp/

• SMIR: http://www.ms.k.u-tokyo.ac.jp/software/SMIR.zip

• WellSVM: http://lamda.nju.edu.cn/code_WellSVM.ashx

• S4VM: http://lamda.nju.edu.cn/files/s4vm.rar.

Note that we modified the original code of the S4VM for transductive learning to inductive learning according to Li &

Zhou (2015).

B.2. Parameter Candidates in Our Experiments

The regularization parameters for all the methods were chosen from {10−5, 10−4, . . . , 102}, except the regularization

parameter of the SMIR for the squared loss mutual information (SMI) and that of the S4VM for labeled data. The number

of nearest-neighbors to construct Laplacian matrix for the LapSVM was chosen from the candidates {5, 6, . . . , 10}. The

combination parameter η of PNU classification was chosen from {−1,−0.9, . . . , 1}, and γ of PUNU classification was

chosen from {0, 0.05, . . . , 1}. We chose these hyper-parameters by five-fold cross-validation. The parameter for the ℓ2-

regularizer of the SMIR is set at γS/(n ·mink∈{±1} p(y = k)) + 0.001, where γS is the regularization parameter for the

SMI. The regularization parameter of the S4VM for the labeled data is set at 1. The other parameters were set at the default

values.

B.3. Data Set Description of Image Classification Data Set

Table 1 is the description of the data sets used in the image classification experiment.

Table 1. The description of the data set used in the image classification experiment.

Data set Data sources #Samples

Arts
Art Gallery (mP=15000)
vs.

Art Studio (mN=15000)

Deserts
Desert Sand (mP=15000)
vs.

Desert Vegetation (mN=5556)

Fields
Field Wild (mP = 15000)
vs.

Field Cultivated (mN = 8117)

Stadiums
Stadium Baseball (mP=15000)
vs.

Stadium Football (mN=15000)

Platforms
Subway Station (mP = 5597)
vs.

Train Station (mN=15000)

Temples
Temple East Asia (mP=8691)
vs.

Temple South Asia (mN=7178)
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C. Supplementary Results for Experimental Analyses

Figure 1 and Figure 2 respectively show the results of variance reduction and comparison of validation scores. The details

of experimental setting and the interpretation of results can be found in Section 5.1.
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(b) Waveform (d=21)
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Figure 1. Average and standard error of the ratio between the variance of the empirical PNU risk and that of the PN risk,

Var[R̂η
PNU

(ĝPN)]/Var[R̂PN(ĝPN)], as a function of the number of unlabeled samples over 100 trials. Although the variance reduction

is proved for an infinite number of samples, it can be observed with a finite number of samples.
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(a) Banana (d=2)
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(b) Waveform (d=21)
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Figure 2. Average and standard error of the ratio between the misclassification rate of ĝPNU

PN and that of ĝPN

PN as a function of unlabeled

samples over 1000 trials. In many cases, the ratio becomes less than 1 or at worst almost 1, implying that the PNU risk is a promising

alternative to the standard PN risk in validation if unlabeled data is available.
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D. Magnified Versions of Experimental Results

Here, we show magnified versions of the experimental results in Section 5.

Table 2. Magnified version of Table 1: Average and standard error of the misclassification rates of each method over 50 trials for

benchmark data sets. Boldface numbers denote the best and comparable methods in terms of average misclassifications rate according

to a t-test at a significance level of 5%. The bottom row gives the number of best/comparable cases of each method.

Data set nL PNU PUNU ER LapSVM SMIR WellSVM S4VM

Banana 10 30.1 (1.0) 32.1 (1.1) 35.8 (1.0) 36.9 (1.0) 37.7 (1.1) 41.8 (0.6) 45.3 (1.0)
d = 2 50 19.0 (0.6) 26.4 (1.2) 20.6 (0.7) 21.3 (0.7) 21.1 (1.0) 42.6 (0.5) 38.7 (0.9)

Phoneme 10 32.5 (0.8) 33.5 (1.0) 33.4 (1.2) 36.5 (1.5) 36.4 (1.2) 28.4 (0.6) 33.7 (1.4)
d = 5 50 28.1 (0.5) 32.8 (0.9) 27.8 (0.6) 27.0 (0.8) 28.6 (1.0) 26.8 (0.4) 25.1 (0.2)

Magic 10 31.7 (0.8) 34.1 (0.9) 34.2 (1.1) 37.9 (1.3) 36.0 (1.2) 30.1 (0.8) 33.3 (0.9)
d = 10 50 29.9 (0.8) 33.4 (0.9) 30.9 (0.5) 31.0 (0.9)30.8 (0.9) 28.8 (0.8) 29.2 (0.4)

Image 10 29.8 (0.9) 31.7 (0.8) 33.7 (1.1) 36.6 (1.2) 36.7 (1.2) 34.7 (1.1) 35.9 (1.0)
d = 18 50 20.7 (0.8) 26.6 (1.1) 20.8 (0.8) 20.3 (1.0)20.9 (0.9) 27.2 (1.0) 23.2 (0.7)

Susy 10 44.6 (0.6) 45.0 (0.6) 47.7 (0.4) 48.2 (0.4)45.1 (0.7) 48.0 (0.3) 46.8 (0.3)
d = 18 50 38.9 (0.6) 41.5 (0.6) 37.9 (0.7) 43.1 (0.6) 43.9 (0.8) 43.8 (0.7) 42.1 (0.4)

German 10 40.8 (0.9) 42.4 (0.7) 43.6 (0.9) 45.9 (0.7) 46.2 (0.8) 42.4 (0.8) 42.0 (0.7)
d = 20 50 36.2 (0.8) 39.0 (0.8) 38.9 (0.6) 40.6 (0.6) 38.4 (1.1) 38.5 (1.0) 34.9 (0.5)

Waveform 10 17.4 (0.6) 18.0 (0.9) 18.5 (0.6) 24.9 (1.4)18.0 (1.0) 16.7 (0.6) 20.8 (0.8)
d = 21 50 16.3 (0.6) 23.7 (1.2) 14.2 (0.4) 18.1 (0.8)15.4 (0.6) 15.5 (0.5) 15.3 (0.3)

ijcnn1 10 43.6 (0.6) 40.3 (1.0) 49.7 (0.1) 49.2 (0.3) 44.0 (1.0) 45.9 (0.7) 49.3 (0.8)
d = 22 50 34.5 (0.8) 37.1 (0.9) 35.5 (0.8) 33.4 (1.1) 49.4 (0.3) 46.2 (0.8) 48.6 (0.4)

g50c 10 11.4 (0.6) 12.5 (0.6) 23.3 (2.3) 39.8 (1.6) 21.9 (1.3) 6.6 (0.4) 27.0 (1.4)
d = 50 50 12.5 (1.1) 10.1 (0.6) 8.7 (0.4) 22.5 (1.5) 10.6 (0.6) 7.4 (0.4) 12.1 (0.5)

covtype 10 46.2 (0.4) 46.0 (0.4) 46.0 (0.5) 47.1 (0.5) 47.9 (0.5) 46.9 (0.6) 46.4 (0.4)
d = 54 50 41.3 (0.5) 42.3 (0.5) 41.0 (0.4) 41.5 (0.5) 46.2 (0.8) 43.6 (0.6) 40.8 (0.4)

Spambase 10 27.2 (0.9) 28.1 (1.1) 31.8 (1.4) 39.7 (1.4) 30.9 (1.3) 23.8 (0.8) 36.1 (1.5)
d = 57 50 23.4 (1.0) 26.6 (1.0) 22.1 (0.7) 28.5 (1.3) 20.9 (0.5) 19.1 (0.4) 24.5 (0.9)

Splice 10 38.3 (0.8) 39.3 (0.8) 43.9 (0.8) 47.9 (0.5) 41.6 (0.7) 42.0 (1.0) 42.4 (0.6)
d = 60 50 30.6 (0.8) 34.7 (0.9) 30.9 (0.8) 38.8 (1.0)30.6 (0.9) 40.9 (0.8) 35.9 (0.7)

phishing 10 24.2 (1.2) 25.8 (1.0) 27.3 (1.6) 37.2 (1.6) 27.6 (1.6) 27.5 (1.4) 31.7 (1.3)
d = 68 50 15.8 (0.6) 18.3 (0.8) 15.4 (0.5) 21.1 (1.3)14.7 (0.8) 17.2 (0.7) 16.7 (0.8)

a9a 10 31.4 (0.9) 31.3 (1.0) 34.3 (1.2) 41.0 (1.1) 37.3 (1.3) 33.1 (1.2) 34.3 (1.2)
d = 83 50 27.9 (0.6) 29.9 (0.8) 28.6 (0.7) 33.3 (1.0)26.9 (0.7) 28.9 (0.8) 26.2 (0.4)

Coil2 10 38.7 (0.8) 40.1 (0.8) 42.8 (0.7) 43.9 (0.8) 43.2 (0.8) 39.1 (0.9) 44.0 (0.8)
d = 241 50 23.2 (0.6) 30.5 (0.9) 23.6 (0.9) 22.8 (0.9) 25.1 (0.9) 22.6 (0.8) 25.4 (0.8)

w8a 10 35.9 (0.9) 33.6 (1.0) 41.6 (1.0) 46.6 (0.8) 39.4 (0.9) 42.1 (0.8) 43.0 (0.8)
d = 300 50 28.1 (0.7) 27.6 (0.6) 27.0 (0.9) 38.7 (0.8)28.0 (0.9) 33.7 (0.8) 35.2 (1.0)

#Best/Comp. 23 13 11 4 9 13 7
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Figure 3. Magnified version of Figure 3: Average computation time over 50 trials for benchmark data sets when nL = 50.

Table 3. Magnified version of Table 2: Average and standard error of misclassification rates over 30 trials for the Places 205 data set.

Boldface numbers denote the best and comparable methods in terms of the average misclassification rate according to a t-test at a

significance level of 5%.

Data set nU θP θ̂P PNU ER LapSVM SMIR WellSVM

Arts
1000 0.50 0.49 (0.01) 27.4 (1.3) 26.6 (0.5) 26.1 (0.7) 40.1 (3.9) 27.5 (0.5)
5000 0.50 0.50 (0.01) 24.8 (0.6) 26.1 (0.5) 26.1 (0.4) 30.1 (1.6) N/A

10000 0.50 0.52 (0.01) 25.6 (0.7) 25.4 (0.5) 25.5 (0.6) N/A N/A

Deserts
1000 0.73 0.67 (0.01) 13.0 (0.5) 15.3 (0.6) 16.7 (0.8) 17.2 (0.8) 18.2 (0.7)
5000 0.73 0.67 (0.01) 13.4 (0.4) 13.3 (0.5) 16.6 (0.6) 24.4 (0.6) N/A

10000 0.73 0.68 (0.01) 13.3 (0.5) 13.7 (0.6) 16.8 (0.8) N/A N/A

Fields
1000 0.65 0.57 (0.01) 22.4 (1.0) 26.2 (1.0) 26.6 (1.3) 28.2 (1.1) 26.6 (0.8)
5000 0.65 0.57 (0.01) 20.6 (0.5) 22.6 (0.6) 24.7 (0.8) 29.6 (1.2) N/A

10000 0.65 0.57 (0.01) 21.6 (0.6) 22.5 (0.6) 25.0 (0.9) N/A N/A

Stadiums
1000 0.50 0.50 (0.01) 11.4 (0.4) 11.5 (0.5) 12.5 (0.5) 17.4 (3.6) 11.7 (0.4)
5000 0.50 0.50 (0.01) 11.0 (0.5) 10.9 (0.3) 11.1 (0.3) 13.4 (0.7) N/A

10000 0.50 0.51 (0.00) 10.7 (0.3) 10.9 (0.3) 11.2 (0.2) N/A N/A

Platforms
1000 0.27 0.33 (0.01) 21.8 (0.5) 23.9 (0.6) 24.1 (0.5) 30.1 (2.3) 26.2 (0.8)
5000 0.27 0.34 (0.01) 23.3 (0.8) 24.4 (0.7) 24.9 (0.7) 26.6 (0.3) N/A

10000 0.27 0.34 (0.01) 21.4 (0.5) 24.3 (0.6) 24.8 (0.5) N/A N/A

Temples
1000 0.55 0.51 (0.01) 43.9 (0.7) 43.9 (0.6) 43.4 (0.6) 50.7 (1.6) 44.3 (0.5)
5000 0.55 0.54 (0.01) 43.4 (0.9) 43.0 (0.6) 43.1 (1.0) 43.6 (0.7) N/A

10000 0.55 0.50 (0.01) 45.2 (0.8) 44.4 (0.8) 44.2 (0.7) N/A N/A
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