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Abstract

Most of the semi-supervised classification meth-

ods developed so far use unlabeled data for reg-

ularization purposes under particular distribu-

tional assumptions such as the cluster assump-

tion. In contrast, recently developed methods of

classification from positive and unlabeled data

(PU classification) use unlabeled data for risk

evaluation, i.e., label information is directly ex-

tracted from unlabeled data. In this paper, we

extend PU classification to also incorporate neg-

ative data and propose a novel semi-supervised

classification approach. We establish general-

ization error bounds for our novel methods and

show that the bounds decrease with respect to

the number of unlabeled data without the distri-

butional assumptions that are required in existing

semi-supervised classification methods. Through

experiments, we demonstrate the usefulness of

the proposed methods.

1. Introduction

Collecting a large amount of labeled data is a critical bottle-

neck in real-world machine learning applications due to the

laborious manual annotation. In contrast, unlabeled data

can often be collected automatically and abundantly, e.g.,

by a web crawler. This has led to the development of vari-

ous semi-supervised classification algorithms over the past

decades.

To leverage unlabeled data in training, most of the exist-

ing semi-supervised classification methods rely on partic-

ular assumptions on the data distribution (Chapelle et al.,

2006). For example, the manifold assumption supposes that

samples are distributed on a low-dimensional manifold in

the data space (Belkin et al., 2006). In the existing frame-

work, such a distributional assumption is encoded as a reg-
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ularizer for training a classifier and biases the classifier to-

ward a better one under the assumption. However, if such a

distributional assumption contradicts the data distribution,

the bias behaves adversely, and the performance of the ob-

tained classifier becomes worse than the one obtained with

supervised classification (Cozman et al., 2003; Sokolovska

et al., 2008; Li & Zhou, 2015; Krijthe & Loog, 2017).

Recently, classification from positive and unlabeled data

(PU classification) has been gathering growing attention

(Elkan & Noto, 2008; du Plessis et al., 2014; 2015; Jain

et al., 2016), which trains a classifier only from positive and

unlabeled data without negative data. In PU classification,

the unbiased risk estimators proposed in du Plessis et al.

(2014; 2015) utilize unlabeled data for risk evaluation, im-

plying that label information is directly extracted from un-

labeled data without restrictive distributional assumptions,

unlike existing semi-supervised classification methods that

utilize unlabeled data for regularization. Furthermore, the-

oretical analysis (Niu et al., 2016) showed that PU classi-

fication (or its counterpart, NU classification, classification

from negative and unlabeled data) is likely to outperform

classification from positive and negative data (PN classi-

fication, i.e., ordinary supervised classification) depending

on the number of positive, negative, and unlabeled sam-

ples. It is thus naturally expected that combining PN, PU,

and NU classification can be a promising approach to semi-

supervised classification without restrictive distributional

assumptions.

In this paper, we propose a novel semi-supervised classifi-

cation approach by considering convex combinations of the

risk functions of PN, PU, and NU classification. Without

any distributional assumption, we theoretically show that

the confidence term of the generalization error bounds de-

creases at the optimal parametric rate with respect to the

number of positive, negative, and unlabeled samples, and

the variance of the proposed risk estimator is almost always

smaller than the plain PN risk function given an infinite

number of unlabeled samples. Through experiments, we

analyze the behavior of the proposed approach and demon-

strate the usefulness of the proposed semi-supervised clas-

sification methods.
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2. Background

In this section, we first introduce the notation commonly

used in this paper and review the formulations of PN, PU,

and NU classification.

2.1. Notation

Let random variables x ∈ R
d and y ∈ {+1,−1} be

equipped with probability density p(x, y), where d is a pos-

itive integer. Let us consider a binary classification problem

from x to y, given three sets of samples called the posi-

tive (P), negative (N), and unlabeled (U) data:

XP := {xP
i }nP

i=1
i.i.d.∼ pP(x) := p(x | y = +1),

XN := {xN
i }nN

i=1
i.i.d.∼ pN(x) := p(x | y = −1),

XU := {xU
i }nU

i=1
i.i.d.∼ p(x) := θPpP(x) + θNpN(x),

where

θP := p(y = +1), θN := p(y = −1)

are the class-prior probabilities for the positive and negative

classes such that θP + θN = 1.

Let g : Rd → R be an arbitrary real-valued decision

function for binary classification, and classification is per-

formed based on its sign. Let ℓ : R → R be a loss func-

tion such that ℓ(m) generally takes a small value for large

margin m = yg(x). Let RP(g), RN(g), RU,P(g), and

RU,N(g) be the risks of classifier g under loss ℓ:

RP(g) := EP[ℓ(g(x))], RN(g) := EN[ℓ(−g(x))],
RU,P(g) := EU[ℓ(g(x))], RU,N(g) := EU[ℓ(−g(x))],

where EP, EN, and EU denote the expectations over

pP(x), pN(x), and p(x), respectively. Since we do not

have any samples from p(x, y), the true risk R(g) =
Ep(x,y)[ℓ(yg(x))], which we want to minimize, should be

recovered without using p(x, y) as shown below.

2.2. PN Classification

In standard supervised classification (PN classification), we

have both positive and negative data, i.e., fully labeled data.

The goal of PN classification is to train a classifier using

labeled data.

The risk in PN classification (the PN risk) is defined as

RPN(g) := θP EP[ℓ(g(x))] + θN EN[ℓ(−g(x))]
= θPRP(g) + θNRN(g), (1)

which is equal to R(g), but p(x, y) is not included. If we

use the hinge loss function ℓH(m) := max(0, 1 −m), the

PN risk coincides with the risk of the support vector ma-

chine (Vapnik, 1995).

2.3. PU Classification

In PU classification, we do not have labeled data for the

negative class, but we can use unlabeled data drawn from

marginal density p(x). The goal of PU classification is

to train a classifier using only positive and unlabeled data.

The basic approach to PU classification is to discriminate P

and U data (Elkan & Noto, 2008). However, naively clas-

sifying P and U data causes a bias.

To address this problem, du Plessis et al. (2014; 2015) pro-

posed a risk equivalent to the PN risk but where pN(x) is

not included. The key idea is to utilize unlabeled data to

evaluate the risk for negative samples in the PN risk. Re-

placing the second term in Eq. (1) with1

θN EN[ℓ(−g(x))] = EU[ℓ(−g(x))]− θP EP[ℓ(−g(x))],

we obtain the risk in PU classification (the PU risk) as

RPU(g) := θP EP[ℓ̃(g(x))] + EU[ℓ(−g(x))]
= θPR

C
P(g) +RU,N(g), (2)

where RC
P(g) := EP[ℓ̃(g(x))] and ℓ̃(m) = ℓ(m)− ℓ(−m)

is a composite loss function.

Non-Convex Approach: If the loss function satisfies

ℓ(m) + ℓ(−m) = 1, (3)

the composite loss function becomes ℓ̃(m) = 2ℓ(m) − 1.

We thus obtain the non-convex PU risk as

RN-PU(g) := 2θPRP(g) +RU,N(g)− θP. (4)

This formulation can be seen as cost-sensitive classification

of P and U data with weight 2θP (du Plessis et al., 2014).

The ramp loss used in the robust support vector machine

(Collobert et al., 2006),

ℓR(m) :=
1

2
max(0,min(2, 1−m)), (5)

satisfies the condition (3). However, the use of the

ramp loss (and any other losses that satisfy the condi-

tion (3)) yields a non-convex optimization problem, which

may be solved locally by the concave-convex procedure

(CCCP) (Yuille & Rangarajan, 2002; Collobert et al., 2006;

du Plessis et al., 2014).

Convex Approach: If a convex surrogate loss function

satisfies

ℓ(m)− ℓ(−m) = −m, (6)

1The equation comes from the definition of the marginal den-
sity p(x) = θPpP(x) + θNpN(x).



Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data

the composite loss function becomes a linear function

ℓ̃(m) = −m (see Table 1 in du Plessis et al., 2015). We

thus obtain the convex PU risk as

RC-PU(g) := θPR
L
P(g) +RU,N(g),

where RL
P(g) := EP[−g(x)] is the risk with the linear loss

ℓLin(m) := −m. This formulation yields the convex opti-

mization problem that can be solved efficiently.

2.4. NU Classification

As a mirror of PU classification, we can consider NU clas-

sification. The risk in NU classification (the NU risk) is

given by

RNU(g) := θN EN[ℓ̃(−g(x))] + EU[ℓ(g(x))]

= θNR
C
N(g) +RU,P(g),

where RC
N(g) := EN[ℓ̃(−g(x))] is the risk function with

the composite loss. Similarly to PU classification, the non-

convex and convex NU risks are expressed as

RN-NU(g) := 2θNRN(g) +RU,P(g)− θN, (7)

RC-NU(g) := θNR
L
N(g) +RU,P(g), (8)

where RL
N(g) := EN[g(x)] is the risk with the linear loss.

3. Semi-Supervised Classification Based on

PN, PU, and NU Classification

In this section, we propose semi-supervised classification

methods based on PN, PU, and NU classification.

3.1. PUNU Classification

A naive idea to build a semi-supervised classifier is to com-

bine the PU and NU risks. For γ ∈ [0, 1], let us consider a

linear combination of the PU and NU risks:

Rγ
PUNU(g) := (1− γ)RPU(g) + γRNU(g).

We refer to this combined method as PUNU classification.

If we use a loss function satisfying the condition (3), the

non-convex PUNU risk Rγ
N-PUNU(g) can be expressed as

Rγ
N-PUNU(g) = 2(1− γ)θPRP(g) + 2γθNRN(g)

+ EU[(1− γ)ℓ(−g(x)) + γℓ(g(x))]

− (1− γ)θP − γθN.

Here, R
1/2
N-PUNU(g) agrees with RPN(g) due to the condi-

tion (3). Thus, when γ = 1/2, PUNU classification is re-

duced to ordinary PN classification.

On the other hand, γ = 1/2 is still effective when the con-

dition (6) is satisfied. Its riskRγ
C-PUNU(g) can be expressed

as

Rγ
C-PUNU(g) = (1− γ)θPR

L
P(g) + γθNR

L
N(g)

+ EU[(1− γ)ℓ(g(x)) + γℓ(−g(x))].

Here, (1 − γ)ℓ(g(x)) + γℓ(−g(x)) can be regarded as a

loss function for unlabeled samples with weight γ.

When γ = 1/2, unlabeled samples incur the same loss for

the positive and negative classes. On the other hand, when

0 < γ < 1/2, a smaller loss is incurred for the negative

class than the positive class. Thus, unlabeled samples tend

to be classified into the negative class. The opposite is true

when 1/2 < γ < 1.

3.2. PNU Classification

Another possibility of using PU and NU classification in

semi-supervised classification is to combine the PN and

PU/NU risks. For γ ∈ [0, 1], let us consider linear com-

binations of the PN and PU/NU risks:

Rγ
PNPU(g) := (1− γ)RPN(g) + γRPU(g),

Rγ
PNNU(g) := (1− γ)RPN(g) + γRNU(g).

In practice, we combine PNPU and PNNU classification

and adaptively choose one of them with a new trade-off

parameter η ∈ [−1, 1] as

Rη
PNU(g) :=

{
Rη

PNPU(g) (η ≥ 0),

R−η
PNNU(g) (η < 0).

We refer to the combined method as PNU classification.

Clearly, PNU classification with η = −1, 0,+1 corre-

sponds to NU, PN, and PU classification. As η gets

large/small, the effect of the positive/negative classes is

more emphasized.

In the theoretical analyses in Section 4, we denote the

combinations of the PN risk with the non-convex PU/NU

risks by Rγ
N-PNPU and Rγ

N-PNNU, and that with the convex

PU/NU risks by Rγ
C-PNPU and Rγ

C-PNNU.

3.3. Practical Implementation

We have so far only considered the true risks R (with

respect to the expectations over true data distributions).

When a classifier is trained from samples in practice, we

use the empirical risks R̂ where the expectations are re-

placed with corresponding sample averages.

More specifically, in the theoretical analysis in Section 4

and experiments in Section 5, we use a linear-in-parameter

model given by g(x) =
∑b

j=1 wjφj(x) = w⊤φ(x),

where ⊤ denotes the transpose, b is the number of basis
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functions, w = (w1, . . . , wb)
⊤ is a parameter vector, and

φ(x) = (φ1(x), . . . , φb(x))
⊤ is a basis function vector.

The parameter vector w is learned in order to minimize the

ℓ2-regularized empirical risk:

min
w

R̂(g) + λw⊤w,

where λ ≥ 0 is the regularization parameter.

4. Theoretical Analyses

In this section, we theoretically analyze the behavior of

the empirical versions of the proposed semi-supervised

classification methods. We first derive generalization er-

ror bounds and then discuss variance reduction. Finally,

we discuss whether PUNU or PNU classification is more

promising. All proofs can be found in Appendix A.

4.1. Generalization Error Bounds

Let G be a function class of bounded hyperplanes:

G = {g(x) = 〈w,φ(x)〉 | ‖w‖ ≤ Cw, ‖φ(x)‖ ≤ Cφ},
where Cw and Cφ are certain positive constants. Since ℓ2-

regularization is always included, we can naturally assume

that the empirical risk minimizer g belongs to a certain G.

Denote by ℓ0-1(m) = (1 − sign(m))/2 the zero-one loss

and I(g) = Ep(x,y)[ℓ0-1(yg(x))] the risk of g for binary

classification, i.e., the generalization error of g. In the fol-

lowing, we study upper bounds of I(g) holding uniformly

for all g ∈ G. We respectively focus on the (scaled) ramp

and squared losses for the non-convex and convex methods

due to limited space. Similar results can be obtained with a

little more effort if other eligible losses are used. For con-

venience, we define a function as

χ(cP, cN, cU) = cPθP/
√
nP + cNθN/

√
nN + cU/

√
nU.

Non-Convex Methods: A key observation is that

ℓ0-1(m) ≤ 2ℓR(m), and consequently I(g) ≤ 2R(g). Note

that by definition we have

Rγ
N-PUNU(g) = Rγ

N-PNPU(g) = Rγ
N-PNNU(g) = R(g).

The theorem below can be proven using the Rademacher

analysis (see, for example, Mohri et al., 2012; Ledoux &

Talagrand, 1991).

Theorem 1 Let ℓR(m) be the loss for defining the empir-

ical risks. For any δ > 0, the following inequalities hold

separately with probability at least 1− δ for all g ∈ G:

I(g) ≤ 2R̂γ
N-PUNU(g) + Cw,φ,δ · χ(2− 2γ, 2γ, |2γ − 1|),

I(g) ≤ 2R̂γ
N-PNPU(g) + Cw,φ,δ · χ(1 + γ, 1− γ, γ),

I(g) ≤ 2R̂γ
N-PNNU(g) + Cw,φ,δ · χ(1− γ, 1 + γ, γ),

where Cw,φ,δ = 2CwCφ +
√
2 ln(3/δ).

Theorem 1 guarantees that when ℓR(m) is used, I(g) can

be bounded from above by two times the empirical risks,

i.e., 2R̂γ
N-PUNU(g), 2R̂

γ
N-PNPU(g), and 2R̂γ

N-PNNU(g), plus

the corresponding confidence terms of order

Op(1/
√
nP + 1/

√
nN + 1/

√
nU).

Since nP, nN, and nU can increase independently, this is al-

ready the optimal convergence rate without any additional

assumption (Vapnik, 1998; Mendelson, 2008).

Convex Methods: Analogously, we have ℓ0-1(m) ≤
4ℓS(m) for the squared loss. However, it is too loose when

|m| ≫ 0. Fortunately, we do not have to use ℓS(m) if we

work on the generalization error rather than the estimation

error. To this end, we define the truncated (scaled) squared

loss ℓTS(m) as

ℓTS(m) =

{
ℓS(m) 0 < m ≤ 1,

ℓ0-1(m)/4 otherwise,

so that ℓ0-1(m) ≤ 4ℓTS(m) is much tighter. For ℓTS(m),
RC-PU(g) and RC-NU(g) need to be redefined as follows

(see du Plessis et al., 2015):

RC-PU(g) := θPR
′

P(g) +RU,N(g),

RC-NU(g) := θNR
′

N(g) +RU,P(g),

where R′

P(g) and R′

N(g) are simply RP(g) and RN(g)

w.r.t. the composite loss ℓ̃TS(m) = ℓTS(m) − ℓTS(−m).

The condition ℓ̃TS(m) 6= −m means the loss of convexity,

but the equivalence is not lost; indeed, we still have

Rγ
C-PUNU(g) = Rγ

C-PNPU(g) = Rγ
C-PNNU(g) = R(g).

Theorem 2 Let ℓTS(m) be the loss for defining the empir-

ical risks (where RC-PU(g) and RC-NU(g) are redefined).

For any δ > 0, the following inequalities hold separately

with probability at least 1− δ for all g ∈ G:

I(g) ≤ 4R̂γ
C-PUNU(g) + C ′

w,φ,δ · χ(1− γ, γ, 1),

I(g) ≤ 4R̂γ
C-PNPU(g) + C ′

w,φ,δ · χ(1, 1− γ, γ),

I(g) ≤ 4R̂γ
C-PNNU(g) + C ′

w,φ,δ · χ(1− γ, 1, γ),

where C ′

w,φ,δ = 4CwCφ +
√
2 ln(4/δ).

Theorem 2 ensures that when ℓTS(m) is used (for evalu-

ating the empirical risks rather than learning the empirical

risk minimizers), I(g) can be bounded from above by four

times the empirical risks plus confidence terms in the op-

timal parametric rate. As ℓTS(m) ≤ ℓS(m), Theorem 2 is

valid (but weaker) if all empirical risks are w.r.t. ℓS(m).
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4.2. Variance Reduction

Our empirical risk estimators proposed in Section 3 are all

unbiased. The next question is whether their variance can

be smaller than that of R̂PN(g), i.e., whether XU can help

reduce the variance in estimating R(g). To answer this

question, pick any g of interest. For simplicity, we assume

that nU → ∞, to illustrate the maximum variance reduc-

tion that could be achieved. Due to limited space, we only

focus on the non-convex methods.

Similarly to RP(g) and RN(g), let σ2
P(g) and σ2

N(g) be the

corresponding variance:

σ2
P(g) := VarP[ℓ(g(x))], σ2

N(g) := VarN[ℓ(−g(x))],

where VarP and VarN denote the variance over pP(x)
and pN(x). Moreover, denote by ψP = θ2Pσ

2
P(g)/nP

and ψN = θ2Nσ
2
N(g)/nN for short, and let Var be the

variance over pP(x
P
1 ) · · · pP(xP

nP
) · pN(xN

1 ) · · · pN(xN
nN

) ·
p(xU

1 ) · · · p(xU
nU

).

Theorem 3 Assume nU → ∞. For any fixed g, let

γN-PUNU = argmin
γ

Var[R̂γ
N-PUNU(g)] =

ψP

ψP + ψN
. (9)

Then, we have γN-PUNU ∈ [0, 1]. Fur-

ther, Var[R̂γ
N-PUNU(g)] < Var[R̂PN(g)] for all

γ ∈ (2γN-PUNU − 1/2, 1/2) if ψP < ψN, or for all

γ ∈ (1/2, 2γN-PUNU − 1/2) if ψP > ψN.2

Theorem 3 guarantees that the variance is always reduced

by R̂γ
N-PUNU(g) if γ is close to γN-PUNU, which is optimal

for variance reduction. The interval of such good γ val-

ues has the length min{|ψP − ψN|/(ψP + ψN), 1/2}. In

particular, if 3ψP ≤ ψN or ψP ≥ 3ψN, the length is 1/2.

Theorem 4 Assume nU → ∞. For any fixed g, let

γN-PNPU= argmin
γ

Var[R̂γ
N-PNPU(g)]=

ψN − ψP

ψP + ψN
, (10)

γN-PNNU= argmin
γ

Var[R̂γ
N-PNNU(g)]=

ψP − ψN

ψP + ψN
. (11)

Then, we have γN-PNPU ∈ [0, 1] if ψP ≤ ψN or γN-PNNU ∈
[0, 1] if ψP ≥ ψN. Additionally, Var[R̂γ

N-PNPU(g)] <

Var[R̂PN(g)] for all γ ∈ (0, 2γN-PNPU) if ψP <

ψN, or Var[R̂γ
N-PNNU(g)] < Var[R̂PN(g)] for all γ ∈

(0, 2γN-PNNU) if ψP > ψN.

Theorem 4 implies that the variance of R̂PN(g) is re-

duced by either R̂γ
N-PNPU(g) if ψP ≤ ψN or R̂γ

N-PNNU(g)

2Being fixed means g is determined before seeing the data for
evaluating the empirical risk. For example, if g is trained by some
learning method, and the empirical risk is subsequently evaluated
on the validation/test data, g is regarded as fixed in the evaluation.

if ψP ≥ ψN, where γ should be close to γN-PNPU or

γN-PNNU. The range of such good γ values is of length

min{2|ψP − ψN|/(ψP + ψN), 1}. In particular, if 3ψP ≤
ψN, R̂γ

N-PNPU(g) given any γ ∈ (0, 1) can reduce the vari-

ance, and if ψP ≥ 3ψN, R̂γ
N-PNNU(g) given any γ ∈ (0, 1)

can reduce the variance.

As a corollary of Theorems 3 and 4, the minimum

variance achievable by R̂γ
N-PUNU(g), R̂

γ
N-PNPU(g), and

R̂γ
N-PNNU(g) at their optimal γN-PUNU, γN-PNPU, and

γN-PNNU is exactly the same, namely, 4ψPψN/(ψP+ψN).

Nevertheless, R̂γ
N-PNPU(g) and R̂γ

N-PNNU(g) have a much

wider range of nice γ values than R̂γ
N-PUNU(g).

If we further assume that σP(g) = σN(g), the condition in

Theorems 3 and 4 as to whether ψP ≤ ψN or ψP ≥ ψN will

be independent of g. Also, it will coincide with the condi-

tion in Theorem 7 in Niu et al. (2016) where the minimizers

of R̂PN(g), R̂PU(g) and R̂NU(g) are compared.

A final remark is that learning is uninvolved in Theorems 3

and 4, such that ℓ(m) can be any loss that satisfies ℓ(m) +
ℓ(−m) = 1, and g can be any fixed decision function. For

instance, we may adopt ℓ0-1(m) and pick some g resulted

from some other learning methods. As a consequence, the

variance of ÎPN(g) over the validation data can be reduced,

and then the cross-validation should be more stable, given

that nU is sufficiently large. Therefore, even without being

minimized, our proposed risk estimators are themselves of

practical importance.

4.3. PUNU vs. PNU Classification

We discuss here which approach, PUNU or PNU classifi-

cation, is more promising according to state-of-the-art the-

oretical comparisons (Niu et al., 2016), which are based on

estimation error bounds.

Let ĝPN, ĝPU, and ĝNU be the minimizers of R̂PN(g),

R̂PU(g), and R̂NU(g), respectively. Let αPU,PN :=
(θP/

√
nP + 1/

√
nU)/(θN/

√
nN) and αNU,PN :=

(θN/
√
nN + 1/

√
nU)/(θP/

√
nP). The finite-sample com-

parisons state that if αPU,PN > 1 (αNU,PN > 1), PN clas-

sification is more promising than PU (NU) classification,

i.e., R(ĝPN) < R(ĝPU) (R(ĝPN) < R(ĝNU)); otherwise

PU (NU) classification is more promising than PN classifi-

cation (cf. Section 3.2 in Niu et al., 2016).

Suppose that nU is not sufficiently large against nP and nN.

According to the finite-sample comparisons, PN classifica-

tion is most promising, and either PU or NU classification

is the second best, i.e., R(ĝPN) < R(ĝPU) < R(ĝNU)
or R(ĝPN) < R(ĝNU) < R(ĝPU). On the other hand,

if nU is sufficiently large (nU → ∞, which is faster

than nP, nN → ∞), we have the asymptotic compar-

isons: α∗

PU,PN = limnP,nN,nU→∞ αPU,PN, α∗

NU,PN =
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limnP,nN,nU→∞ αNU,PN, and α∗

PU,PN ·α∗

NU,PN = 1. From

the last equation, if α∗

PU,PN < 1, then α∗

NU,PN > 1, imply-

ing that PU (PN) classification is more promising than PN

(NU) classification, i.e., R(ĝPU) < R(ĝPN) < R(ĝNU).
Similarly, when α∗

PU,PN > 1 and α∗

NU,PN < 1, R(ĝNU) <
R(ĝPN) < R(ĝPU) (cf. Section 3.3 in Niu et al., 2016).

In real-world applications, since we do not know whether

the number of unlabeled samples is sufficiently large or not,

a practical approach is to combine the best methods in both

the finite-sample and asymptotic cases. PNU classification

is the combination of the best methods in both cases, but

PUNU classification is not. In addition, PUNU classifi-

cation includes the worst one in its combination in both

cases. From this viewpoint, PNU classification would be

more promising than PUNU classification, as demonstrated

in the experiments shown in the next section.

5. Experiments

In this section, we first numerically analyze the proposed

approach and then compare the proposed semi-supervised

classification methods against existing methods. All ex-

periments were carried out using a PC equipped with two

2.60GHz Intel® Xeon® E5-2640 v3 CPUs.

5.1. Experimental Analyses

Here, we numerically analyze the behavior of our proposed

approach. Due to limited space, we show results on two out

of six data sets and move the rest to Appendix C.

Common Setup: As a classifier, we use the Gaussian

kernel model: g(x) =
∑n

i=1 wi exp(−‖x− xi‖2/(2σ2)),
where n = nP + nN, {wi}ni=1 are the parameters,

{xi}ni=1 = XP∪XN, and σ > 0 is the Gaussian bandwidth.

The bandwidth candidates are {1/8, 1/4, 1/2, 1, 3/2, 2} ×
median(‖xi − xj‖ni,j=1). The classifier trained by mini-

mizing the empirical PN risk is denoted by ĝPN. The num-

ber of labeled samples for training is 20, where the class-

prior was 0.5. In all experiments, we used the squared loss

for training. We note that the class-prior of test data was

the same as that of unlabeled data.

Variance Reduction in Practice: Here, we numerically

investigate how many unlabeled samples are sufficient in

practice such that the variance of the empirical PNU risk

is smaller than that of the PN risk: Var[R̂η
PNU(g)] <

Var[R̂PN(g)] given a fixed classifier g.

As the fixed classifier, we used the classifier ĝPN, where

the hyperparameters were determined by five-fold cross-

validation. To compute the variance of the empirical PN

and PNU risks, Var[R̂PN(ĝPN)] and Var[R̂η
PNU(ĝPN)], we

repeatedly drew additional nVP = 10 positive, nVN = 10
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Figure 1. Average and standard error of the ratio between

the variance of empirical PNU risk and that of PN risk,

Var[R̂η
PNU

(ĝPN)]/Var[R̂PN(ĝPN)], as a function of the number

of unlabeled samples over 100 trials. Although the variance re-

duction is proved for an infinite number of samples, it can be ob-

served with a finite number of samples.

negative, and nVU unlabeled samples from the rest of the

data set. The additional samples were also used for ap-

proximating σ̂P(ĝPN) and σ̂N(ĝPN) to compute η, i.e., γ in

Eqs.(10) and (11).

Figure 1 shows the ratio between the variance of

the empirical PNU risk and that of the PN risk,

Var[R̂η
PNU(ĝPN)]/Var[R̂PN(ĝPN)]. The number of unla-

beled samples for validation nVU increases from 10 to 300.

We see that with a rather small number of unlabeled sam-

ples, the ratio becomes less than 1. That is, the variance

of the empirical PNU risk becomes smaller than that of the

PN risk. This implies that although the variance reduction

is proved for an infinite number of unlabeled samples, it can

be observed under a finite number of samples in practice.

Compared to when θP = 0.3 and 0.7, the effect of variance

reduction is small when θP = 0.5. This is because if we

assume σP(g) ≈ σN(g), when nP ≈ nN and θP = 0.5,

we have γN-PNPU ≈ γN-PNNU ≈ 0 (because ψP ≈ ψN.

See Theorem 4). That is, the PNU risk is dominated by

the PN risk, implying that Var[R̂η
PNU(g)] ≈ Var[R̂PN(g)].

Note that the class-prior is not the only factor for vari-

ance reduction; for example, if θP = 0.5, nP ≫ nN, and

σP(g) ≈ σN(g), then γN-PNPU 6≈ 0 (because ψP ≪ ψN)

and the variance reduction will be large.

PNU Risk in Validation: As discussed in Section 4, the

empirical PNU risk will be a reliable validation score due

to its having smaller variance than the empirical PN risk.

We show here that the empirical PNU risk is a promising

alternative to a validation score.

To focus on the effect of validation scores only, we trained

two classifiers by using the same risk, e.g, the empirical

PN risk. We then tune the classifiers with the empirical

PN and PNU risks denoted by ĝPN
PN and ĝPNU

PN , respectively.

The number of validation samples was the same as in the

previous experiment.
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Figure 2. Average and standard error of the ratio between the mis-

classification rates of ĝPNU

PN and ĝPN

PN as a function of unlabeled

samples over 1000 trials. In many cases, the ratio becomes less

than 1, implying that the PNU risk is a promising alternative to

the standard PN risk in validation if unlabeled data are available.
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Figure 3. Average computation time over 50 trials for benchmark

data sets when nL = 50.

Figure 2 shows the ratio between the misclassification rate

of ĝPNU
PN and that of ĝPN

PN . The number of unlabeled sam-

ples for validation increases from 10 to 300. With a rather

small number of unlabeled samples, the ratio becomes less

than 1, i.e., ĝPNU
PN achieves better performance than ĝPN

PN .

In particular, when θP = 0.3 and 0.7, ĝPNU
PN improved sub-

stantially; the large improvement tends to give the large

variance reduction (cf. Figure 1). This result shows that

the use of the empirical PNU risk for validation improved

the classification performance given a relatively large size

of unlabeled data.

5.2. Comparison with Existing Methods

Next, we numerically compare the proposed methods

against existing semi-supervised classification methods.

Common Setup: We compare our methods against five

conventional semi-supervised classification methods: en-

tropy regularization (ER) (Grandvalet & Bengio, 2004),

the Laplacian support vector machine (LapSVM) (Belkin

et al., 2006; Melacci & Belkin, 2011), squared-loss mu-

tual information regularization (SMIR) (Niu et al., 2013),

the weakly labeled support vector machine (WellSVM) (Li

et al., 2013), and the safe semi-supervised support vector

machine (S4VM) (Li & Zhou, 2015).

Among the proposed methods, PNU classification and

Table 1. Average and standard error of the misclassification rates

of each method over 50 trials for benchmark data sets. Boldface

numbers denote the best and comparable methods in terms of av-

erage misclassifications rate according to a t-test at a significance

level of 5%. The bottom row gives the number of best/comparable

cases of each method.

Data set nL PNU PUNU ER LapSVM SMIR WellSVM S4VM

Banana 10 30.1 (1.0) 32.1 (1.1) 35.8 (1.0) 36.9 (1.0) 37.7 (1.1) 41.8 (0.6) 45.3 (1.0)

d = 2 50 19.0 (0.6) 26.4 (1.2) 20.6 (0.7) 21.3 (0.7) 21.1 (1.0) 42.6 (0.5) 38.7 (0.9)

Phoneme 10 32.5 (0.8) 33.5 (1.0) 33.4 (1.2) 36.5 (1.5) 36.4 (1.2) 28.4 (0.6) 33.7 (1.4)

d = 5 50 28.1 (0.5) 32.8 (0.9) 27.8 (0.6) 27.0 (0.8) 28.6 (1.0) 26.8 (0.4) 25.1 (0.2)

Magic 10 31.7 (0.8) 34.1 (0.9) 34.2 (1.1) 37.9 (1.3) 36.0 (1.2) 30.1 (0.8) 33.3 (0.9)

d = 10 50 29.9 (0.8) 33.4 (0.9) 30.9 (0.5) 31.0 (0.9)30.8 (0.9) 28.8 (0.8) 29.2 (0.4)

Image 10 29.8 (0.9) 31.7 (0.8) 33.7 (1.1) 36.6 (1.2) 36.7 (1.2) 34.7 (1.1) 35.9 (1.0)

d = 18 50 20.7 (0.8) 26.6 (1.1) 20.8 (0.8) 20.3 (1.0)20.9 (0.9) 27.2 (1.0) 23.2 (0.7)

Susy 10 44.6 (0.6) 45.0 (0.6) 47.7 (0.4) 48.2 (0.4)45.1 (0.7) 48.0 (0.3) 46.8 (0.3)

d = 18 50 38.9 (0.6) 41.5 (0.6) 37.9 (0.7) 43.1 (0.6) 43.9 (0.8) 43.8 (0.7) 42.1 (0.4)

German 10 40.8 (0.9) 42.4 (0.7) 43.6 (0.9) 45.9 (0.7) 46.2 (0.8) 42.4 (0.8) 42.0 (0.7)

d = 20 50 36.2 (0.8) 39.0 (0.8) 38.9 (0.6) 40.6 (0.6) 38.4 (1.1) 38.5 (1.0) 34.9 (0.5)

Waveform 10 17.4 (0.6) 18.0 (0.9) 18.5 (0.6) 24.9 (1.4)18.0 (1.0) 16.7 (0.6) 20.8 (0.8)

d = 21 50 16.3 (0.6) 23.7 (1.2) 14.2 (0.4) 18.1 (0.8)15.4 (0.6) 15.5 (0.5) 15.3 (0.3)

ijcnn1 10 43.6 (0.6) 40.3 (1.0) 49.7 (0.1) 49.2 (0.3) 44.0 (1.0) 45.9 (0.7) 49.3 (0.8)

d = 22 50 34.5 (0.8) 37.1 (0.9) 35.5 (0.8) 33.4 (1.1) 49.4 (0.3) 46.2 (0.8) 48.6 (0.4)

g50c 10 11.4 (0.6) 12.5 (0.6) 23.3 (2.3) 39.8 (1.6) 21.9 (1.3) 6.6 (0.4) 27.0 (1.4)

d = 50 50 12.5 (1.1) 10.1 (0.6) 8.7 (0.4) 22.5 (1.5) 10.6 (0.6) 7.4 (0.4) 12.1 (0.5)

covtype 10 46.2 (0.4) 46.0 (0.4) 46.0 (0.5) 47.1 (0.5) 47.9 (0.5) 46.9 (0.6) 46.4 (0.4)

d = 54 50 41.3 (0.5) 42.3 (0.5) 41.0 (0.4) 41.5 (0.5) 46.2 (0.8) 43.6 (0.6) 40.8 (0.4)

Spambase 10 27.2 (0.9) 28.1 (1.1) 31.8 (1.4) 39.7 (1.4) 30.9 (1.3) 23.8 (0.8) 36.1 (1.5)

d = 57 50 23.4 (1.0) 26.6 (1.0) 22.1 (0.7) 28.5 (1.3) 20.9 (0.5) 19.1 (0.4) 24.5 (0.9)

Splice 10 38.3 (0.8) 39.3 (0.8) 43.9 (0.8) 47.9 (0.5) 41.6 (0.7) 42.0 (1.0) 42.4 (0.6)

d = 60 50 30.6 (0.8) 34.7 (0.9) 30.9 (0.8) 38.8 (1.0)30.6 (0.9) 40.9 (0.8) 35.9 (0.7)

phishing 10 24.2 (1.2) 25.8 (1.0) 27.3 (1.6) 37.2 (1.6) 27.6 (1.6) 27.5 (1.4) 31.7 (1.3)

d = 68 50 15.8 (0.6) 18.3 (0.8) 15.4 (0.5) 21.1 (1.3)14.7 (0.8) 17.2 (0.7) 16.7 (0.8)

a9a 10 31.4 (0.9) 31.3 (1.0) 34.3 (1.2) 41.0 (1.1) 37.3 (1.3) 33.1 (1.2) 34.3 (1.2)

d = 83 50 27.9 (0.6) 29.9 (0.8) 28.6 (0.7) 33.3 (1.0)26.9 (0.7) 28.9 (0.8) 26.2 (0.4)

Coil2 10 38.7 (0.8) 40.1 (0.8) 42.8 (0.7) 43.9 (0.8) 43.2 (0.8) 39.1 (0.9) 44.0 (0.8)

d = 241 50 23.2 (0.6) 30.5 (0.9) 23.6 (0.9) 22.8 (0.9) 25.1 (0.9) 22.6 (0.8) 25.4 (0.8)

w8a 10 35.9 (0.9) 33.6 (1.0) 41.6 (1.0) 46.6 (0.8) 39.4 (0.9) 42.1 (0.8) 43.0 (0.8)

d = 300 50 28.1 (0.7) 27.6 (0.6) 27.0 (0.9) 38.7 (0.8)28.0 (0.9) 33.7 (0.8) 35.2 (1.0)

#Best/Comp. 23 13 11 4 9 13 7

PUNU classification with the squared loss were tested.3

Data Sets: We used sixteen benchmark data sets taken

from the UCI Machine Learning Repository (Lichman,

2013), the Semi-Supervised Learning book (Chapelle et al.,

2006), the LIBSVM (Chang & Lin, 2011), the ELENA

Project,4 and a paper by Chapelle & Zien (2005).5 Each

feature was scaled to [0, 1]. Similarly to the setting in Sec-

tion 5.1, we used the Gaussian kernel model for all meth-

ods. The training data is {xi}ni=1 = XP ∪XN ∪XU, where

n = nP+nN+nU. We selected all hyper-parameters with

validation samples of size 20 (nVP = nVN = 10). For train-

ing, we drew nL labeled and nU = 300 unlabeled samples.

The class-prior of labeled data was set at 0.7 and that of un-

labeled samples was set at θP = 0.5 that were assumed to

be known. In practice, the class-prior, θP, can be estimated

3In preliminary experiments, we tested other loss functions
such as the ramp and logistic losses and concluded that the dif-
ference in loss functions did not provide noticeable difference.

4https://www.elen.ucl.ac.be/neural-

nets/Research/Projects/ELENA/elena.htm
5http://olivier.chapelle.cc/lds/
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Table 2. Average and standard error of misclassification rates over

30 trials for the Places 205 data set. Boldface numbers denote the

best and comparable methods in terms of the average misclassifi-

cation rate according to a t-test at a significance level of 5%.

Data set nU θP θ̂P PNU ER LapSVM SMIR WellSVM

Arts

1000 0.50 0.49 (0.01) 27.4 (1.3) 26.6 (0.5) 26.1 (0.7) 40.1 (3.9) 27.5 (0.5)

5000 0.50 0.50 (0.01) 24.8 (0.6) 26.1 (0.5) 26.1 (0.4) 30.1 (1.6) N/A

10000 0.50 0.52 (0.01) 25.6 (0.7) 25.4 (0.5) 25.5 (0.6) N/A N/A

Deserts

1000 0.73 0.67 (0.01) 13.0 (0.5) 15.3 (0.6) 16.7 (0.8) 17.2 (0.8) 18.2 (0.7)

5000 0.73 0.67 (0.01) 13.4 (0.4) 13.3 (0.5) 16.6 (0.6) 24.4 (0.6) N/A

10000 0.73 0.68 (0.01) 13.3 (0.5) 13.7 (0.6) 16.8 (0.8) N/A N/A

Fields

1000 0.65 0.57 (0.01) 22.4 (1.0) 26.2 (1.0) 26.6 (1.3) 28.2 (1.1) 26.6 (0.8)

5000 0.65 0.57 (0.01) 20.6 (0.5) 22.6 (0.6) 24.7 (0.8) 29.6 (1.2) N/A

10000 0.65 0.57 (0.01) 21.6 (0.6) 22.5 (0.6) 25.0 (0.9) N/A N/A

Stadiums

1000 0.50 0.50 (0.01) 11.4 (0.4) 11.5 (0.5) 12.5 (0.5) 17.4 (3.6) 11.7 (0.4)

5000 0.50 0.50 (0.01) 11.0 (0.5) 10.9 (0.3) 11.1 (0.3) 13.4 (0.7) N/A

10000 0.50 0.51 (0.00) 10.7 (0.3) 10.9 (0.3) 11.2 (0.2) N/A N/A

Platforms

1000 0.27 0.33 (0.01) 21.8 (0.5) 23.9 (0.6) 24.1 (0.5) 30.1 (2.3) 26.2 (0.8)

5000 0.27 0.34 (0.01) 23.3 (0.8) 24.4 (0.7) 24.9 (0.7) 26.6 (0.3) N/A

10000 0.27 0.34 (0.01) 21.4 (0.5) 24.3 (0.6) 24.8 (0.5) N/A N/A

Temples

1000 0.55 0.51 (0.01) 43.9 (0.7) 43.9 (0.6) 43.4 (0.6) 50.7 (1.6) 44.3 (0.5)

5000 0.55 0.54 (0.01) 43.4 (0.9) 43.0 (0.6) 43.1 (1.0) 43.6 (0.7) N/A

10000 0.55 0.50 (0.01) 45.2 (0.8) 44.4 (0.8) 44.2 (0.7) N/A N/A

by methods proposed, e.g., by Blanchard et al. (2010), Ra-

maswamy et al. (2016), or Kawakubo et al. (2016).

Table 1 lists the average and standard error of the mis-

classification rates over 50 trials and the number of

best/comparable performances of each method in the bot-

tom row. The superior performance of PNU classification

over PUNU classification agrees well with the discussion

in Section 4.3. With the g50c data set, which well sat-

isfies the low-density separation principle, the WellSVM

achieved the best performance. However, in the Banana

data set, where the two classes are highly overlapped, the

performance of WellSVM was worse than the other meth-

ods. In contrast, PNU classification achieved consistently

better/comparable performance and its performance did

not degenerate considerably across data sets. These re-

sults show that the idea of using PU classification in semi-

supervised classification is promising.

Figure 3 plots the computation time, which shows that the

fastest computation was achieved using the proposed meth-

ods with the square loss.

Image Classification: Finally, we used the Places 205
data set (Zhou et al., 2014), which contains 2.5 million im-

ages in 205 scene classes. We used a 4096-dimensional fea-

ture vector extracted from each image by AlexNet under the

framework of Caffe,6 which is available on the project web-

site7. We chose two similar scenes to construct binary clas-

sification tasks (see the description of data sets in Appendix

B.3). We drew 100 labeled and nU unlabeled samples from

each task; the class-prior of labeled and unlabeled data

were respectively set at 0.5 and θP = mP/(mP + mN),
where mP and mN respectively denote the number of total

samples in positive and negative scenes. We used a linear

6http://caffe.berkeleyvision.org/
7http://places.csail.mit.edu/
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Figure 4. Average computation time over 30 trials for the Places

205 data set when nU = 10000.

classifier g(x) = w⊤x+w0, where w is the weight vector

and w0 is the offset (in the SMIR, the linear kernel model

is used; see Niu et al. (2013) for details).

We selected hyper-parameters in PNU classification by ap-

plying five-fold cross-validation with respect to Rη̄
PNU(g)

with the zero-one loss, where η̄ was set at Eq.(10) or

Eq.(11) with σP(g) = σN(g). The class-prior p(y =
+1) = θP was estimated using the method based on en-

ergy distance minimization (Kawakubo et al., 2016).

Table 2 lists the average and standard error of the misclas-

sification rates over 30 trials, where methods taking more

than 2 hours were omitted and indicated as N/A. The results

show that PNU classification was most effective. The av-

erage computation times are shown in Figure 4, revealing

again that PNU classification was the fastest method.

6. Conclusions

In this paper, we proposed a novel semi-supervised clas-

sification approach based on classification from positive

and unlabeled data. Unlike most of the conventional meth-

ods, our approach does not require strong assumptions on

the data distribution such as the cluster assumption. We

theoretically analyzed the variance of risk estimators and

showed that unlabeled data help reduce the variance with-

out the conventional distributional assumptions. We also

established generalization error bounds and showed that

the confidence term decreases with respect to the num-

ber of positive, negative, and unlabeled samples without

the conventional distributional assumptions in the optimal

parametric order. We experimentally analyzed the behavior

of the proposed methods and demonstrated that one of the

proposed methods, termed PNU classification, was most

effective in terms of both classification accuracy and com-

putational efficiency. It was recently pointed out that PU

classification can behave undesirably for very flexible mod-

els and a modified PU risk has been proposed (Kiryo et al.,

2017). Our future work is to develop a semi-supervised

classification method based on the modified PU classifica-

tion.
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