
Support Recovery of Hard Thresholding Pursuit

A. Technical Lemmas

The following lemma is a characterization of the co-coercivity of the objective functionF (x). A similar result was obtained

in Nguyen et al. (2014, Corollary 8) but we present a refined analysis which is essential for our purpose.

Lemma 9. For a given support set Ω, assume that the continuous function F (x) is M|Ω|-RSS and is mK-RSC for some

sparsity level K . Then, for all vectors w and w′ with |supp (w −w′) ∪ Ω| ≤ K , we have

‖∇ΩF (w
′)−∇ΩF (w)‖2 ≤ 2M|Ω|

(

F (w′)− F (w)− 〈∇F (w),w′ −w〉
)

.

Proof. We define an auxiliary function

G(x)
def
= F (x)− 〈∇F (w),x〉 .

For all vectors x and y, we have

‖∇G(x)−∇G(y)‖ = ‖∇F (x)−∇F (y)‖ ≤M|supp(x−y)| ‖x− y‖ ,

which is equivalent to

G(x)−G(y)− 〈∇G(y),x− y〉 ≤ Mr

2
‖x− y‖2 , (7)

where r = |supp (x− y)|. On the other hand, due to the RSC property of F (x), we obtain

G(x)−G(w) = F (x)− F (w)− 〈∇F (w),x−w〉 ≥ m|supp(x−w)|

2
‖x−w‖2 ≥ 0,

provided that |supp (x−w)| ≤ K . For the given support set Ω, we pick x = w′ − 1
M|Ω|

∇ΩG(w
′). Clearly, for such a

choice of x, we have supp (x−w) = supp (w −w′) ∪ Ω. Hence, by assuming that |supp (w −w′) ∪ Ω| is not larger

than K , we get

G(w) ≤ G

(

w′ − 1

M|Ω|
∇ΩG(w

′)

)

(7)

≤ G(w′) +

〈

∇G(w′),− 1

M|Ω|
∇ΩG(w

′)

〉

+
1

2M|Ω|
‖∇ΩG(w

′)‖2

= G(w′)− 1

2M|Ω|
‖∇ΩG(w

′)‖2 .

Now expanding ∇ΩG(w
′) and rearranging the terms give the desired result.

Lemma 10 (Lemma 1 in Wang et al. (2016)). Let u and z be two distinct vectors and let W = supp (u)∩ supp (z). Also,

let U be the support set of the top r (in magnitude) elements in u. Then, the following holds for all r ≥ 1:

〈u, z〉 ≤
√

⌈ |W |
r

⌉

‖uU‖ · ‖zW ‖ .

Lemma 11. Suppose that F (x) is mK-restricted strongly convex and MK-restricted smooth for some sparsity level K >
0. Then for all η > 0, all vectors x, x′ ∈ R

d and for any Hessian matrix H of F (x), we have

|〈x, (I − ηH)x′〉| ≤ ρ ‖x‖ · ‖x′‖ , if |supp (x) ∪ supp (x′)| ≤ K,

and

‖((I − ηH)x)S‖ ≤ ρ ‖x‖ , if |S ∪ supp (x)| ≤ K,

where

ρ = max
{

|ηmK − 1| , |ηMK − 1|
}

.
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Proof. Since H is a Hessian matrix, we always have a decomposition H = A⊤A for some matrix A. Denote T =
supp (x) ∪ supp (y). By simple algebra, we have

|〈x, (I − ηH)x′〉| = |〈x,x′〉 − η 〈Ax,Ax′〉|
ζ1
= |〈x,x′〉 − η 〈ATx,ATx

′〉|
=
∣

∣

∣

〈

x, (I − ηA⊤
TAT )x

′
〉
∣

∣

∣

≤
∥

∥

∥
I − ηA⊤

TAT

∥

∥

∥
· ‖x‖ · ‖x′‖

ζ2
≤ max {|ηmK − 1| , |ηMK − 1|} · ‖x‖ · ‖x′‖ .

Here, ζ1 follows from the fact that supp (x)∪ supp (y) = T and ζ2 holds because the RSC and RSS properties imply that

the singular values of any Hessian matrix restricted on an K-sparse support set are lower and upper bounded by mK and

MK , respectively.

For some index set S subject to |S ∪ supp (x)| ≤ K , let x′ = ((I − ηH)x)S . We immediately obtain

‖x′‖2 = 〈x′, (I − ηH)x〉 ≤ ρ ‖x′‖ · ‖x‖ ,

indicating

‖((I − ηH)x)S‖ ≤ ρ ‖x‖ .

Lemma 12. Suppose that F (x) is mK-restricted strongly convex and MK-restricted smooth for some sparsity level K >
0. For all η > 0, all vectors x, x′ ∈ R

d and support set T such that |supp (x− x′) ∪ T | ≤ K , the following holds:

‖(x− x′ − η∇F (x) + η∇F (x′))T ‖ ≤ ρ ‖x− x′‖

where ρ is given in Lemma 11.

Proof. In fact, for any two vectors x and x′, there always exists a quantity θ ∈ [0, 1], such that

∇F (x)−∇F (x′) = ∇2F (θx+ (1− θ)x′) (x− x′).

Let H = ∇2F (θx+ (1− θ)x′). We write

‖(x− x′ − η∇F (x) + η∇F (x′))T ‖ = ‖(x− x′ − ηH(x− x′))T ‖
= ‖((I − ηH)(x− x′))T ‖
≤ ρ ‖x− x′‖ ,

where the last inequality applies Lemma 11.

Lemma 13. Suppose that x is a k-sparse vector and let b = x − η∇F (x). Let T be the support set that contains the k
largest absolute values of b. Assume that the function F (x) is M2k-restricted smooth, then we have the following:

F (bT ) ≤ F (x)− 1− ηM2k

2η
‖bT − x‖2 .

Proof. The RSS condition implies that

F (bT )− F (x) ≤ 〈∇F (x), bT − x〉+ M2k

2
‖bT − x‖2

≤ − 1

2η
‖bT − x‖2 + M2k

2
‖bT − x‖2 ,
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where the second inequality is due to the fact that

‖bT − b‖2 = ‖bT − x+ η∇F (x)‖2

≤ ‖x− x+ η∇F (x)‖2

= ‖η∇F (x)‖2 ,

implying

2η 〈∇F (x), bT − x〉 ≤ −‖bT − x‖2 .

Lemma 14. Suppose that F (x) is mK-RSC. Then for any vectors x and x′ with ‖x− x′‖0 ≤ K , the following holds:

‖x− x′‖ ≤
√

2max{F (x)− F (x′), 0}
mK

+
2 ‖∇TF (x

′)‖
mK

where T = supp (x− x′).

Proof. The RSC property immediately implies

F (x)− F (x′) ≥ 〈∇F (x′),x− x′〉+ mK

2
‖x− x′‖2

≥ − ‖∇TF (x
′)‖ · ‖x− x′‖+ mK

2
‖x− x′‖2 .

Discussing the sign of F (x)− F (x′) and solving the above quadratic inequality completes the proof.

Lemma 15. Assume that F (x) is mk+s-RSC and M2k-RSS. Suppose that for all t ≥ 0, xt is k-sparse and the following

holds:

F (xt+1)− F (x̄) ≤ µ
(

F (xt)− F (x̄)
)

+ τ,

where 0 < µ < 1, τ ≥ 0 and x̄ is an arbitrary s-sparse signal. Then,

∥

∥xt − x̄
∥

∥ ≤
√

2M

m
(
√
µ)t
∥

∥x0 − x̄
∥

∥+
3

m
‖∇k+sF (x̄)‖+

√

2τ

m(1− µ)
.

Proof. The RSS property implies that

F (x0)− F (x̄) ≤
〈

∇F (x̄),x0 − x̄
〉

+
M

2

∥

∥x0 − x̄
∥

∥

2

≤ M

2

∥

∥x0 − x̄
∥

∥

2
+

1

2M
‖∇k+sF (x̄)‖2 +

M

2

∥

∥x0 − x̄
∥

∥

2

≤M
∥

∥x0 − x̄
∥

∥

2
+

1

2M
‖∇k+sF (x̄)‖2 .

Hence,

F (xt)− F (x̄) ≤ µtM
∥

∥x0 − x̄
∥

∥

2
+

1

2M
‖∇k+sF (x̄)‖2 +

τ

1− µ
.
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By Lemma 14, we have

∥

∥xt − x̄
∥

∥ ≤
√

2

m

√

µtM ‖x0 − x̄‖2 + ‖∇k+sF (x̄)‖2
2M

+
τ

1− µ
+

2

m
‖∇k+sF (x̄)‖

≤
√

2M

m
(
√
µ)t
∥

∥x0 − x̄
∥

∥+

√

1

mM
‖∇k+sF (x̄)‖

+
2

m
‖∇k+sF (x̄)‖+

√

2τ

m(1 − µ)

≤
√

2M

m
(
√
µ)t
∥

∥x0 − x̄
∥

∥+
3

m
‖∇k+sF (x̄)‖ +

√

2τ

m(1− µ)
.

Lemma 16. Let x̄ ∈ R
d be an s-sparse vector supported on S. For a k-sparse vector x supported on Q with k ≥ s, let

b = x− η∇F (x) and let T = supp (b, k). Suppose that the function F (x) is m2k+s-RSC andM2k+s-RSS. Then we have

∥

∥x̄S\T

∥

∥ ≤ νρ ‖x− x̄‖+ νη ‖∇T∆SF (x̄)‖ ,

where ν =
√

1 + s/k and ρ is given by Lemma 11.

Proof. We note the fact that the support sets T \S and S\T are disjoint. Moreover, the set T \S contains |T \S| number of

top |T | elements of b. Hence, we have

1

|T \S|
∥

∥bT\S

∥

∥

2 ≥ 1

|S\T |
∥

∥bS\T

∥

∥

2
. (8)

That is,

∥

∥bT\S

∥

∥ ≥
√

|T \S|
|S\T |

∥

∥bS\T

∥

∥ =

√

k − |T ∩ S|
s− |T ∩ S|

∥

∥bS\T

∥

∥ ≥
√

k

s

∥

∥bS\T

∥

∥ .

Note that the above holds also for T = S. Since x̄ is supported on S, the left hand side reads as

∥

∥bT\S

∥

∥ =
∥

∥

∥
(x− x̄− η∇F (x))T\S

∥

∥

∥
,

while the right hand side reads as

∥

∥bS\T

∥

∥ =
∥

∥

∥
(x− x̄− η∇F (x))S\T + x̄S\T

∥

∥

∥

≥
∥

∥x̄S\T

∥

∥−
∥

∥

∥
(x− x̄− η∇F (x))S\T

∥

∥

∥
.

Denote ν =
√

1 + s/k. In this way, we arrive at

∥

∥x̄S\T

∥

∥ ≤
√

s

k

∥

∥

∥
(x− x̄− η∇F (x))T\S

∥

∥

∥
+
∥

∥

∥
(x− x̄− η∇F (x))S\T

∥

∥

∥

≤ ν ‖(x− x̄− η∇F (x))T∆S‖
≤ ν ‖(x− x̄− η∇F (x) + η∇F (x̄))T∆S‖+ νη ‖∇T∆SF (x̄)‖
≤ ν

∥

∥

∥
(x− x̄− η∇F (x) + η∇F (x̄))T∪Q∪S

∥

∥

∥
+ νη ‖∇T∆SF (x̄)‖

≤ νρ2k+s ‖x− x̄‖+ νη ‖∇T∆SF (x̄)‖ ,

where the second inequality follows from the fact that ax + by ≤
√
a2 + b2

√

x2 + y2 and we applied Lemma 12 for the

last inequality.
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Lemma 17. Consider the HTP algorithm with exact solutions. Assume (A1). Then

∥

∥∇St+1\StF (xt)
∥

∥

2 ≥ 2mζ
(

F (xt)− F (x̄)
)

,

where

ζ =

∣

∣St+1\St
∣

∣

|St+1\St|+ |S\St| .

Proof. The lemma holds clearly for either St+1 = St or F (xt) ≤ F (x̄). Hence, in the following we only prove the result

by assuming St+1 6= St and F (xt) > F (x̄). Due to the RSC property, we have

F (x̄)− F (xt)−
〈

∇F (xt), x̄− xt
〉

≥ mk+s

2

∥

∥x̄− xt
∥

∥

2
,

which implies

〈

∇F (xt),−x̄
〉

≥ mk+s

2

∥

∥x̄− xt
∥

∥

2
+ F (xt)− F (x̄)

≥
√

2mk+s

∥

∥x̄− xt
∥

∥

√

F (xt)− F (x̄).

By invoking Lemma 10 with u = ∇F (xt) and z = −x̄ therein, we have

〈

∇F (xt),−x̄
〉

≤
√

|S\St|
|St+1\St| + 1

∥

∥∇St+1\StF (xt)
∥

∥ ·
∥

∥x̄S\St

∥

∥

=

√

|S\St|
|St+1\St| + 1

∥

∥∇St+1\StF (xt)
∥

∥ ·
∥

∥(x̄− xt)S\St

∥

∥

≤
√

|S\St|
|St+1\St| + 1

∥

∥∇St+1\StF (xt)
∥

∥ ·
∥

∥x̄− xt
∥

∥ .

It is worth mentioning that the first inequality above holds because ∇F (xt) is supported on St and St+1\St contains the
∣

∣St+1\St
∣

∣ number of largest (in magnitude) elements of ∇F (xt). Therefore, we obtain the result.

B. Proofs for Section 2

B.1. Proof for Prop. 1

Proof. Due to the RSS property, we have

F (bt+1
St+1)− F (xt) ≤

〈

∇F (xt), bt+1
St+1 − xt

〉

+
M

2

∥

∥bt+1
St+1 − xt

∥

∥

2

ζ1
=
〈

∇St+1\StF (xt), bt+1
St+1\St

〉

+
M

2

(∥

∥

∥
bt+1
St+1\St

∥

∥

∥

2

+
∥

∥bt+1
St+1∩St − xt

St+1∩St

∥

∥

2
+
∥

∥

∥
xt
St\St+1

∥

∥

∥

2 )

ζ2
≤
〈

∇St+1\StF (xt), bt+1
St+1\St

〉

+M
∥

∥

∥
bt+1
St+1\St

∥

∥

∥

2

ζ3
= − η(1 − ηM)

∥

∥∇St+1\StF (xt)
∥

∥

2
.

Above, we observe that ∇F (xt) is supported on St and we simply docompose the support set St+1 ∪ St into three

mutually disjoint sets, and hence ζ1 holds. To see why ζ2 holds, we note that for any set Ω ⊂ St, bt+1
Ω = xt

Ω. Hence,

bt+1
St+1∩St = xt

St+1∩St . Moreover, since xt
St\St+1 = bt+1

St\St+1 and any element in bt+1
St\St+1 is not larger than that in

b
t+1
St+1\St (recall that St+1 is obtained by hard thresholding), we have

∥

∥

∥
xt
St\St+1

∥

∥

∥
≤
∥

∥

∥
b
t+1
St+1\St

∥

∥

∥
where we use the fact

that
∣

∣St\St+1
∣

∣ =
∣

∣St+1\St
∣

∣. Therefore, ζ2 holds. Finally, we write bt+1
St+1\St = −η∇St+1\StF (xt) and obtain ζ3.
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Since xt+1 is a minimizer of F (x) over the support set St+1, it immediately follows that

F (xt+1)− F (xt) ≤ F (bt+1
St+1)− F (xt) ≤ −η(1− ηM)

∥

∥∇St+1\StF (xt)
∥

∥

2
.

Now we invoke Lemma 17 and pick η ≤ 1/M ,

F (xt+1)− F (xt) ≤ η(ηM − 1) · 2m

1 + s

(

F (xt)− F (x̄)
)

,

which gives

F (xt+1)− F (x̄) ≤ β
(

F (xt)− F (x̄)
)

,

where β = 1− 2mη(1−ηM)
1+s .

B.2. Proof for Prop. 2

Proof. This is a direct result by combining Prop. 1 and Lemma 15.

B.3. Proof for Lemma 3

Proof. Let xt
∗ = argminsupp(x)⊂St F (x). Since xt and xt

∗ are both supported on St, we apply Lemma 9 and obtain

∥

∥∇StF (xt)
∥

∥

2
=
∥

∥∇StF (xt)−∇StF (xt
∗)
∥

∥

2

≤ 2M
(

F (xt)− F (xt
∗)−

〈

∇F (xt
∗),x

t − xt
∗

〉)

≤ 2Mǫ.

Above, the second inequality uses the fact that ∇StF (xt
∗) = 0 and F (xt) ≤ F (xt

∗) + ǫ.

B.4. Proof for Prop. 4

Proof. We have by Lemma 16 that

∥

∥x̄
St+1

∥

∥ ≤
√
2ρ
∥

∥xt − x̄
∥

∥+
2

m
‖∇k+sF (x̄)‖ ,

where ρ = 1− ηm. On the other hand, Lemma 18 together with Lemma 3 shows that

∥

∥xt+1 − x̄
∥

∥ ≤ κ
∥

∥x̄St+1

∥

∥+
1

m
‖∇kF (x̄)‖ +

1

m

√
2Mǫ.

Therefore,

∥

∥xt+1 − x̄
∥

∥ ≤
√
2κρ

∥

∥xt − x̄
∥

∥+
3κ

m
‖∇k+sF (x̄)‖+

√
2Mǫ

m

We need to ensure

√
2κ(1 − ηm) < 1.

Let η = η′/M with η′ < 1. Then, the above holds provided that

κ < 1 +
1√
2

and η′ > κ− 1√
2
.

By induction and picking proper η′ to make
√
2κ(1− ηm) <

√
2/4, we have

∥

∥xt − x̄
∥

∥ ≤ (
√
2(κ− η′))t

∥

∥x0 − x̄
∥

∥+
6κ

m
‖∇k+sF (x̄)‖ +

4
√
Mǫ

m
.
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B.5. Proof for Prop. 5

Proof. Our proof in this part is inspired by Yuan et al. (2016). Let xt
∗ = argminsupp(x)⊂St F (x). Then

F (xt)− F (xt−1) ≤ F (xt
∗)− F (xt−1) + ǫ

≤ F (btSt)− F (xt−1) + ǫ

≤ − 1− ηM

2η

∥

∥btSt − xt−1
∥

∥

2
+ ǫ,

where the last inequality follows from Lemma 13. Now we bound the term
∥

∥btSt − xt−1
∥

∥

2
. Note that xt−1 is supported

on St−1. Hence,

∥

∥b
t
St − xt−1

∥

∥

2
=
∥

∥xt−1
St∩St−1 − η∇StF (xt−1)− xt−1

∥

∥

2

=
∥

∥

∥
−xt−1

St−1\St − η∇StF (xt−1)
∥

∥

∥

2

=
∥

∥

∥
xt−1
St−1\St

∥

∥

∥

2

+ η2
∥

∥∇StF (xt−1)
∥

∥

2

≥ η2
∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

We thus have

F (xt)− F (xt−1) ≤ − (1− ηM)η

2

∥

∥∇St\St−1F (xt−1)
∥

∥

2
+ ǫ.

Denote ξ =
∥

∥∇St−1F (xt−1)
∥

∥. We claim that

∥

∥∇St\St−1F (xt−1)
∥

∥

2 ≥ m
(

F (xt−1)− F (x̄)
)

− 2ξ2, (9)

which, combined with Lemma 3, immediately shows

F (xt)− F (xt−1) ≤ − (1− ηM)ηm

2

(

F (xt−1)− F (x̄)
)

+ 2ǫ.

Using Lemma 15 completes the proof.

To show (9), we consider two exhausitive cases:
∣

∣St\St−1
∣

∣ ≥ s and
∣

∣St\St−1
∣

∣ < s, and prove that (9) holds for both

cases.

Case I.
∣

∣St\St−1
∣

∣ ≥ s. Due to the RSC property, we have

m

2

∥

∥x̄− xt−1
∥

∥

2

≤ F (x̄)− F (xt−1)−
〈

∇F (xt−1), x̄− xt−1
〉

≤ F (x̄)− F (xt−1) +
m

2

∥

∥x̄− xt−1
∥

∥

2
+

1

2m

∥

∥∇S∪St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
m

2

∥

∥x̄− xt−1
∥

∥

2
+

1

2m

∥

∥∇S\St−1F (xt−1)
∥

∥

2
+

1

2m

∥

∥∇St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
m

2

∥

∥x̄− xt−1
∥

∥

2
+

1

2m

∥

∥∇S\St−1F (xt−1)
∥

∥

2
+

1

2m
ξ2.

Therefore, we get

∥

∥∇S\St−1F (xt−1)
∥

∥

2 ≥ 2m
(

F (xt−1)− F (x̄)
)

− ξ2.

Since St contains the k largest absolute values of b
t
, and

∣

∣St\St−1
∣

∣ ≥ s ≥
∣

∣S\St−1
∣

∣, we have

∥

∥

∥
btSt\St−1

∥

∥

∥

2

≥
∥

∥

∥
btS\St−1

∥

∥

∥

2

,
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which immediately implies (9) by noting the fact that btSt\St−1 = −η∇St\St−1F (xt−1) and btS\St−1 =

−η∇S\St−1F (xt−1).

Case II.
∣

∣St\St−1
∣

∣ < s. Again, we use the RSC property to obtain

m

2

∥

∥x̄− xt−1
∥

∥

2

≤ F (x̄)− F (xt−1)−
〈

∇F (xt−1), x̄− xt−1
〉

≤ F (x̄)− F (xt−1) +
m

4

∥

∥x̄− xt−1
∥

∥

2
+

1

m

∥

∥∇S∪St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
m

4

∥

∥x̄− xt−1
∥

∥

2
+

1

m

∥

∥∇S\St−1F (xt−1)
∥

∥

2
+

1

m
ξ2

= F (x̄)− F (xt−1) +
m

4

∥

∥x̄− xt−1
∥

∥

2
+

1

m

∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2

+
1

m

∥

∥∇(St\St−1)∩SF (x
t−1)

∥

∥

2
+

1

m
ξ2

≤ F (x̄)− F (xt−1) +
m

4

∥

∥x̄− xt−1
∥

∥

2
+

1

m

∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2

+
1

m

∥

∥∇St\St−1F (xt−1)
∥

∥

2
+

1

m
ξ2. (10)

We consider the term
∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2
above. Actually, we have

b
t
S\(St∪St−1) = −η∇S\(St∪St−1)F (x

t−1).

Since St contains the k largest absolute values of bt, we know that any component in btΩ is not larger than that in btSt

subject to Ω ∩ St = ∅. In particular,
∥

∥

∥
btS\(St∪St−1)

∥

∥

∥

2

|S\(St ∪ St−1)| ≤

∥

∥

∥
bt(St∩St−1)\S

∥

∥

∥

2

|(St ∩ St−1)\S| .

Note that
∣

∣St\St−1
∣

∣ < s implies
∣

∣(St ∩ St−1)\S
∣

∣ ≥ k − 2s. Therefore,

η2
∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2

≤ s

k − 2s

∥

∥

∥
xt−1
(St∩St−1)\S − η∇(St∩St−1)\SF (x

t−1)
∥

∥

∥

2

≤ 2s

k − 2s

∥

∥

∥
xt−1
(St∩St−1)\S

∥

∥

∥

2

+
2sη2

k − 2s
ξ2

=
2s

k − 2s

∥

∥(xt−1 − x̄)(St∩St−1)\S

∥

∥

2
+

2sη2

k − 2s
ξ2

≤ 2s

k − 2s

∥

∥xt−1 − x̄
∥

∥

2
+

2sη2

k − 2s
ξ2.

Plugging the above into (10), we obtain

m

2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1) +
m

4

∥

∥x̄− xt−1
∥

∥

2
+

2s

(k − 2s)η2m

∥

∥x̄− xt−1
∥

∥

2

+
1

m

∥

∥∇St\St−1F (xt−1)
∥

∥

2
+

1

m

(

2s

k − 2s
+ 1

)

ξ2.

Picking k ≥ 2s+ 8s
η2m2 gives

m

2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1) +
m

2

∥

∥x̄− xt−1
∥

∥

2

+
1

m

∥

∥∇St\St−1F (xt−1)
∥

∥

2
+

(

η2m

4
+

1

m

)

ξ2.

Since η < 1/M , η2m2

4 + 1 < 2. Therefore, by re-arranging the above inequality, we prove the claim (9).
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C. Proofs for Section 3

The following result holds for all F (x).

Lemma 18. Assume (A1) and (A2). For any k-sparse vector x and s-sparse vector x̄, we have

‖x− x̄‖ ≤ κ ‖x̄T ‖+
1

m
‖∇TF (x)−∇TF (x̄)‖ ,

where T is the support set of x.

Proof.

‖(x− x̄)T ‖2 = 〈x− x̄− τ∇F (x) + τ∇F (x̄), (x− x̄)T 〉+ τ 〈∇F (x)−∇F (x̄), (x− x̄)T 〉
≤ ‖(x− x̄− τ∇F (x) + τ∇F (x̄))T ‖ · ‖(x− x̄)T ‖+ τ ‖∇TF (x)−∇TF (x̄)‖ · ‖(x− x̄)T ‖
≤ ‖x− x̄− τ∇T∪SF (x) + τ∇T∪SF (x̄)‖ · ‖(x− x̄)T ‖+ τ ‖∇TF (x)−∇TF (x̄)‖ · ‖(x− x̄)T ‖
≤ ρ ‖x− x̄‖ · ‖(x− x̄)T ‖+ τ ‖∇TF (x)−∇TF (x̄)‖ · ‖(x− x̄)T ‖ .

Dividing both sides by ‖(x− x̄)T ‖ gives

‖(x− x̄)T ‖ ≤ ρ ‖x− x̄‖+ τ ‖∇TF (x)−∇TF (x̄)‖ .

On the other hand,

‖x− x̄‖ ≤ ‖(x− x̄)T ‖+ ‖(x− x̄)T ‖
≤ ρ ‖x− x̄‖+ τ ‖∇TF (x)−∇TF (x̄)‖+ ‖x̄T ‖ .

Hence, we have

‖x− x̄‖ ≤ 1

1− ρ
‖x̄T ‖+

τ

1− ρ
‖∇TF (x)−∇TF (x̄)‖ .

Picking τ = 1/M completes the proof.

In view of the exact (HTP3), we have

∥

∥xt − x̄
∥

∥ ≤ κ
∥

∥x̄St

∥

∥+
1

m
‖∇kF (x̄)‖ . (11)

Now we present the crucial lemma. It is inspired by Bouchot et al. (2016) but we show a more general result.

Lemma 19. Consider the HTP algorithm. Assume (A1) and (A2). Further assume that the sequence of {xt}t≥0 satisfies

∥

∥xt − x̄
∥

∥ ≤ α · βt
∥

∥x0 − x̄
∥

∥+ φ,
∥

∥xt − x̄
∥

∥ ≤ γ
∥

∥x̄St

∥

∥+ ψ,

for positive α, φ, γ, ψ and 0 < β < 1. Suppose that at the n-th iteration (n ≥ 0), Sn contains the indices of top p (in

magnitude) elements of x̄. Then, for any integer 1 ≤ q ≤ s− p, there exists an integer r ≥ 1 determined by

√
2 |x̄p+q| > αγ · βr−1

∥

∥x̄{p+1,...,s}

∥

∥+ θ

where

θ = αψ + φ+
1

m
‖∇2F (x̄)‖ ,

such that Sn+r contains the indices of top p+ q elements of x̄ provided that θ ≤
√
2λx̄min for some λ ∈ (0, 1).
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Proof. Without loss of generality, we presume that the elements in x̄ are in descending order by their magnitude, i.e.,

|x̄1| ≥ |x̄2| ≥ · · · ≥ |x̄s|. We aim at deriving a condition under which [p+ q] ⊂ Sn+r. To this end, it suffices to enforce

min
j∈[p+q]

∣

∣bn+r
j

∣

∣ > max
i∈S

∣

∣bn+r
i

∣

∣ . (12)

On one hand, for any j ∈ [p+ q],

∣

∣bn+r
j

∣

∣ =
∣

∣

∣

(

xn+r−1 − η∇F (xn+r−1)
)

j

∣

∣

∣

≥ |x̄j | −
∣

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

j

∣

∣

∣

≥ |x̄p+q| −
∣

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

j

∣

∣

∣
.

On the other hand, for all i ∈ S,

∣

∣bn+r
i

∣

∣ =
∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

i

∣

∣ .

Hence, we know that to guarantee (12), it suffices to ensure for all j ∈ [p+ q] and i ∈ S that

|x̄p+q| >
∣

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

j

∣

∣

∣
+
∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

i

∣

∣ .

Note that the right-hand side is upper bounded as follows:

1√
2

∣

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

j

∣

∣

∣
+

1√
2

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

i

∣

∣

≤
∥

∥

∥

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

{j,i}

∥

∥

∥

≤
∥

∥

∥

(

xn+r−1 − x̄− η∇F (xn+r−1) + η∇F (x̄)
)

{j,i}

∥

∥

∥
+ η

∥

∥∇{j,i}F (x̄)
∥

∥

≤ ρ
∥

∥xn+r−1 − x̄
∥

∥+ η ‖∇2F (x̄)‖
≤ ρα · βr−1 ‖xn − x̄‖+ ρφ+ η ‖∇2F (x̄)‖ .

Moreover,

‖xn − x̄‖ ≤ γ ‖x̄Sn‖+ ψ ≤ γ
∥

∥

∥
x̄[p]

∥

∥

∥
+ ψ = γ

∥

∥x̄{p+1,...,s}

∥

∥+ ψ.

Put all together, we have

1√
2

∣

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

j

∣

∣

∣
+

1√
2

∣

∣

(

xn+r−1 − x̄− η∇F (xn+r−1)
)

i

∣

∣

≤ ραγ · βr−1
∥

∥x̄{p+1,...,s}

∥

∥+ ραψ + ρφ+ η ‖∇2F (x̄)‖

≤ αγ · βr−1
∥

∥x̄{p+1,...,s}

∥

∥+ αψ + φ+
1

m
‖∇2F (x̄)‖ .

Therefore, when

√
2 |x̄p+q| > αγ · βr−1

∥

∥x̄{p+1,...,s}

∥

∥+ αψ + φ+
1

m
‖∇2F (x̄)‖ ,

we always have (12). Note that the above holds as far as αψ + φ+ 1
m ‖∇2F (x̄)‖ is strictly smaller than

√
2 |x̄s|.

With Lemma 19, we show the following general theorem.

Theorem 20. Assume same conditions as in Lemma 19. Then HTP successfully identifies the support of x̄ using
(

log 2
2 log(1/β) +

log(αγ/(1−λ))
log(1/β) + 2

)

s number of iterations.



Support Recovery of Hard Thresholding Pursuit

Proof. Without loss of generality, we presume that the elements in x̄ are in descending order by their magnitude, i.e.,

|x̄1| ≥ |x̄2| ≥ · · · ≥ |x̄s|. We partition the support set [s] into K folds S1, S2, . . . , SK , where each Si is defined as

follows:

Si = {si−1 + 1, . . . , si}, ∀ 1 ≤ i ≤ K.

Here, s0 = 0 and for all 1 ≤ i ≤ K , the quantity si is inductively given by

si = max
{

q : si−1 + 1 ≤ q ≤ s and |x̄q| >
1√
2

∣

∣x̄si−1+1

∣

∣

}

.

In this way, we note that for any two index sets Si and Sj , Si ∩ Sj = ∅ if i 6= j. We also know by the definition of si that

|x̄si+1| ≤
1√
2

∣

∣x̄si−1+1

∣

∣ , ∀ 1 ≤ i ≤ K − 1. (13)

Now we show that after a finite number of iterations, say n, the union of the Si’s is contained in Sn. To this end, we prove

that for all 0 ≤ i ≤ K ,

i
⋃

t=0

St ⊂ Sn0+n1+···+ni (14)

for some ni’s given below.

We pick n0 = 0 and it is easy to verify that S0 ⊂ S0. Now suppose that (14) holds for i − 1. That is, the index set of the

top si−1 elements of x̄ is contained in Sn0+···+ni−1 . Due to Lemma 19, (14) holds for i as long as ni satisfies

√
2 |x̄si | > αγ · βni−1

∥

∥x̄{si−1+1,...,s}

∥

∥+ θ. (15)

Note that

∥

∥x̄{si−1+1,...,s}

∥

∥

2
=
∥

∥x̄Si

∥

∥

2
+ · · ·+

∥

∥x̄SK

∥

∥

2

≤ (x̄si−1+1)
2 |Si|+ · · ·+ (x̄sr−1+1)

2 |SK |
≤ (x̄si−1+1)

2
(

|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |
)

< 2(x̄si)
2
(

|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |
)

,

where the second inequality follows from (13) and the last inequality follows from the definition of qi. Denote for simplicity

Ti := |Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK | .

As we assume θ ≤
√
2λx̄min, we get

αγ · βni−1
∥

∥x̄{si−1+1,...,s}

∥

∥+ θ <
√
2αγ |x̄si |βni−1

√

Ti +
√
2λ |x̄si | .

Picking

ni = log1/β
αγ

√
Ti

1− λ
+ 2
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guarantees (15). It remains to calculate the total number of iterations. In fact, we have

n = n0 + n1 + . . . nK

=
1

2 log(1/β)

K
∑

i=1

logTi +K · log(αγ/(1− λ))

log(1/β)
+ 2K

ζ1
≤ K

2 log(1/β)
log

(

1

K

K
∑

i=1

Ti

)

+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

ζ2
≤ K

2 log(1/β)
log

(

2

K

K
∑

i=1

|Si|
)

+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

=
K

2 log(1/β)
log

2s

K
+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

ζ3
≤
(

log 2

2 log(1/β)
+

log(αγ/(1− λ))

log(1/β)
+ 2

)

s.

Above, ζ1 immediately follows by observing that the logarithmic function is concave. ζ2 uses the fact that after rear-

rangement, the coefficient of |Si| is
∑i−1

j=0 2
−j which is always smaller than 2. Finally, since the function r log(2s/r) is

monotonically increasing with respect to r and 1 ≤ r ≤ s, ζ3 follows.

Combining this theorem, Lemma 19 and specific results in Prop. 2, Prop. 4 and Prop. 5 gives the main theorems in Section 3.


