A. Technical Lemmas

The following lemma is a characterization of the co-coercivity of the objective function $F(\boldsymbol{x})$. A similar result was obtained in Nguyen et al. (2014, Corollary 8) but we present a refined analysis which is essential for our purpose.
Lemma 9. For a given support set Ω, assume that the continuous function $F(\boldsymbol{x})$ is $M_{|\Omega|}-$ RSS and is m_{K}-RSC for some sparsity level K. Then, for all vectors \boldsymbol{w} and \boldsymbol{w}^{\prime} with $\left|\operatorname{supp}\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right) \cup \Omega\right| \leq K$, we have

$$
\left\|\nabla_{\Omega} F\left(\boldsymbol{w}^{\prime}\right)-\nabla_{\Omega} F(\boldsymbol{w})\right\|^{2} \leq 2 M_{|\Omega|}\left(F\left(\boldsymbol{w}^{\prime}\right)-F(\boldsymbol{w})-\left\langle\nabla F(\boldsymbol{w}), \boldsymbol{w}^{\prime}-\boldsymbol{w}\right\rangle\right)
$$

Proof. We define an auxiliary function

$$
G(\boldsymbol{x}) \stackrel{\text { def }}{=} F(\boldsymbol{x})-\langle\nabla F(\boldsymbol{w}), \boldsymbol{x}\rangle
$$

For all vectors \boldsymbol{x} and \boldsymbol{y}, we have

$$
\|\nabla G(\boldsymbol{x})-\nabla G(\boldsymbol{y})\|=\|\nabla F(\boldsymbol{x})-\nabla F(\boldsymbol{y})\| \leq M_{|\operatorname{supp}(\boldsymbol{x}-\boldsymbol{y})|}\|\boldsymbol{x}-\boldsymbol{y}\|
$$

which is equivalent to

$$
\begin{equation*}
G(\boldsymbol{x})-G(\boldsymbol{y})-\langle\nabla G(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle \leq \frac{M_{r}}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2} \tag{7}
\end{equation*}
$$

where $r=|\operatorname{supp}(\boldsymbol{x}-\boldsymbol{y})|$. On the other hand, due to the RSC property of $F(\boldsymbol{x})$, we obtain

$$
G(\boldsymbol{x})-G(\boldsymbol{w})=F(\boldsymbol{x})-F(\boldsymbol{w})-\langle\nabla F(\boldsymbol{w}), \boldsymbol{x}-\boldsymbol{w}\rangle \geq \frac{m_{|\operatorname{supp}(\boldsymbol{x}-\boldsymbol{w})|}}{2}\|\boldsymbol{x}-\boldsymbol{w}\|^{2} \geq 0
$$

provided that $|\operatorname{supp}(\boldsymbol{x}-\boldsymbol{w})| \leq K$. For the given support set Ω, we pick $\boldsymbol{x}=\boldsymbol{w}^{\prime}-\frac{1}{M_{|\Omega|}} \nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)$. Clearly, for such a choice of \boldsymbol{x}, we have $\operatorname{supp}(\boldsymbol{x}-\boldsymbol{w})=\operatorname{supp}\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right) \cup \Omega$. Hence, by assuming that $\left|\operatorname{supp}\left(\boldsymbol{w}-\boldsymbol{w}^{\prime}\right) \cup \Omega\right|$ is not larger than K, we get

$$
\begin{aligned}
G(\boldsymbol{w}) & \leq G\left(\boldsymbol{w}^{\prime}-\frac{1}{M_{|\Omega|}} \nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)\right) \\
& \stackrel{(7)}{\leq} G\left(\boldsymbol{w}^{\prime}\right)+\left\langle\nabla G\left(\boldsymbol{w}^{\prime}\right),-\frac{1}{M_{|\Omega|}} \nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)\right\rangle+\frac{1}{2 M_{|\Omega|}}\left\|\nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)\right\|^{2} \\
& =G\left(\boldsymbol{w}^{\prime}\right)-\frac{1}{2 M_{|\Omega|}}\left\|\nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)\right\|^{2}
\end{aligned}
$$

Now expanding $\nabla_{\Omega} G\left(\boldsymbol{w}^{\prime}\right)$ and rearranging the terms give the desired result.
Lemma 10 (Lemma 1 in Wang et al. (2016)). Let \boldsymbol{u} and \boldsymbol{z} be two distinct vectors and let $W=\operatorname{supp}(\boldsymbol{u}) \cap \operatorname{supp}(\boldsymbol{z})$. Also, let U be the support set of the top r (in magnitude) elements in \boldsymbol{u}. Then, the following holds for all $r \geq 1$:

$$
\langle\boldsymbol{u}, \boldsymbol{z}\rangle \leq \sqrt{\left\lceil\frac{|W|}{r}\right\rceil}\left\|\boldsymbol{u}_{U}\right\| \cdot\left\|\boldsymbol{z}_{W}\right\|
$$

Lemma 11. Suppose that $F(\boldsymbol{x})$ is m_{K}-restricted strongly convex and M_{K}-restricted smooth for some sparsity level $K>$ 0 . Then for all $\eta>0$, all vectors $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$ and for any Hessian matrix \boldsymbol{H} of $F(\boldsymbol{x})$, we have

$$
\left|\left\langle\boldsymbol{x},(\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x}^{\prime}\right\rangle\right| \leq \rho\|\boldsymbol{x}\| \cdot\left\|\boldsymbol{x}^{\prime}\right\|, \quad \text { if }\left|\operatorname{supp}(\boldsymbol{x}) \cup \operatorname{supp}\left(\boldsymbol{x}^{\prime}\right)\right| \leq K
$$

and

$$
\left\|((\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x})_{S}\right\| \leq \rho\|\boldsymbol{x}\|, \quad \text { if }|S \cup \operatorname{supp}(\boldsymbol{x})| \leq K
$$

where

$$
\rho=\max \left\{\left|\eta m_{K}-1\right|,\left|\eta M_{K}-1\right|\right\}
$$

Support Recovery of Hard Thresholding Pursuit

Proof. Since \boldsymbol{H} is a Hessian matrix, we always have a decomposition $\boldsymbol{H}=\boldsymbol{A}^{\top} \boldsymbol{A}$ for some matrix \boldsymbol{A}. Denote $T=$ $\operatorname{supp}(\boldsymbol{x}) \cup \operatorname{supp}(\boldsymbol{y})$. By simple algebra, we have

$$
\begin{aligned}
\left|\left\langle\boldsymbol{x},(\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x}^{\prime}\right\rangle\right| & =\left|\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle-\eta\left\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x}^{\prime}\right\rangle\right| \\
& \stackrel{\zeta_{1}}{=}\left|\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle-\eta\left\langle\boldsymbol{A}_{T} \boldsymbol{x}, \boldsymbol{A}_{T} \boldsymbol{x}^{\prime}\right\rangle\right| \\
& =\left|\left\langle\boldsymbol{x},\left(\boldsymbol{I}-\eta \boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right) \boldsymbol{x}^{\prime}\right\rangle\right| \\
& \leq\left\|\boldsymbol{I}-\eta \boldsymbol{A}_{T}^{\top} \boldsymbol{A}_{T}\right\| \cdot\|\boldsymbol{x}\| \cdot\left\|\boldsymbol{x}^{\prime}\right\| \\
& \leq \max \left\{\left|\eta m_{K}-1\right|,\left|\eta M_{K}-1\right|\right\} \cdot\|\boldsymbol{x}\| \cdot\left\|\boldsymbol{x}^{\prime}\right\| .
\end{aligned}
$$

Here, ζ_{1} follows from the fact that $\operatorname{supp}(\boldsymbol{x}) \cup \operatorname{supp}(\boldsymbol{y})=T$ and ζ_{2} holds because the RSC and RSS properties imply that the singular values of any Hessian matrix restricted on an K-sparse support set are lower and upper bounded by m_{K} and M_{K}, respectively.
For some index set S subject to $|S \cup \operatorname{supp}(\boldsymbol{x})| \leq K$, let $\boldsymbol{x}^{\prime}=((\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x})_{S}$. We immediately obtain

$$
\left\|\boldsymbol{x}^{\prime}\right\|^{2}=\left\langle\boldsymbol{x}^{\prime},(\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x}\right\rangle \leq \rho\left\|\boldsymbol{x}^{\prime}\right\| \cdot\|\boldsymbol{x}\|,
$$

indicating

$$
\left\|((\boldsymbol{I}-\eta \boldsymbol{H}) \boldsymbol{x})_{S}\right\| \leq \rho\|\boldsymbol{x}\|
$$

Lemma 12. Suppose that $F(\boldsymbol{x})$ is m_{K}-restricted strongly convex and M_{K}-restricted smooth for some sparsity level $K>$ 0 . For all $\eta>0$, all vectors $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$ and support set T such that $\left|\operatorname{supp}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \cup T\right| \leq K$, the following holds:

$$
\left\|\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}-\eta \nabla F(\boldsymbol{x})+\eta \nabla F\left(\boldsymbol{x}^{\prime}\right)\right)_{T}\right\| \leq \rho\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|
$$

where ρ is given in Lemma 11.
Proof. In fact, for any two vectors \boldsymbol{x} and \boldsymbol{x}^{\prime}, there always exists a quantity $\theta \in[0,1]$, such that

$$
\nabla F(\boldsymbol{x})-\nabla F\left(\boldsymbol{x}^{\prime}\right)=\nabla^{2} F\left(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{x}^{\prime}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)
$$

Let $\boldsymbol{H}=\nabla^{2} F\left(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{x}^{\prime}\right)$. We write

$$
\begin{aligned}
\left\|\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}-\eta \nabla F(\boldsymbol{x})+\eta \nabla F\left(\boldsymbol{x}^{\prime}\right)\right)_{T}\right\| & =\left\|\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}-\eta \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right)_{T}\right\| \\
& =\left\|\left((\boldsymbol{I}-\eta \boldsymbol{H})\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right)_{T}\right\| \\
& \leq \rho\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|
\end{aligned}
$$

where the last inequality applies Lemma 11.
Lemma 13. Suppose that \boldsymbol{x} is a k-sparse vector and let $\boldsymbol{b}=\boldsymbol{x}-\eta \nabla F(\boldsymbol{x})$. Let T be the support set that contains the k largest absolute values of \boldsymbol{b}. Assume that the function $F(\boldsymbol{x})$ is $M_{2 k}$-restricted smooth, then we have the following:

$$
F\left(\boldsymbol{b}_{T}\right) \leq F(\boldsymbol{x})-\frac{1-\eta M_{2 k}}{2 \eta}\left\|\boldsymbol{b}_{T}-\boldsymbol{x}\right\|^{2}
$$

Proof. The RSS condition implies that

$$
\begin{aligned}
F\left(\boldsymbol{b}_{T}\right)-F(\boldsymbol{x}) & \leq\left\langle\nabla F(\boldsymbol{x}), \boldsymbol{b}_{T}-\boldsymbol{x}\right\rangle+\frac{M_{2 k}}{2}\left\|\boldsymbol{b}_{T}-\boldsymbol{x}\right\|^{2} \\
& \leq-\frac{1}{2 \eta}\left\|\boldsymbol{b}_{T}-\boldsymbol{x}\right\|^{2}+\frac{M_{2 k}}{2}\left\|\boldsymbol{b}_{T}-\boldsymbol{x}\right\|^{2}
\end{aligned}
$$

where the second inequality is due to the fact that

$$
\begin{aligned}
\left\|\boldsymbol{b}_{T}-\boldsymbol{b}\right\|^{2} & =\left\|\boldsymbol{b}_{T}-\boldsymbol{x}+\eta \nabla F(\boldsymbol{x})\right\|^{2} \\
& \leq\|\boldsymbol{x}-\boldsymbol{x}+\eta \nabla F(\boldsymbol{x})\|^{2} \\
& =\|\eta \nabla F(\boldsymbol{x})\|^{2}
\end{aligned}
$$

implying

$$
2 \eta\left\langle\nabla F(\boldsymbol{x}), \boldsymbol{b}_{T}-\boldsymbol{x}\right\rangle \leq-\left\|\boldsymbol{b}_{T}-\boldsymbol{x}\right\|^{2}
$$

Lemma 14. Suppose that $F(\boldsymbol{x})$ is $m_{K}-R S C$. Then for any vectors \boldsymbol{x} and \boldsymbol{x}^{\prime} with $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{0} \leq K$, the following holds:

$$
\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\| \leq \sqrt{\frac{2 \max \left\{F(\boldsymbol{x})-F\left(\boldsymbol{x}^{\prime}\right), 0\right\}}{m_{K}}}+\frac{2\left\|\nabla_{T} F\left(\boldsymbol{x}^{\prime}\right)\right\|}{m_{K}}
$$

where $T=\operatorname{supp}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$.

Proof. The RSC property immediately implies

$$
\begin{aligned}
F(\boldsymbol{x})-F\left(\boldsymbol{x}^{\prime}\right) & \geq\left\langle\nabla F\left(\boldsymbol{x}^{\prime}\right), \boldsymbol{x}-\boldsymbol{x}^{\prime}\right\rangle+\frac{m_{K}}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \\
& \geq-\left\|\nabla_{T} F\left(\boldsymbol{x}^{\prime}\right)\right\| \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|+\frac{m_{K}}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}
\end{aligned}
$$

Discussing the sign of $F(\boldsymbol{x})-F\left(\boldsymbol{x}^{\prime}\right)$ and solving the above quadratic inequality completes the proof.

Lemma 15. Assume that $F(\boldsymbol{x})$ is $m_{k+s}-R S C$ and $M_{2 k}-R S S$. Suppose that for all $t \geq 0, \boldsymbol{x}^{t}$ is k-sparse and the following holds:

$$
F\left(\boldsymbol{x}^{t+1}\right)-F(\overline{\boldsymbol{x}}) \leq \mu\left(F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}})\right)+\tau
$$

where $0<\mu<1, \tau \geq 0$ and $\overline{\boldsymbol{x}}$ is an arbitrary s-sparse signal. Then,

$$
\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\| \leq \sqrt{\frac{2 M}{m}}(\sqrt{\mu})^{t}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|+\frac{3}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|+\sqrt{\frac{2 \tau}{m(1-\mu)}} .
$$

Proof. The RSS property implies that

$$
\begin{aligned}
F\left(\boldsymbol{x}^{0}\right)-F(\overline{\boldsymbol{x}}) & \leq\left\langle\nabla F(\overline{\boldsymbol{x}}), \boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\rangle+\frac{M}{2}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2} \\
& \leq \frac{M}{2}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2}+\frac{1}{2 M}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|^{2}+\frac{M}{2}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2} \\
& \leq M\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2}+\frac{1}{2 M}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|^{2}
\end{aligned}
$$

Hence,

$$
F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}}) \leq \mu^{t} M\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2}+\frac{1}{2 M}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|^{2}+\frac{\tau}{1-\mu}
$$

By Lemma 14, we have

$$
\begin{aligned}
\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\| \leq & \sqrt{\frac{2}{m}} \sqrt{\mu^{t} M\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|^{2}+\frac{\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|^{2}}{2 M}+\frac{\tau}{1-\mu}}+\frac{2}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\| \\
\leq & \sqrt{\frac{2 M}{m}}(\sqrt{\mu})^{t}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|+\sqrt{\frac{1}{m M}}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\| \\
& +\frac{2}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|+\sqrt{\frac{2 \tau}{m(1-\mu)}} \\
\leq & \sqrt{\frac{2 M}{m}}(\sqrt{\mu})^{t}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|+\frac{3}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|+\sqrt{\frac{2 \tau}{m(1-\mu)}} .
\end{aligned}
$$

Lemma 16. Let $\overline{\boldsymbol{x}} \in \mathbb{R}^{d}$ be an s-sparse vector supported on S. For a k-sparse vector \boldsymbol{x} supported on Q with $k \geq s$, let $\boldsymbol{b}=\boldsymbol{x}-\eta \nabla F(\boldsymbol{x})$ and let $T=\operatorname{supp}(\boldsymbol{b}, k)$. Suppose that the function $F(\boldsymbol{x})$ is $m_{2 k+s}-R S C$ and $M_{2 k+s}-R S S$. Then we have

$$
\left\|\overline{\boldsymbol{x}}_{S \backslash T}\right\| \leq \nu \rho\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|+\nu \eta\left\|\nabla_{T \Delta S} F(\overline{\boldsymbol{x}})\right\|,
$$

where $\nu=\sqrt{1+s / k}$ and ρ is given by Lemma 11 .
Proof. We note the fact that the support sets $T \backslash S$ and $S \backslash T$ are disjoint. Moreover, the set $T \backslash S$ contains $|T \backslash S|$ number of top $|T|$ elements of \boldsymbol{b}. Hence, we have

$$
\begin{equation*}
\frac{1}{|T \backslash S|}\left\|\boldsymbol{b}_{T \backslash S}\right\|^{2} \geq \frac{1}{|S \backslash T|}\left\|\boldsymbol{b}_{S \backslash T}\right\|^{2} \tag{8}
\end{equation*}
$$

That is,

$$
\left\|\boldsymbol{b}_{T \backslash S}\right\| \geq \sqrt{\frac{|T \backslash S|}{|S \backslash T|}}\left\|\boldsymbol{b}_{S \backslash T}\right\|=\sqrt{\frac{k-|T \cap S|}{s-|T \cap S|}}\left\|\boldsymbol{b}_{S \backslash T}\right\| \geq \sqrt{\frac{k}{s}}\left\|\boldsymbol{b}_{S \backslash T}\right\|
$$

Note that the above holds also for $T=S$. Since $\overline{\boldsymbol{x}}$ is supported on S, the left hand side reads as

$$
\left\|\boldsymbol{b}_{T \backslash S}\right\|=\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{T \backslash S}\right\|
$$

while the right hand side reads as

$$
\begin{aligned}
\left\|\boldsymbol{b}_{S \backslash T}\right\| & =\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{S \backslash T}+\overline{\boldsymbol{x}}_{S \backslash T}\right\| \\
& \geq\left\|\overline{\boldsymbol{x}}_{S \backslash T}\right\|-\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{S \backslash T}\right\| .
\end{aligned}
$$

Denote $\nu=\sqrt{1+s / k}$. In this way, we arrive at

$$
\begin{aligned}
\left\|\overline{\boldsymbol{x}}_{S \backslash T}\right\| & \leq \sqrt{\frac{s}{k}}\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{T \backslash S}\right\|+\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{S \backslash T}\right\| \\
& \leq \nu\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x}))_{T \Delta S}\right\| \\
& \leq \nu\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x})+\eta \nabla F(\overline{\boldsymbol{x}}))_{T \Delta S}\right\|+\nu \eta\left\|\nabla_{T \Delta S} F(\overline{\boldsymbol{x}})\right\| \\
& \leq \nu\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\eta \nabla F(\boldsymbol{x})+\eta \nabla F(\overline{\boldsymbol{x}}))_{T \cup Q \cup S}\right\|+\nu \eta\left\|\nabla_{T \Delta S} F(\overline{\boldsymbol{x}})\right\| \\
& \leq \nu \rho_{2 k+s}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|+\nu \eta\left\|\nabla_{T \Delta S} F(\overline{\boldsymbol{x}})\right\|,
\end{aligned}
$$

where the second inequality follows from the fact that $a x+b y \leq \sqrt{a^{2}+b^{2}} \sqrt{x^{2}+y^{2}}$ and we applied Lemma 12 for the last inequality.

Lemma 17. Consider the HTP algorithm with exact solutions. Assume (A1). Then

$$
\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\|^{2} \geq 2 m \zeta\left(F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}})\right)
$$

where

$$
\zeta=\frac{\left|S^{t+1} \backslash S^{t}\right|}{\left|S^{t+1} \backslash S^{t}\right|+\left|S \backslash S^{t}\right|}
$$

Proof. The lemma holds clearly for either $S^{t+1}=S^{t}$ or $F\left(\boldsymbol{x}^{t}\right) \leq F(\overline{\boldsymbol{x}})$. Hence, in the following we only prove the result by assuming $S^{t+1} \neq S^{t}$ and $F\left(\boldsymbol{x}^{t}\right)>F(\overline{\boldsymbol{x}})$. Due to the RSC property, we have

$$
F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t}\right)-\left\langle\nabla F\left(\boldsymbol{x}^{t}\right), \overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right\rangle \geq \frac{m_{k+s}}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right\|^{2}
$$

which implies

$$
\begin{aligned}
\left\langle\nabla F\left(\boldsymbol{x}^{t}\right),-\overline{\boldsymbol{x}}\right\rangle & \geq \frac{m_{k+s}}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right\|^{2}+F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}}) \\
& \geq \sqrt{2 m_{k+s}}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right\| \sqrt{F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}})}
\end{aligned}
$$

By invoking Lemma 10 with $\boldsymbol{u}=\nabla F\left(\boldsymbol{x}^{t}\right)$ and $\boldsymbol{z}=-\overline{\boldsymbol{x}}$ therein, we have

$$
\begin{aligned}
\left\langle\nabla F\left(\boldsymbol{x}^{t}\right),-\overline{\boldsymbol{x}}\right\rangle & \leq \sqrt{\frac{\left|S \backslash S^{t}\right|}{\left|S^{t+1} \backslash S^{t}\right|}+1}\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\| \cdot\left\|\overline{\boldsymbol{x}}_{S \backslash S^{t}}\right\| \\
& =\sqrt{\frac{\left|S \backslash S^{t}\right|}{\left|S^{t+1} \backslash S^{t}\right|}+1}\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\| \cdot\left\|\left(\overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right)_{S \backslash S^{t}}\right\| \\
& \leq \sqrt{\frac{\left|S \backslash S^{t}\right|}{\left|S^{t+1} \backslash S^{t}\right|}+1}\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\| \cdot\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t}\right\|
\end{aligned}
$$

It is worth mentioning that the first inequality above holds because $\nabla F\left(\boldsymbol{x}^{t}\right)$ is supported on $\overline{S^{t}}$ and $S^{t+1} \backslash S^{t}$ contains the $\left|S^{t+1} \backslash S^{t}\right|$ number of largest (in magnitude) elements of $\nabla F\left(\boldsymbol{x}^{t}\right)$. Therefore, we obtain the result.

B. Proofs for Section 2

B.1. Proof for Prop. 1

Proof. Due to the RSS property, we have

$$
\begin{aligned}
& F\left(\boldsymbol{b}_{S^{t+1}}^{t+1}\right)-F\left(\boldsymbol{x}^{t}\right) \leq\left\langle\nabla F\left(\boldsymbol{x}^{t}\right), \boldsymbol{b}_{S^{t+1}}^{t+1}-\boldsymbol{x}^{t}\right\rangle+\frac{M}{2}\left\|\boldsymbol{b}_{S^{t+1}}^{t+1}-\boldsymbol{x}^{t}\right\|^{2} \\
& \underline{\underline{\zeta_{1}}}\left\langle\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right), \boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}\right\rangle+\frac{M}{2}\left(\left\|\boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}\right\|^{2}\right. \\
&\left.+\left\|\boldsymbol{b}_{S^{t+1} \cap S^{t}}^{t+1}-\boldsymbol{x}_{S^{t+1} \cap S^{t}}^{t}\right\|^{2}+\left\|\boldsymbol{x}_{S^{t} \backslash S^{t+1}}^{t}\right\|^{2}\right) \\
& \underline{\zeta_{2}} \leq \\
& \leq\left.\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right), \boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}\right\rangle+M\left\|\boldsymbol{b}_{S^{t+1} \backslash S^{t}}\right\|^{2} \\
& \stackrel{\zeta_{3}}{=}-\eta(1-\eta M)\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\|^{2}
\end{aligned}
$$

Above, we observe that $\nabla F\left(\boldsymbol{x}^{t}\right)$ is supported on $\overline{S^{t}}$ and we simply docompose the support set $S^{t+1} \cup S^{t}$ into three mutually disjoint sets, and hence ζ_{1} holds. To see why ζ_{2} holds, we note that for any set $\Omega \subset S^{t}, \boldsymbol{b}_{\Omega}^{t+1}=\boldsymbol{x}_{\Omega}^{t}$. Hence, $\boldsymbol{b}_{S^{t+1} \cap S^{t}}^{t+1}=\boldsymbol{x}_{S^{t+1} \cap S^{t}}^{t}$. Moreover, since $\boldsymbol{x}_{S^{t} \backslash S^{t+1}}^{t}=\boldsymbol{b}_{S^{t} \backslash S^{t+1}}^{t+1}$ and any element in $\boldsymbol{b}_{S^{t} \backslash S^{t+1}}^{t+1}$ is not larger than that in $\boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}$ (recall that S^{t+1} is obtained by hard thresholding), we have $\left\|\boldsymbol{x}_{S^{t} \backslash S^{t+1}}\right\| \leq\left\|\boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}\right\|$ where we use the fact that $\left|S^{t} \backslash S^{t+1}\right|=\left|S^{t+1} \backslash S^{t}\right|$. Therefore, ζ_{2} holds. Finally, we write $\boldsymbol{b}_{S^{t+1} \backslash S^{t}}^{t+1}=-\eta \nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)$ and obtain ζ_{3}.

Since \boldsymbol{x}^{t+1} is a minimizer of $F(\boldsymbol{x})$ over the support set S^{t+1}, it immediately follows that

$$
F\left(\boldsymbol{x}^{t+1}\right)-F\left(\boldsymbol{x}^{t}\right) \leq F\left(\boldsymbol{b}_{S^{t+1}}^{t+1}\right)-F\left(\boldsymbol{x}^{t}\right) \leq-\eta(1-\eta M)\left\|\nabla_{S^{t+1} \backslash S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\|^{2}
$$

Now we invoke Lemma 17 and pick $\eta \leq 1 / M$,

$$
F\left(\boldsymbol{x}^{t+1}\right)-F\left(\boldsymbol{x}^{t}\right) \leq \eta(\eta M-1) \cdot \frac{2 m}{1+s}\left(F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}})\right)
$$

which gives

$$
F\left(\boldsymbol{x}^{t+1}\right)-F(\overline{\boldsymbol{x}}) \leq \beta\left(F\left(\boldsymbol{x}^{t}\right)-F(\overline{\boldsymbol{x}})\right)
$$

where $\beta=1-\frac{2 m \eta(1-\eta M)}{1+s}$.

B.2. Proof for Prop. 2

Proof. This is a direct result by combining Prop. 1 and Lemma 15.

B.3. Proof for Lemma 3

Proof. Let $\boldsymbol{x}_{*}^{t}=\arg \min _{\operatorname{supp}(\boldsymbol{x}) \subset S^{t}} F(\boldsymbol{x})$. Since \boldsymbol{x}^{t} and \boldsymbol{x}_{*}^{t} are both supported on S^{t}, we apply Lemma 9 and obtain

$$
\begin{aligned}
\left\|\nabla_{S^{t}} F\left(\boldsymbol{x}^{t}\right)\right\|^{2} & =\left\|\nabla_{S^{t}} F\left(\boldsymbol{x}^{t}\right)-\nabla_{S^{t}} F\left(\boldsymbol{x}_{*}^{t}\right)\right\|^{2} \\
& \leq 2 M\left(F\left(\boldsymbol{x}^{t}\right)-F\left(\boldsymbol{x}_{*}^{t}\right)-\left\langle\nabla F\left(\boldsymbol{x}_{*}^{t}\right), \boldsymbol{x}^{t}-\boldsymbol{x}_{*}^{t}\right\rangle\right) \\
& \leq 2 M \epsilon
\end{aligned}
$$

Above, the second inequality uses the fact that $\nabla_{S^{t}} F\left(\boldsymbol{x}_{*}^{t}\right)=0$ and $F\left(\boldsymbol{x}^{t}\right) \leq F\left(\boldsymbol{x}_{*}^{t}\right)+\epsilon$.

B.4. Proof for Prop. 4

Proof. We have by Lemma 16 that

$$
\left\|\overline{\boldsymbol{x}} \overline{S^{t+1}}\right\| \leq \sqrt{2} \rho\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\|+\frac{2}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|
$$

where $\rho=1-\eta m$. On the other hand, Lemma 18 together with Lemma 3 shows that

$$
\left\|x^{t+1}-\overline{\boldsymbol{x}}\right\| \leq \kappa\left\|\overline{\boldsymbol{x}}_{S^{t+1}}\right\|+\frac{1}{m}\left\|\nabla_{k} F(\overline{\boldsymbol{x}})\right\|+\frac{1}{m} \sqrt{2 M \epsilon}
$$

Therefore,

$$
\left\|\boldsymbol{x}^{t+1}-\overline{\boldsymbol{x}}\right\| \leq \sqrt{2} \kappa \rho\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\|+\frac{3 \kappa}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|+\frac{\sqrt{2 M \epsilon}}{m}
$$

We need to ensure

$$
\sqrt{2} \kappa(1-\eta m)<1
$$

Let $\eta=\eta^{\prime} / M$ with $\eta^{\prime}<1$. Then, the above holds provided that

$$
\kappa<1+\frac{1}{\sqrt{2}} \text { and } \eta^{\prime}>\kappa-\frac{1}{\sqrt{2}}
$$

By induction and picking proper η^{\prime} to make $\sqrt{2} \kappa(1-\eta m)<\sqrt{2} / 4$, we have

$$
\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\| \leq\left(\sqrt{2}\left(\kappa-\eta^{\prime}\right)\right)^{t}\left\|\boldsymbol{x}^{0}-\overline{\boldsymbol{x}}\right\|+\frac{6 \kappa}{m}\left\|\nabla_{k+s} F(\overline{\boldsymbol{x}})\right\|+\frac{4 \sqrt{M \epsilon}}{m}
$$

B.5. Proof for Prop. 5

Proof. Our proof in this part is inspired by Yuan et al. (2016). Let $\boldsymbol{x}_{*}^{t}=\arg \min _{\operatorname{supp}(\boldsymbol{x}) \subset S^{t}} F(\boldsymbol{x})$. Then

$$
\begin{aligned}
F\left(\boldsymbol{x}^{t}\right)-F\left(\boldsymbol{x}^{t-1}\right) & \leq F\left(\boldsymbol{x}_{*}^{t}\right)-F\left(\boldsymbol{x}^{t-1}\right)+\epsilon \\
& \leq F\left(\boldsymbol{b}_{S^{t}}^{t}\right)-F\left(\boldsymbol{x}^{t-1}\right)+\epsilon \\
& \leq-\frac{1-\eta M}{2 \eta}\left\|\boldsymbol{b}_{S^{t}}^{t}-\boldsymbol{x}^{t-1}\right\|^{2}+\epsilon
\end{aligned}
$$

where the last inequality follows from Lemma 13. Now we bound the term $\left\|\boldsymbol{b}_{S^{t}}^{t}-\boldsymbol{x}^{t-1}\right\|^{2}$. Note that \boldsymbol{x}^{t-1} is supported on S^{t-1}. Hence,

$$
\begin{aligned}
\left\|\boldsymbol{b}_{S^{t}}^{t}-\boldsymbol{x}^{t-1}\right\|^{2} & =\left\|\boldsymbol{x}_{S^{t} \cap S^{t-1}}^{t-1}-\eta \nabla_{S^{t}} F\left(\boldsymbol{x}^{t-1}\right)-\boldsymbol{x}^{t-1}\right\|^{2} \\
& =\left\|-\boldsymbol{x}_{S^{t-1} \backslash S^{t}}^{t-1}-\eta \nabla_{S^{t}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
& =\left\|\boldsymbol{x}_{S^{t-1} \backslash S^{t}}^{t-1}\right\|^{2}+\eta^{2}\left\|\nabla_{S^{t}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
& \geq \eta^{2}\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}
\end{aligned}
$$

We thus have

$$
F\left(\boldsymbol{x}^{t}\right)-F\left(\boldsymbol{x}^{t-1}\right) \leq-\frac{(1-\eta M) \eta}{2}\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\epsilon
$$

Denote $\xi=\left\|\nabla_{S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|$. We claim that

$$
\begin{equation*}
\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \geq m\left(F\left(\boldsymbol{x}^{t-1}\right)-F(\overline{\boldsymbol{x}})\right)-2 \xi^{2} \tag{9}
\end{equation*}
$$

which, combined with Lemma 3, immediately shows

$$
F\left(\boldsymbol{x}^{t}\right)-F\left(\boldsymbol{x}^{t-1}\right) \leq-\frac{(1-\eta M) \eta m}{2}\left(F\left(\boldsymbol{x}^{t-1}\right)-F(\overline{\boldsymbol{x}})\right)+2 \epsilon
$$

Using Lemma 15 completes the proof.
To show (9), we consider two exhausitive cases: $\left|S^{t} \backslash S^{t-1}\right| \geq s$ and $\left|S^{t} \backslash S^{t-1}\right|<s$, and prove that (9) holds for both cases.

Case I. $\left|S^{t} \backslash S^{t-1}\right| \geq s$. Due to the RSC property, we have

$$
\begin{aligned}
& \frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \\
\leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)-\left\langle\nabla F\left(\boldsymbol{x}^{t-1}\right), \overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\rangle \\
\leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{2 m}\left\|\nabla_{S \cup S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
= & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{2 m}\left\|\nabla_{S \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{2 m}\left\|\nabla_{S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
= & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{2 m}\left\|\nabla_{S \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{2 m} \xi^{2} .
\end{aligned}
$$

Therefore, we get

$$
\left\|\nabla_{S \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \geq 2 m\left(F\left(\boldsymbol{x}^{t-1}\right)-F(\overline{\boldsymbol{x}})\right)-\xi^{2}
$$

Since S^{t} contains the k largest absolute values of \boldsymbol{b}^{t}, and $\left|S^{t} \backslash S^{t-1}\right| \geq s \geq\left|S \backslash S^{t-1}\right|$, we have

$$
\left\|\boldsymbol{b}_{S^{t} \backslash S^{t-1}}^{t}\right\|^{2} \geq\left\|\boldsymbol{b}_{S \backslash S^{t-1}}^{t}\right\|^{2}
$$

which immediately implies (9) by noting the fact that $\boldsymbol{b}_{S^{t} \backslash S^{t-1}}^{t}=-\eta \nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)$ and $\boldsymbol{b}_{S \backslash S^{t-1}}^{t}=$ $-\eta \nabla_{S \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)$.

Case II. $\left|S^{t} \backslash S^{t-1}\right|<s$. Again, we use the RSC property to obtain

$$
\begin{align*}
& \frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \\
\leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)-\left\langle\nabla F\left(\boldsymbol{x}^{t-1}\right), \overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\rangle \\
\leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{4}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{m}\left\|\nabla_{S \cup S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
= & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{4}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{m}\left\|\nabla_{S \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{m} \xi^{2} \\
= & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{4}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{m}\left\|\nabla_{S \backslash\left(S^{t} \cup S^{t-1}\right)} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
& +\frac{1}{m}\left\|\nabla_{\left(S^{t} \backslash S^{t-1}\right) \cap S} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{m} \xi^{2} \\
\leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{4}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{1}{m}\left\|\nabla_{S \backslash\left(S^{t} \cup S^{t-1}\right)} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
& +\frac{1}{m}\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{m} \xi^{2} . \tag{10}
\end{align*}
$$

We consider the term $\left\|\nabla_{S \backslash\left(S^{t} \cup S^{t-1}\right)} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}$ above. Actually, we have

$$
\boldsymbol{b}_{S \backslash\left(S^{t} \cup S^{t-1}\right)}^{t}=-\eta \nabla_{S \backslash\left(S^{t} \cup S^{t-1}\right)} F\left(\boldsymbol{x}^{t-1}\right)
$$

Since S^{t} contains the k largest absolute values of \boldsymbol{b}^{t}, we know that any component in $\boldsymbol{b}_{\Omega}^{t}$ is not larger than that in $\boldsymbol{b}_{S^{t}}^{t}$ subject to $\Omega \cap S^{t}=\emptyset$. In particular,

$$
\frac{\left\|\boldsymbol{b}_{S \backslash\left(S^{t} \cup S^{t-1}\right)}^{t}\right\|^{2}}{\left|S \backslash\left(S^{t} \cup S^{t-1}\right)\right|} \leq \frac{\left\|\boldsymbol{b}_{\left(S^{t} \cap S^{t-1}\right) \backslash S}^{t}\right\|^{2}}{\left|\left(S^{t} \cap S^{t-1}\right) \backslash S\right|}
$$

Note that $\left|S^{t} \backslash S^{t-1}\right|<s$ implies $\left|\left(S^{t} \cap S^{t-1}\right) \backslash S\right| \geq k-2 s$. Therefore,

$$
\begin{aligned}
& \eta^{2}\left\|\nabla_{S \backslash\left(S^{t} \cup S^{t-1}\right)} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
\leq & \frac{s}{k-2 s}\left\|\boldsymbol{x}_{\left(S^{t} \cap S^{t-1}\right) \backslash S}^{t-1}-\eta \nabla_{\left(S^{t} \cap S^{t-1}\right) \backslash S} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2} \\
\leq & \frac{2 s}{k-2 s}\left\|\boldsymbol{x}_{\left(S^{t} \cap S^{t-1}\right) \backslash S}^{t-1}\right\|^{2}+\frac{2 s \eta^{2}}{k-2 s} \xi^{2} \\
= & \frac{2 s}{k-2 s}\left\|\left(\boldsymbol{x}^{t-1}-\overline{\boldsymbol{x}}\right)_{\left(S^{t} \cap S^{t-1}\right) \backslash S}\right\|^{2}+\frac{2 s \eta^{2}}{k-2 s} \xi^{2} \\
\leq & \frac{2 s}{k-2 s}\left\|\boldsymbol{x}^{t-1}-\overline{\boldsymbol{x}}\right\|^{2}+\frac{2 s \eta^{2}}{k-2 s} \xi^{2} .
\end{aligned}
$$

Plugging the above into (10), we obtain

$$
\begin{aligned}
\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{4}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2}+\frac{2 s}{(k-2 s) \eta^{2} m}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \\
& +\frac{1}{m}\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\frac{1}{m}\left(\frac{2 s}{k-2 s}+1\right) \xi^{2}
\end{aligned}
$$

Picking $k \geq 2 s+\frac{8 s}{\eta^{2} m^{2}}$ gives

$$
\begin{aligned}
\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \leq & F(\overline{\boldsymbol{x}})-F\left(\boldsymbol{x}^{t-1}\right)+\frac{m}{2}\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}^{t-1}\right\|^{2} \\
& +\frac{1}{m}\left\|\nabla_{S^{t} \backslash S^{t-1}} F\left(\boldsymbol{x}^{t-1}\right)\right\|^{2}+\left(\frac{\eta^{2} m}{4}+\frac{1}{m}\right) \xi^{2}
\end{aligned}
$$

Since $\eta<1 / M, \frac{\eta^{2} m^{2}}{4}+1<2$. Therefore, by re-arranging the above inequality, we prove the claim (9).

C. Proofs for Section 3

The following result holds for all $F(\boldsymbol{x})$.
Lemma 18. Assume (A1) and (A2). For any k-sparse vector \boldsymbol{x} and s-sparse vector $\overline{\boldsymbol{x}}$, we have

$$
\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| \leq \kappa\left\|\overline{\boldsymbol{x}}_{\bar{T}}\right\|+\frac{1}{m}\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\|
$$

where T is the support set of \boldsymbol{x}.

Proof.

$$
\begin{aligned}
\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|^{2} & =\left\langle\boldsymbol{x}-\overline{\boldsymbol{x}}-\tau \nabla F(\boldsymbol{x})+\tau \nabla F(\overline{\boldsymbol{x}}),(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\rangle+\tau\left\langle\nabla F(\boldsymbol{x})-\nabla F(\overline{\boldsymbol{x}})_{\left.,(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\rangle}\right. \\
& \leq\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}}-\tau \nabla F(\boldsymbol{x})+\tau \nabla F(\overline{\boldsymbol{x}}))_{T}\right\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|+\tau\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\| \\
& \leq\left\|\boldsymbol{x}-\overline{\boldsymbol{x}}-\tau \nabla_{T \cup S} F(\boldsymbol{x})+\tau \nabla_{T \cup S} F(\overline{\boldsymbol{x}})\right\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|+\tau\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\| \\
& \leq \rho\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|+\tau\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\| \cdot\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|
\end{aligned}
$$

Dividing both sides by $\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|$ gives

$$
\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\| \leq \rho\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|+\tau\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\|
$$

On the other hand,

$$
\begin{aligned}
\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| & \leq\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{T}\right\|+\left\|(\boldsymbol{x}-\overline{\boldsymbol{x}})_{\bar{T}}\right\| \\
& \leq \rho\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|+\tau\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\|+\left\|\overline{\boldsymbol{x}}_{\bar{T}}\right\| .
\end{aligned}
$$

Hence, we have

$$
\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| \leq \frac{1}{1-\rho}\left\|\overline{\boldsymbol{x}}_{\bar{T}}\right\|+\frac{\tau}{1-\rho}\left\|\nabla_{T} F(\boldsymbol{x})-\nabla_{T} F(\overline{\boldsymbol{x}})\right\|
$$

Picking $\tau=1 / M$ completes the proof.

In view of the exact (HTP3), we have

$$
\begin{equation*}
\left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\| \leq \kappa\left\|\overline{\boldsymbol{x}} \overline{S^{t}}\right\|+\frac{1}{m}\left\|\nabla_{k} F(\overline{\boldsymbol{x}})\right\| . \tag{11}
\end{equation*}
$$

Now we present the crucial lemma. It is inspired by Bouchot et al. (2016) but we show a more general result.
Lemma 19. Consider the HTP algorithm. Assume (A1) and (A2). Further assume that the sequence of $\left\{\boldsymbol{x}^{t}\right\}_{t \geq 0}$ satisfies

$$
\begin{aligned}
& \left\|x^{t}-\overline{\boldsymbol{x}}\right\| \leq \alpha \cdot \beta^{t}\left\|x^{0}-\overline{\boldsymbol{x}}\right\|+\phi \\
& \left\|\boldsymbol{x}^{t}-\overline{\boldsymbol{x}}\right\| \leq \gamma\left\|\overline{\boldsymbol{x}}_{\overline{S^{t}}}\right\|+\psi
\end{aligned}
$$

for positive α, ϕ, γ, ψ and $0<\beta<1$. Suppose that at the n-th iteration ($n \geq 0$), S^{n} contains the indices of top p (in magnitude) elements of $\overline{\boldsymbol{x}}$. Then, for any integer $1 \leq q \leq s-p$, there exists an integer $r \geq 1$ determined by

$$
\sqrt{2}\left|\overline{\boldsymbol{x}}_{p+q}\right|>\alpha \gamma \cdot \beta^{r-1}\left\|\overline{\boldsymbol{x}}_{\{p+1, \ldots, s\}}\right\|+\theta
$$

where

$$
\theta=\alpha \psi+\phi+\frac{1}{m}\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\|
$$

such that S^{n+r} contains the indices of top $p+q$ elements of $\overline{\boldsymbol{x}}$ provided that $\theta \leq \sqrt{2} \lambda \overline{\boldsymbol{x}}_{\min }$ for some $\lambda \in(0,1)$.

Proof. Without loss of generality, we presume that the elements in $\overline{\boldsymbol{x}}$ are in descending order by their magnitude, i.e., $\left|\overline{\boldsymbol{x}}_{1}\right| \geq\left|\overline{\boldsymbol{x}}_{2}\right| \geq \cdots \geq\left|\overline{\boldsymbol{x}}_{s}\right|$. We aim at deriving a condition under which $[p+q] \subset S^{n+r}$. To this end, it suffices to enforce

$$
\begin{equation*}
\min _{j \in[p+q]}\left|\boldsymbol{b}_{j}^{n+r}\right|>\max _{i \in \bar{S}}\left|\boldsymbol{b}_{i}^{n+r}\right| \tag{12}
\end{equation*}
$$

On one hand, for any $j \in[p+q]$,

$$
\begin{aligned}
\left|\boldsymbol{b}_{j}^{n+r}\right| & =\left|\left(\boldsymbol{x}^{n+r-1}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right| \\
& \geq\left|\overline{\boldsymbol{x}}_{j}\right|-\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right| \\
& \geq\left|\overline{\boldsymbol{x}}_{p+q}\right|-\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right| .
\end{aligned}
$$

On the other hand, for all $i \in \bar{S}$,

$$
\left|\boldsymbol{b}_{i}^{n+r}\right|=\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{i}\right|
$$

Hence, we know that to guarantee (12), it suffices to ensure for all $j \in[p+q]$ and $i \in \bar{S}$ that

$$
\left|\overline{\boldsymbol{x}}_{p+q}\right|>\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right|+\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{i}\right| .
$$

Note that the right-hand side is upper bounded as follows:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right|+\frac{1}{\sqrt{2}}\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{i}\right| \\
\leq & \left\|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{\{j, i\}}\right\| \\
\leq & \left\|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)+\eta \nabla F(\overline{\boldsymbol{x}})\right)_{\{j, i\}}\right\|+\eta\left\|\nabla_{\{j, i\}} F(\overline{\boldsymbol{x}})\right\| \\
\leq & \rho\left\|\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}\right\|+\eta\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\| \\
\leq & \rho \alpha \cdot \beta^{r-1}\left\|\boldsymbol{x}^{n}-\overline{\boldsymbol{x}}\right\|+\rho \phi+\eta\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\| .
\end{aligned}
$$

Moreover,

$$
\left\|\boldsymbol{x}^{n}-\overline{\boldsymbol{x}}\right\| \leq \gamma\left\|\overline{\boldsymbol{x}}_{\overline{S^{n}}}\right\|+\psi \leq \gamma\left\|\overline{\boldsymbol{x}}_{[p]}\right\|+\psi=\gamma\left\|\overline{\boldsymbol{x}}_{\{p+1, \ldots, s\}}\right\|+\psi
$$

Put all together, we have

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{j}\right|+\frac{1}{\sqrt{2}}\left|\left(\boldsymbol{x}^{n+r-1}-\overline{\boldsymbol{x}}-\eta \nabla F\left(\boldsymbol{x}^{n+r-1}\right)\right)_{i}\right| \\
\leq & \rho \alpha \gamma \cdot \beta^{r-1}\left\|\overline{\boldsymbol{x}}_{\{p+1, \ldots, s\}}\right\|+\rho \alpha \psi+\rho \phi+\eta\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\| \\
\leq & \alpha \gamma \cdot \beta^{r-1}\left\|\overline{\boldsymbol{x}}_{\{p+1, \ldots, s\}}\right\|+\alpha \psi+\phi+\frac{1}{m}\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\| .
\end{aligned}
$$

Therefore, when

$$
\sqrt{2}\left|\overline{\boldsymbol{x}}_{p+q}\right|>\alpha \gamma \cdot \beta^{r-1}\left\|\overline{\boldsymbol{x}}_{\{p+1, \ldots, s\}}\right\|+\alpha \psi+\phi+\frac{1}{m}\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\|
$$

we always have (12). Note that the above holds as far as $\alpha \psi+\phi+\frac{1}{m}\left\|\nabla_{2} F(\overline{\boldsymbol{x}})\right\|$ is strictly smaller than $\sqrt{2}\left|\overline{\boldsymbol{x}}_{s}\right|$.

With Lemma 19, we show the following general theorem.
Theorem 20. Assume same conditions as in Lemma 19. Then HTP successfully identifies the support of $\overline{\boldsymbol{x}}$ using $\left(\frac{\log 2}{2 \log (1 / \beta)}+\frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2\right)$ s number of iterations.

Support Recovery of Hard Thresholding Pursuit

Proof. Without loss of generality, we presume that the elements in \bar{x} are in descending order by their magnitude, i.e., $\left|\overline{\boldsymbol{x}}_{1}\right| \geq\left|\overline{\boldsymbol{x}}_{2}\right| \geq \cdots \geq\left|\overline{\boldsymbol{x}}_{s}\right|$. We partition the support set $[s]$ into K folds $S_{1}, S_{2}, \ldots, S_{K}$, where each S_{i} is defined as follows:

$$
S_{i}=\left\{s_{i-1}+1, \ldots, s_{i}\right\}, \forall 1 \leq i \leq K
$$

Here, $s_{0}=0$ and for all $1 \leq i \leq K$, the quantity s_{i} is inductively given by

$$
s_{i}=\max \left\{q: s_{i-1}+1 \leq q \leq s \text { and }\left|\overline{\boldsymbol{x}}_{q}\right|>\frac{1}{\sqrt{2}}\left|\overline{\boldsymbol{x}}_{s_{i-1}+1}\right|\right\}
$$

In this way, we note that for any two index sets S_{i} and $S_{j}, S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. We also know by the definition of s_{i} that

$$
\begin{equation*}
\left|\overline{\boldsymbol{x}}_{s_{i}+1}\right| \leq \frac{1}{\sqrt{2}}\left|\overline{\boldsymbol{x}}_{s_{i-1}+1}\right|, \forall 1 \leq i \leq K-1 \tag{13}
\end{equation*}
$$

Now we show that after a finite number of iterations, say n, the union of the S_{i} 's is contained in S^{n}. To this end, we prove that for all $0 \leq i \leq K$,

$$
\begin{equation*}
\bigcup_{t=0}^{i} S_{t} \subset S^{n_{0}+n_{1}+\cdots+n_{i}} \tag{14}
\end{equation*}
$$

for some n_{i} 's given below.
We pick $n_{0}=0$ and it is easy to verify that $S_{0} \subset S^{0}$. Now suppose that (14) holds for $i-1$. That is, the index set of the top s_{i-1} elements of $\overline{\boldsymbol{x}}$ is contained in $S^{n_{0}+\cdots+n_{i-1}}$. Due to Lemma 19, (14) holds for i as long as n_{i} satisfies

$$
\begin{equation*}
\sqrt{2}\left|\overline{\boldsymbol{x}}_{s_{i}}\right|>\alpha \gamma \cdot \beta^{n_{i}-1}\left\|\overline{\boldsymbol{x}}_{\left\{s_{i-1}+1, \ldots, s\right\}}\right\|+\theta \tag{15}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left\|\overline{\boldsymbol{x}}_{\left\{s_{i-1}+1, \ldots, s\right\}}\right\|^{2} & =\left\|\overline{\boldsymbol{x}}_{S_{i}}\right\|^{2}+\cdots+\left\|\overline{\boldsymbol{x}}_{S_{K}}\right\|^{2} \\
& \leq\left(\overline{\boldsymbol{x}}_{s_{i-1}+1}\right)^{2}\left|S_{i}\right|+\cdots+\left(\overline{\boldsymbol{x}}_{s_{r-1}+1}\right)^{2}\left|S_{K}\right| \\
& \leq\left(\overline{\boldsymbol{x}}_{s_{i-1}+1}\right)^{2}\left(\left|S_{i}\right|+2^{-1}\left|S_{i+1}\right|+\cdots+2^{i-K}\left|S_{K}\right|\right) \\
& <2\left(\overline{\boldsymbol{x}}_{s_{i}}\right)^{2}\left(\left|S_{i}\right|+2^{-1}\left|S_{i+1}\right|+\cdots+2^{i-K}\left|S_{K}\right|\right)
\end{aligned}
$$

where the second inequality follows from (13) and the last inequality follows from the definition of q_{i}. Denote for simplicity

$$
T_{i}:=\left|S_{i}\right|+2^{-1}\left|S_{i+1}\right|+\cdots+2^{i-K}\left|S_{K}\right|
$$

As we assume $\theta \leq \sqrt{2} \lambda \overline{\boldsymbol{x}}_{\text {min }}$, we get

$$
\alpha \gamma \cdot \beta^{n_{i}-1}\left\|\overline{\boldsymbol{x}}_{\left\{s_{i-1}+1, \ldots, s\right\}}\right\|+\theta<\sqrt{2} \alpha \gamma\left|\overline{\boldsymbol{x}}_{s_{i}}\right| \beta^{n_{i}-1} \sqrt{T_{i}}+\sqrt{2} \lambda\left|\overline{\boldsymbol{x}}_{s_{i}}\right|
$$

Picking

$$
n_{i}=\log _{1 / \beta} \frac{\alpha \gamma \sqrt{T_{i}}}{1-\lambda}+2
$$

guarantees (15). It remains to calculate the total number of iterations. In fact, we have

$$
\left.\begin{array}{rl}
n & =n_{0}+n_{1}+\ldots n_{K} \\
& =\frac{1}{2 \log (1 / \beta)} \sum_{i=1}^{K} \log T_{i}+K \cdot \frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2 K \\
& \stackrel{\zeta_{1}}{\leq} \frac{K}{2 \log (1 / \beta)} \log \left(\frac{1}{K} \sum_{i=1}^{K} T_{i}\right)+\left(\frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2\right) K \\
& \stackrel{\zeta_{2}}{\leq} \frac{K}{2 \log (1 / \beta)} \log \left(\frac{2}{K} \sum_{i=1}^{K}\left|S_{i}\right|\right)+\left(\frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2\right) K \\
& =\frac{K}{2 \log (1 / \beta)} \log \frac{2 s}{K}+\left(\frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2\right) K \\
& \zeta_{3}\left(\frac{\log 2}{\leq} \log (1 / \beta)\right.
\end{array} \frac{\log (\alpha \gamma /(1-\lambda))}{\log (1 / \beta)}+2\right) s .
$$

Above, ζ_{1} immediately follows by observing that the logarithmic function is concave. ζ_{2} uses the fact that after rearrangement, the coefficient of $\left|S_{i}\right|$ is $\sum_{j=0}^{i-1} 2^{-j}$ which is always smaller than 2. Finally, since the function $r \log (2 s / r)$ is monotonically increasing with respect to r and $1 \leq r \leq s, \zeta_{3}$ follows.

Combining this theorem, Lemma 19 and specific results in Prop. 2, Prop. 4 and Prop. 5 gives the main theorems in Section 3.

