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Abstract
In this paper, we propose a fast Gauss-Seidel
Operator Splitting (GSOS) algorithm for ad-
dressing multi-term nonsmooth convex compos-
ite optimization, which has wide applications in
machine learning, signal processing and statistic-
s. The proposed GSOS algorithm inherits the ad-
vantage of the Gauss-Seidel technique to acceler-
ate the optimization procedure, and leverages the
operator splitting technique to reduce the com-
putational complexity. In addition, we develop
a new technique to establish the global conver-
gence of the GSOS algorithm. To be specific, we
first reformulate the iterations of GSOS as a two-
step iterations algorithm by employing the tool of
operator optimization theory. Subsequently, we
establish the convergence of GSOS based on the
two-step iterations algorithm reformulation. At
last, we apply the proposed GSOS algorithm to
solve overlapping group Lasso and graph-guided
fused Lasso problems. Numerical experiments
show that our proposed GSOS algorithm is supe-
rior to the state-of-the-art algorithms in terms of
both efficiency and effectiveness.

1. Introduction
In this paper, we focus on the multi-term nonsmooth con-
vex composite optimization

min
x∈X

f(x) +

n∑
i=1

gi(x), (1)

where X is a linear space, gi : X → (−∞,+∞] is
a proper, lower semicontinuous convex function for al-
l i = 1, · · · , n, and f : X → (−∞,+∞) is a continuous
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differentiable convex function with its gradient satisfying
the inequality that

1

L

∥∥∇f(x)−∇f(y)
∥∥2 ≤

〈
∇f(x)−∇f(y), x− y

〉
. (2)

The above multi-term nonsmooth convex composite opti-
mization problem (1) covers a large class of applications
in machine learning such as simultaneous low-rank and s-
parsity (Richard et al., 2012; Zhou et al., 2013), overlap-
ping group Lasso (Zhao et al., 2009; Jacob et al., 2009;
Mairal et al., 2010), graph-guided fused Lasso (Chen et al.,
2012; Kim & Xing, 2009), graph-guided logistic regres-
sion (Chen et al., 2011; Zhong & Kwok, 2014), variation-
al image restoration (Combettes & Pesquet, 2011; Dupé
et al., 2009; Pustelnik et al., 2011), and other types of struc-
ture regularization paradigms (Teo et al., 2010; 2007). By
introducing the multi-term nonsmooth regularization term∑n
i=1 gi(x) such as structured sparsity (Huang et al., 2011;

Bach et al., 2012; Bach, 2010) and nonnegativity (Chen &
Plemmons, 2015; Xu & Yin, 2013), more prior informa-
tion can be included to enhance the accuracy of regulariza-
tion models. However, due to the multi-term nonsmooth
regularization term

∑n
i=1 gi(x), the optimization problem

(1) is too complicated to be solved even for small n. For
n ≤ 2, some existing popular first-order optimization
methods are accelerated proximal gradient method (Beck
& Teboulle, 2009; Nesterov, 2007), smoothing accelerat-
ed proximal gradient method (Nesterov, 2005a;b), three
operator splitting method (Davis & Yin, 2015), and some
primal-dual operator splitting methods such as majorized
alternating direction method of multiplier (ADMM) (Cui
et al., 2016; Lin et al., 2011), fast proximity method (Li &
Zhang, 2016), and so on.

On the other hand, when n ≥ 3, there also exist some al-
gorithms for solving problem (1). A directly method for
(1) is smoothing accelerated proximal gradient (S-APG)
proposed by Nesterov (Nesterov, 2005a;b). Then, Yu (Yu,
2013) proposed a new approximation method called PA-
APG for handling (1) by combining the proximal average
approximation technique and Nesterov’s acceleration tech-
nique, which has been enhanced very recently by Shen
et al. (Shen et al., 2017). Their proposed method called
APA-APG adopts an adaptive stepsize strategy. However,
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the above mentioned methods S-APG, PA-APG and its en-
hanced version APA-APG all need a strict restriction on the
nonsmooth functions {gi(x)} that each gi(x) must be Lip-
schitz continuous. In addition, some primal-dual parallel
splitting methods (Briceno-Arias et al., 2011; Combettes
& Pesquet, 2007; 2008; Condat, 2013; Vũ, 2013) gener-
alized from traditional operator splitting, such as forward
backward splitting method (Chen & Rockafellar, 1997) and
Douglas Rachford splitting method (Eckstein & Bertsekas,
1992), can also solve the multi-term nonsmooth convex
composite optimization problem (1). Different from pri-
or work, Raguet et al. (Raguet et al., 2013) proposed an
efficient primal operator splitting method called general-
ized forward backward splitting method using the classic
forward backward splitting technique, which has shown
the superiority over numerous existing primal-dual splitting
methods (Monteiro & Svaiter, 2013; Combettes & Pesquet,
2012; Chambolle & Pock, 2011) in dealing with variation-
al image restoration problems. All the above mentioned
methods for problem (1) with n ≥ 3 share a common
feature that they all split the nonsmooth composite term∑n
i=1 gi(x) in the Jacobi iteration manner, i.e., parallelly.

This is one of the main differences between existing split-
ting methods and our proposed method in this paper.

To split the nonsmooth composite term
∑n
i=1 gi(x) more

efficiently, we propose a novel operator splitting algorithm
to solve problem (1) by harnessing the advantage of Gauss-
Seidel iterations, i.e., the computation of the proximal
mapping of the current function gi(x) uses the proximal
mappings of gj(x) for all j < i which have already
been computed ahead. In addition, to further improve the
algorithm’s efficiency, we leverage the over-relaxation
acceleration technique. What’s more, we provide a new
strategy that the over-relaxation stepsize can be determined
adaptively, ensuring a larger value to accelerate the algo-
rithm. The most important is that the convergence of our
proposed GSOS algorithm is established by a newly devel-
oped analysis technique. In detail, given an invertible linear
operator R, we first argue that the optimal solution set
[∇f +

∑n
i=1 ∂gi]

−1
(0) of problem (1) can be recovered

by the zero point set
[
(R∗)−1SR, ∂g+A◦∇f◦A,NV

]−1
(0).

This is fulfilled through adopting the tool of operator
optimization theory, in which the composite operator
SR, ∂g+A◦∇f◦A,NV is generalized from the definition of
the composite monotone operator Sλ,A,B in (Eckstein
& Bertsekas, 1992). Next, by unitizing the definition of
the ε-enlargement of maximal monotone (Burachik et al.,
1998; 1997; Burachik & Svaiter, 1999; Svaiter, 2000),
we establish a key property for SR, ∂g+A◦∇f◦A,NV ,
that is, gph

(
SR, (∂g+A∗◦∇f◦A)[ε],NV

)
⊆

gph
(
R∗[(R∗)−1SR, ∂g+A∗◦∇f◦A,NV ][ε]

)
. Based on

this observation, we equivalently reformulate the GSOS
algorithm as a two-step iterations algorithm. Then, the

global convergence of the proposed GSOS algorithm is
easily established based on this reformulation.

The closest algorithm to our proposed GSOS algorithm
is the generalized forward backward splitting method pro-
posed by Raguet et al. (Raguet et al., 2013). By carefully
selecting the scaling matrix H in the forthcoming GSOS
algorithm, it is easy to check that GSOS covers the gener-
alized forward backward splitting method as a special case.
Another highly related algorithm to our proposed GSOS al-
gorithm is the matrix splitting method (Luo & Tseng, 1991;
Yuan et al., 2016). Choosing the scaling matrixH suitably,
the proposed GSOS algorithm can inherit the advantage of
the matrix splitting technique which has shown the efficien-
cy in (Yuan et al., 2016) for coping with a special class of
coordinate separable composite optimization problems.

The rest of this paper is organized as follows. In Section 2,
we first give the definitions of some useful notations which
can make the paper much more readable. We also establish
some lemmas and propositions based on monotone opera-
tor theory (Bauschke & Combettes, 2011), which are the
key to the convergence of the GSOS algorithm. In Section
3, we present the proposed GSOS algorithm and then an-
alyze its convergence and iteration complexity. In Section
4, we conduct numerical experiments on overlapping group
Lasso and graph-guided fused Lasso problems to evaluate
the efficacy of the GSOS algorithm. Finally, we draw con-
clusions in Section 5.

2. Preliminaries and Notations
Let Y =

∏n
i=1 Xi be the product space of Xi with Xi = X

for all i ∈ {1, 2, · · · , n}. Let V be a linear space and V⊥
be its complementary space with the following definitions

V=
{
y ∈ Y | y1 = · · · = yn

}
, V⊥=

{
y ∈ Y |

n∑
i

yi = 0
}
.

Let IX : X → X be the identity map and EY :
X → Y be a block linear operator defined as EY =(
IX · · · IX

)∗
. Let A : Y → X be a linear oper-

ator defined as Ay = 1
nE
∗
Yy = 1

n

∑n
i=1 yi. Hence, its

adjoint operator A∗ : X → Y is defined as A∗x = 1
nEYx.

Let H,R : Y → Y be block lower triangular linear invert-
ible operators satisfying (R∗)−1 = H and H + H∗ � 0.
Moreover,H is defined as

H1,1 0 · · · 0
...

. . .
...

...
Hn−1,1 · · · Hn−1,n−1 0
Hn,1 · · · Hn−1,n Hn,n

 , (3)

where Hi,j : X → X is a linear operator for all (i, j) ∈
{1, · · · , n}. It is worthwhile to emphasize that Hi,i is also
possible to be a lower triangular linear operator satisfying
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Hi,i +H∗i,i � 0. Next, we abuse the notation ‖ · ‖H which
is induced by the inner product 〈·,H·〉 satisfying

‖ · ‖H : =
√
〈·,H·〉 =

√
〈·,H∗·〉

=

√
〈·, H+H∗

2
·〉 = ‖ · ‖H+H∗

2
. (4)

In addition, we define the generalized proximal mapping of
a proper, lower semicontinuous convex function gi(x) with
respect to the invertible linear operatorHi,i.

Definition 1 For a given x, the proximal mapping denoted
by ProxH−1

i,i gi
(x) of a proper, lower semicontinuous con-

vex function gi with respect to an invertible linear operator
Hi,i satisfying Hi,i + H∗i,i � 0 is defined to be the zero
point of the following inclusion equation

0 ∈ ∂gi(·) +Hi,i(· − x). (5)

Moreover, if Hi,i is symmetric, it can be reformulated as
the following convex minimization

ProxHi,igi(x) := arg min
y∈X

gi(y) +
1

2
‖y − x‖2Hi,i .

Next, we recall the definition of ε-enlargement of monotone
operators (Burachik et al., 1998; 1997; Burachik & Svaiter,
1999; Svaiter, 2000), which is an effective tool for estab-
lishing the convergence of the proposed GSOS algorithm.

Definition 2 Given a maximal monotone operator T :
X ⇒ X, the ε (≥ 0)-enlargement of T is defined as the
set T [ε](x) :=

{
v ∈ Y | 〈w − v, z − x〉 ≥ −ε for all z ∈

X, w ∈ T (z)
}

.

Recall that f(x) is a gradient Lipschitz convex function sat-
isfying inequality (2). There exits 0 � Σ � Σ̂ � LI such
that the following two inequalities hold for any x, x′ ∈ X

f(x) ≤ f(x′) + 〈∇f(x′), x− x′〉+
1

2
‖x− x′‖2

Σ̂
, (6)

f(x) ≥ f(x′) + 〈∇f(x′), x− x′〉+
1

2
‖x− x′‖2Σ. (7)

Actually, when f(x) is a quadratic function, it holds Σ = Σ̂
directly in inequalities (6) and (7). The following lemma
establishes the property of the enlargement of the compos-
ite operatorA∗ ◦∇f ◦A with f satisfying inequalities (6)-
(7) or (2), which is an essential ingredient for reformulating
the GSOS algorithm as a two-step iterations algorithm.

Proposition 1 Assume that f is a gradient Lipschitz con-
tinuous convex function satisfying inequality (2). For any
x1, x2 ∈ Y , it holds that

(A∗ ◦ ∇f ◦ A)(x2) ∈ (A∗ ◦ ∇f ◦ A)[ε](x1) (8)

with ε = L
4 ‖Ax1−Ax2‖2. In addition, if f further satisfies

inequalities (6)-(7), it holds that

(A∗ ◦ ∇f ◦ A)(x2) ∈ (A∗ ◦ ∇f ◦ A)[ε](x1) (9)

with ε = 1
4‖Ax1 −Ax2‖22Σ̂−Σ

.

Remark 1 Two comments are made for Proposition 1:

(1) This proposition gives two types of estimations for ε in(
A∗ ◦∇f ◦A

)[ε]
in (8) and (9). When f is a quadratic

function, it is easy to check that

1

4
‖Ax1 −Ax2‖22Σ̂−Σ

≤ L

4
‖Ax1 −Ax2‖2

due to Σ̂ = Σ � LI. When f is a general gradient
Lipschitz continuous function, we do not know which
estimation for ε is tighter in (8) and (9).

(2) The second part of this proposition can be regarded as
an intensified version of Lemma 2.2 in (Svaiter, 2014)
for a specified composite operator A∗ ◦ ∇f ◦ A. The
first part of the proposition coincides with the results
by applying Lemma 2.2 in (Svaiter, 2014) for A∗ ◦
∇f ◦ A.

Next, we generalize the notation Sλ,T1,T2 in (Eckstein &
Bertsekas, 1992) for a given λ > 0 and two maximal mono-
tone operators T1, T2 as SR,T1,T2 for a given invertible lin-
ear operatorR defined as

gphSR, T1, T2 (10)

:=
{

(x1 +Ry2, x2 − x1) | y1 ∈ T1(x1),

y2 ∈ T2(x2), x1 +R∗y1 = x2 −R∗y2

}
.

By (Eckstein & Bertsekas, 1992), we know that Sλ,T1,T2 is
maximal monotone if T1 and T2 are both maximal mono-
tone. However, its generalized operator SR,T1,T2 is not
monotone unless the invertible linear operator R reduces
to be a constant. Very interesting, it can be shown that its
composition with (R∗)−1, i.e., (R∗)−1SR,T1,T2 , is maxi-
mal monotone for any invertible linear operatorR.

Lemma 1 For any given invertible linear operator R, op-
erator (R∗)−1SR,T1,T2 is maximal monotone if T1 and T2

are both maximal monotone operators.

Setting T1 = ∂g + A∗ ◦ ∇f ◦ A, T2 = NV , we obtain
SR, ∂g+A∗◦∇f◦A,NV , which is defined as

gph
(
SR,∂g+A∗◦∇f◦A,NV

)
(11)

:=
{

(x1+Ry2, x2−x1) | y1∈(∂g +A∗ ◦ ∇f ◦ A)(x1),

y2 ∈ NV(x2), x1 +R∗y1 = x2 −R∗y2

}
.
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By Lemma 1, we know that (R∗)−1SR, ∂g+A∗◦∇f◦A,NV
is maximal monotone due to the maximal monotonicity
of ∂g + A∗ ◦ ∇f ◦ A and NV . Hence, given a constan-
t ε ≥ 0, the enlargement [(R∗)−1SR, ∂g+A∗◦∇f◦A,NV ][ε]

is well defined. In addition, based on the definition of
SR,T1,T2 again, we set T1 = ∂g + (A∗ ◦ ∇f ◦ A)[ε], or
T1 = (∂g + A∗ ◦ ∇f ◦ A)[ε] and T2 = NV in (10).
Then we have the definition of SR,∂g+(A∗◦∇f◦A)[ε],NV or
SR,(∂g+A∗◦∇f◦A)[ε],NV for any given invertible linear op-
eratorR and constant ε ≥ 0 as follows

gph
(
SR,∂g+(A∗◦∇f◦A)[ε],NV

)
(12)

:=
{

(x1+Ry2, x2−x1)|y1∈(∂g+(A∗◦∇f ◦A)[ε])(x1),

y2 ∈ NV(x2), x1 +R∗y1 = x2 −R∗y2

}
,

gph
(
SR,(∂g+A∗◦∇f◦A)[ε],NV

)
(13)

:=
{

(x1+Ry2, x2−x1)|y1∈(∂g +A∗◦∇f ◦A)[ε])(x1),

y2 ∈ NV(x2), x1 +R∗y1 = x2 −R∗y2

}
.

In the proposition below, we will establish the re-
lationships among the above mentioned three opera-
tors SR,∂g+(A∗◦∇f◦A)[ε],NV , SR,(∂g+A∗◦∇f◦A)[ε],NV and
[(R∗)−1SR, ∂g+A∗◦∇f◦A,NV ][ε].

Proposition 2 Given a constant ε ≥ 0 and an invertible
linear operatorR, it holds that

gph
(
SR, ∂g+(A∗◦∇f◦A)[ε],NV

)
⊆ gph

(
SR, (∂g+A∗◦∇f◦A)[ε],NV

)
⊆ gph

(
R∗[(R∗)−1SR, ∂g+A∗◦∇f◦A,NV ][ε]

)
.

In the following, we establish the relationship between
the optimal solution set [∇f +

∑n
i=1 ∂gi]

−1
(0) of prob-

lem (1) and
[
(R∗)−1SR, ∂g+A∗◦∇f◦A,NV

]−1
(0), which

means that we can recover the solution of problem (1)
through

[
(R∗)−1SR, ∂g+A∗◦∇f◦A,NV

]−1
(0).

Lemma 2 Let linear operators H and R sat-
isfy (R∗)−1 = H and H satisfy (3). Denote
Ω =

[
(R∗)−1SR, (∂g+A∗◦∇f◦A),NV

]−1
(0). It holds

that[
∇f +

n∑
i=1

∂gi

]−1

(0) =
(
ETYH∗EY

)−1ETYH∗
(
Ω
)
.

3. GSOS Algorithm
In this section, we first propose the Gauss-Seidel operator
splitting algorithm for solving the multi-term nonsmooth
convex composite problem (1). Then, based on the pre-
liminaries in Section 2, we establish the convergence and
iteration complexity of the GSOS algorithm.

Algorithm 1 GSOS Algorithm
Parameters: Choose σ ∈ (0, 1), a linear operator H
satisfying (3) and a starting point z0 ∈ Z . Set θfix1 ∈(
− 1, θ1

]
and θfix2 ∈

(
− 1, θ2

]
, where θ1 and θ2 are

defined via equations (14a) and (14b), respectively.
for k = 0, 1, 2, · · · ,K do
xk := EY

(
ETYHEY

)−1ETYHzk;
for i = 1, 2 · · · , n do
yki := ProxH−1

i,i gi

(
H−1
i,i [
∑i
j=1Hi,j(2xkj − zkj ) −

1
n∇f( 1

n

∑n
i=1 x

k
i )−

∑i−1
j=1Hi,jykj ]

)
;

end for
set θadap1

k as (14c) and θadap2
k as (14d);

set θk ∈ [θfix1, θadap1
k ] ∪ [θfix2, θadap2

k ];
zk+1 := zk + (1 + θk)(yk − xk);

end for
return ωK :=

(
ETYH∗EY

)−1ETYH∗zK .

In Algorithm 1, parameters θ1, θ1, θadap1
k , θadap1

k are de-
fined as

θ1 = max
{
θ|(θ − σ)(H+H∗) + LA∗A � 0

}
; (14a)

θ2 = max
{
θ | (θ − σ)(H+H∗) (14b)

+A∗(2Σ̂− Σ)A � 0
}

;

θadap1
k = σ − L‖A(xk − yk)‖2

‖xk − yk‖2H+H∗
; (14c)

θadap2
k = σ −

‖A(xk − yk)‖2
2Σ̂−Σ

‖xk − yk‖2H+H∗
. (14d)

Remark 2 We make some comments on GSOS below.

(1) For the updating step of xk, we obtain xk =

EY
(∑K

i,j=1Hij
)−1∑K

j=1

∑K
i=j Hijzkj by using the

notations H and EY . Similarly, we have ωk =(∑K
i,j=1Hij

)−1∑K
j=1

∑j
i=iH∗jizkj . Hence, we need

to compute the inverse of
∑n
i,j=1Hi,j . However, if

Hi,j is a lower triangular matrix operator, xk and ωk

can be obtained easily.

(2) By the definitions of ProxH−1
i,i gi

and yk, we need to
solve the following inclusion equation

Gki ∈ Hi,iyki + ∂gi(y
k
i ),

where Gki = H−1
i,i

[∑i
j=1Hi,j(2xkj − zkj ) −

1
n∇f( 1

n

∑n
i=1 x

k
i ) −

∑i−1
j=1Hi,jykj

]
. Usually, it is

easy to choose a suitable Hi,i such that the solution
of the above inclusion equation has a closed form.
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(3) θk is the over-relaxation stepsize for accelerating the
GSOS algorithm. If the computations of θadap1

k

and θadap2
k are time consuming, we can set θk =

max{θfix1, θfix2}.

(4) WhenH is a diagonal matrix, i.e.,Hi,j = 0 andHi,i =
aiI with some nonnegative constant ai, and the over
relaxation stepsize θk is fixed to a smaller region, the
GSOS algorithm reduces to the generalized forward
backward splitting method in (Raguet et al., 2013).

In the following, we reformulate the GSOS algorithm as
a two-step iterations algorithm by utilizing monotone opti-
mization theory established in Section 2, which is the key
to the convergence of the GSOS algorithm.

Proposition 3 Let g : Y → (−∞,+∞] be the func-
tion defined as g(x) =

∑n
i=1 gi(xi). Assume that the

sequences (xk, yk) and zk are generated by Algorithm
1 with σ ∈ (0, 1). Let vk = (R∗)−1(xk − yk) and
zk = yk + R(R∗)−1(zk − xk). Then, for all k ∈ N,
there exists εk ≥ 0 such that the iterations in Algorithm
1 can be reformulated as the following two-step iterations
algorithm:

vk ∈ [(R∗)−1SR, ∂g+(A∗◦∇f◦A),NV ][εk](zk), (15a)

θk‖R∗vk‖2R−1 + ‖R∗vk + zk − zk‖2R−1

+2εk ≤ σ‖zk − zk‖2R−1 , (15b)

and zk+1 = zk − (1 + θk)R∗vk.

Remark 3 Based on Proposition 3, the GSOS algorithm
can be regarded as an inexact over-relaxed metric proximal
point algorithm for the composite inclusion

0 ∈ (R∗)−1SR,∂g+A∗◦∇f◦A,NV (z).

By Proposition 3 and Lemma 2, we can establish the con-
vergence of the GSOS algorithm based on the relationship

between the two zero point sets [∇f+
n∑
i=1

∂gi]
−1(0) and Ω.

Theorem 1 Let {(xk, yk, zk)} be the sequence generated
by Algorithm 1. We have:

(i) for any z∗ ∈ [(R∗)−1SR,∂g+A∗◦∇f◦A,NV ]−1(0), it
holds that

‖zk+1 − z∗‖2R−1 ≤ ‖zk − z∗‖2R−1 (16)

− (1− σ)(1 + θk)‖xk − yk‖2R−1 ;

(ii) zk converges to a point belonging to zero
point set [(R∗)−1SR,∂g+A∗◦∇f◦A,NV ]−1(0)
and ωk converges to a point belonging to
[∇f +

∑n
i=1 ∂gi]

−1
(0), i.e., the optimal solution set

of problem (1).

Theorem 1 indicates that ‖xk − yk‖ approaching to zero
implies the convergence of the GSOS algorithm. In the
theorem below, we measure the convergence rates of two
sequences ‖xk − yk‖ and ‖ωk − ωk+1‖.

Theorem 2 Let zk be the sequence generated by the GSOS
algorithm. Then, there exists i ∈ {1, 2, · · · , k} such that

‖xi − yi‖2 ≤ O
(1

k

)
,
∥∥ωi+1 − ωi

∥∥2 ≤ O
(1

k

)
.

Due to the space limit, all proofs of the propositions, lem-
mas and theorems are placed into the supplementary mate-
rial.

4. Experiments
In this section, we apply the proposed algorithm to the
overlapping group Lasso (Zhao et al., 2009; Jacob et al.,
2009; Mairal et al., 2010) and graph-guided fused Lasso
problems (Chen et al., 2012; Kim & Xing, 2009), which
can be formulated as

min
1

2
‖Sx− b‖2 +

K∑
i=1

gi(x). (17)

For overlapping group Lasso problem (21), gi(x) =
ναi‖xGi‖ andK denotes the number of groups. For graph-
guided Lasso problem (25), gi(x) = ναij‖xi−xj‖ and K
denotes the number of edges in the graph edge set E.

We describe the detailed techniques in the experimental im-
plementation for (17). Given a > 1

2 and a positive definite
operator D satisfying D � STS, we set

Hi,j =

{
1
K2D, i ≥ j ∈ {1, 2, · · · ,K};
a
K2D, i = j ∈ {1, 2, · · · ,K}. (18)

Hence, it easy to check that H + H∗ = A∗DA +
2a−1
K2 Diag

(
EYD

)
� 0. Due to the smooth term in overlap-

ping group Lasso (21) is quadratic, the two estimations θ2

and θadap2
k in (14b) and (14d) are preferred to be used. By

specific H, we obtain
∑K
i,j=1Hi,j = K(K−1)+2αK

2K2 D and∑K
j=1

∑K
i=j Hi,jzkj = D

K2

∑K
j=1(a+K−j)zkj ,which fur-

ther imply xk =
(∑K

i,j=1Hi,j
)−1∑K

j=1

∑K
i=j Hi,jzkj =

2
∑K
j=1(a+K−j)zkj

K(K−1)+2aK . Moreover, by the positive definiteness

of Hi,i and D, it holds that
∑n
j=1

∑j
i=iH∗j,izkj =

D
K2

∑K
j=1(a + j − 1)zkj . Hence, we attain ωk =

2
∑K
j=1(a+j−1)zkj

K(K−1)+2aK . In addition, by the definition of H, we
reformulate the estimation (14b) for θk as the following
form:

θ = max
{
θ | EY

[
(σ − θ)D − STS

]
E∗Y

+ (2a− 1)
(
σ − θ

)
Diag(EYD) � 0

}
.
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Due to a ≥ 1
2 and the positive definiteness of D, a suffi-

cient condition satisfying the constraint in the above set is{
(σ − θ)D − STS � 0, θ ≤ σ

}
. Hence, we have an alter-

native estimation for θ as

θ = max
{
θ | (σ − θ)D − STS � 0, θ ≤ σ

}
. (19)

Similarly, the adaptive stepsize estimation (14d) is refor-
mulated as

θadap
k = σ −

1
2K2

∥∥∥∥ K∑
i=1

(xk − yki )

∥∥∥∥2

STS
K∑
j=1

K∑
i=j

(xk − yki )THij(xk − ykj )

. (20)

Therefore, the GSOS algorithm can be specified as the fol-
lowing form for solving problem (17).

Algorithm 2 GSOS Algorithm for Solving Problem (17)
Parameters: Choose σ ∈ (0, 1), positive definite op-
erators D and Hi,j satisfying (18), and a starting point
z0 ∈ Z . Set θ as (19) and θfix ∈

(
− 1, θ1

]
.

for k = 0, 1, 2, · · · , do
xk :=

2
∑K
j=1(α+K−j)zkj

K(K−1)+2αK ;
for i = 1, 2 · · · ,K do
yki := ProxH−1

i,i gi

(
H−1
i,i [
∑i
j=1Hi,j(2xk − zkj ) −

1
KS

T (Sxk − b)−
∑i−1
j=1Hi,jykj ]

)
;

end for
set θk ∈ [θfix

k , θadap
k ], where θadap

k is defined via (20);
for j = 1, 2 · · · ,K do
zk+1
j := zkj + (1 + θk)(ykj − xk);

end for
end for
return ωN =

2
∑K
j=1(α+j−1)zNj

K(K−1)+2αK .

In this paper, we compare the proposed GSOS algorithm
with four state-of-the-art algorithms below.

• GFB (Raguet et al., 2013): Generalized Forward
Backward (GFB) splitting algorithm is a primal first-
order operator splitting algorithm for solving (1) pro-
posed by Raguet et al. (Raguet et al., 2013), which
has been shown to outperform other competing algo-
rithms such as (Monteiro & Svaiter, 2013; Combettes
& Pesquet, 2012; Chambolle & Pock, 2011) for vari-
ational image restoration.

• PDM (Condat, 2013): A first-order Primal-Dual split-
ting Method (PDM) (Condat, 2013) for solving jointly
the primal and dual formulations of large-scale convex
minimization problems involving Lipschitz, proximal
and linear composite terms.

• PA-APG (Yu, 2013): Proximal Average approximated
Accelerated Proximal Gradient (PA-APG) algorithm
(Yu, 2013) is a primal first-order method, which uti-
lizes the proximal average technique (Bauschke et al.,
2008) to separate the multi-term nonsmooth function
in (1). It has been shown to outperform the smooth-
ing accelerated proximal gradient method (Nesterov,
2005b;a).

• APA-APG (Shen et al., 2017): An enhanced ver-
sion of PA-APG, which incorporates the Adaptive
Proximal Average approximation technique with the
Accelerated Proximal Gradient (APA-APG) method
to improve the efficiency of the optimization proce-
dure.

It is worthwhile to emphasize that PA-APG and APA-APG
algorithms can only be applied to a specific class of prob-
lems (1), in which the multi-term nonsmooth regularization
is Lipschitz continuous. Since the nonsmooth regulariza-
tion terms in overlapping group Lasso and graph-guided
fused Lasso are all exactly Lipschitz continuous, the two
efficient solvers PG-APG (Yu, 2013) and its enhanced ver-
sion APA-APG (Shen et al., 2017) are also compared with
the GSOS algorithm to illustrate the efficacy of GSOS. In
the implementation, the approximation parameter for PA-
APG is set as 1.0e− 5.

4.1. Overlapping Group Lasso

In this subsection, we apply the proposed GSOS algorithm
to the overlapping group Lasso problem, which takes the
following formal definition:

min
1

2
‖Sx− b‖2 + ν

K∑
i=1

αi‖xGi‖, (21)

where S ∈ Rn×d is the sampling matrix, b is the noisy
observation vector, G = {G1, · · · ,GK} denotes the set of
overlapping groups (Gi ⊂ {1, · · · , d} satisfying

⋃K
i=1 Gi =

{1, · · · , d} and Gi
⋂
Gj 6= ∅ for some i, j), xGi ∈ Rd is a

duplication of x with x{1,··· ,d}\Gi = 0, αi is the weight
for the i-th group, and ν is the regularization parameter
controlling group sparsity.

During the implementation of Algorithm 2, we need to cal-
culate the generalized proximal mapping of ‖xGi‖ in the
updating step of yki . By the positive definiteness of Hi,i,
the calculation of yki in Algorithm 2 is equivalent to solv-
ing the following problem:

yki := arg min
x

1

2
‖x− bk‖2Hi,i + ναi‖xGi‖,

where bk = H−1
i,i

[∑i
j=1Hi,j(2xk − zkj ) − 1

KS
T (Sxk −

b)−
∑i−1
j=1Hi,jykj

]
. In the proposition below, given c, diag-
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Figure 1. Objective value vs. iteration on overlapping group Lasso.
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Figure 2. Objective value vs. iteration on overlapping group Lasso.

onal positive definite operatprHi,i and group G, we solve

x∗ := arg min
x

1

2
‖x− c‖2Hi,i + ν‖xG‖. (22)

When Hi,i is identity matrix I, (22) has the closed-form
solution

x∗ =

{
x∗G , i ∈ G,
ci, else,

where x∗G =

{
(1− ν/‖cG‖)cG , ‖cG‖ ≥ t;
0, else.

Proposition 4 Let (Hi,i)G be the subdiagonal matrix of
Hi,i with the index set G, and t∗ be the optimal solution
of the one-dimensional optimization problem

min
t≥0

{
1

2

〈
cG ,
[
(Hi,i)−1

G + 2tI
]−1

cG
〉

+ tν2

}
. (23)

Hence, the optimal solution of (22) has the following form

x∗ =

{
cG −

[
I + 2t∗(Hi,i)G

]−1
cG , i ∈ G;

ci, else.
(24)

Like (Chen et al., 2012; Yu, 2013), the entries of sampling
matrix S ∈ Rn×d are sampled from an i.i.d. normal dis-
tribution, and x ∈ Rd with xj = (−1)j exp−(j−1)/100 and
d = 90K + 10. Let ξ be the noise sampled from the stan-
dard normal distribution, and the noisy observation satisfies
b = Sx + ξ. In addition, we set ν = 1 and αi = 1

K2 for
each group Gi and the groups {Gi} are overlapped by 10
elements, that is{

G1 = {1, · · · , 100} G2 = {91, · · · , 190}
· · · GK = {d− 99, · · · , d}

}
.

The sampling size and the number of groups (n,K) are
chosen from the following set

(n,K) ∈
{

(1000, 20), (2000, 40), (4000, 60),
(4000, 80), (5000, 80), (5000, 100)

}
.

To further reduce the computations, in Algorithm 2 we set
Hi,i = ‖STS‖I and the over-relaxation stepsize θk as θ in
(19). Hence, the compared five solvers GSOS, GFB, PDM,
PA-APG and APA-APG have the same computational cost
in each iteration. To be fair, all the compared algorithms
start with the same initial point. The following six pic-
tures in Figures 1 and 2 display the comparisons of the five
solvers for a variety of (n,K). It is apparent that our pro-
posed GSOS algorithm shows great superiorities over the
other four solvers. The primal-dual solver PDM is slightly
faster than the primal solver GFB. PA-APG is the slowest
algorithm, because the prespecified proximal average ap-
proximation precision is 1.0e − 5 which leads to a very
small stepsize. Also, APA-APG is much faster than the
other four solvers at the first 50 iterations. However, it is
slowed down since the stepsize used in AP-APG becomes
smaller and smaller as the iterations go on.

4.2. Graph-Guided Fused Lasso

In this subsection, we perform experiments on graph-
guided fused Lasso which is formulated as

min
1

2
‖Sx− b‖2 + ν

∑
(i,j)∈E

αij |xi − xj |, (25)

where αij ≥ 0 is the weight for the fused term ‖xi − xj‖
for all (i, j) ∈ E (E is the given graph edge set), and ν is
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Figure 3. Objective value vs. iteration on graph-guided fused Lasso.
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Figure 4. Objective value vs. iteration on graph-guided fused Lasso.

the regularization parameter.

In the implementation of Algorithm 2 for tackling graph-
guided fused Lasso (25), we need to solve the following
optimization in the updating step of yk:

x∗ := arg min
x

1

2
‖x− b‖2Hi,i + ν|xi − xj |, (26)

whereHi,i is a diagonal positive definite matrix, and b and
ν are given constants. Let hii and hjj be the i-th and j-th
diagonal elements ofHi,i, respectively.

Proposition 5 The optimal solution of (26) takes the fol-
lowing closed-form:

x∗ =

 bl − h−1
ll λ

∗, l = i,
bl + h−1

ll λ
∗, l = j,

bl, l 6= i, j,
(27)

where λ∗ is defined as

λ∗ =


bi−bj

h−1
ii +h−1

jj

,
∣∣∣ bi−bj
h−1
ii +h−1

jj

∣∣∣ ≤ ν;

sign (bi − bj) ν,
∣∣∣ bi−bj
h−1
ii +h−1

jj

∣∣∣ > ν.

In the implementation, we use the similar parameter set-
tings of S, ν as above. The dimension parameter pair (n, d)
is chosen from the following set

(n, d) ∈
{

(2000, 500), (2000, 1000), (5000, 1000),
(5000, 2000), (10000, 2000), (10000, 4000)

}
,

and the parameter αi = 100/|E|2. Similarly, all the com-
pared algorithms start with the same initial point. The fol-
lowing six pictures in Figures 3 and 4 display the compar-
isons of the five solvers for six kinds of choices of (n, d). It

is obvious that the other four solvers GFB, PDM, AP-APG
and APA-APG are not as efficient as the proposed GSOS
algorithm, which demonstrates that the Gauss-Seidel tech-
nique is very useful for addressing nonsmooth optimiza-
tion. It is worthwhile to point out that the primal solver
GFB is faster than the primal-dual solver PDM on graph-
guided fused Lasso. One possible reason is that the number
of nonsmooth terms is too large, which will lead to a large
quantity of dual variables introduced in PDM and hence
slow down the updating of primal variables.

5. Conclusions
In this paper, we proposed a novel first-order algorithm
called GSOS for addressing multi-term nonsmooth con-
vex composite optimization. This algorithm inherits the
advantages of the Gauss-Seidel technique and the opera-
tor splitting technique, therefore being largely accelerat-
ed. We found that the GSOS algorithm includes the gen-
eralized forward backward splitting method (Raguet et al.,
2013) as a special case. In addition, we developed a new
technique to establish the global convergence and iteration
complexity of the GSOS algorithm. Last, we applied the
proposed GSOS algorithm to solve overlapping group Las-
so and graph-guided fused Lasso problems, and compared
it against several state-of-the-art algorithms. The experi-
mental results show the great superiority of the GSOS al-
gorithm in terms of both efficiency and effectiveness.
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