A. Proofs

Theorem 5 Give any two finite sets $S_{1}, S_{2} \in \Omega$, with $A=$ $\left|S_{1} \cup S_{2}\right|>a=\left|S_{1} \cap S_{2}\right|>0$ and $|\Omega|=D \rightarrow \infty$. The limiting variance of the estimators from densification and improved densification when $k=D \rightarrow \infty$ is given by:

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \operatorname{Var}(h)=\frac{a}{A}\left[\frac{A-a}{A(A+1)}\right]>0 \\
\lim _{k \rightarrow \infty} \operatorname{Var}\left(h^{+}\right)=\frac{a}{A}\left[\frac{3(A-1)+(2 A-1)(a-1)}{2(A+1)(A-1)}-\frac{a}{A}\right]>0 \tag{16}
\end{gather*}
$$

Proof: When $k=D$, then $N_{e m p}=D-A$. Substituting this value in the variance formulas from (Shrivastava \& Li, 2014c) and taking the limit as $D=k \rightarrow \infty$, we get the above expression after manipulation. When $0<R=\frac{a}{A}<$ 1 , they both are strictly positive.

Theorem 6

$$
\begin{align*}
\operatorname{Pr}\left(h^{*}\left(S_{1}\right)\right. & \left.=h^{*}\left(S_{2}\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cap S_{2}\right|}=R \tag{17}\\
\operatorname{Var}\left(h^{*}\right) & =\frac{R}{k}+A \frac{R}{k^{2}}+B \frac{R \bar{R}}{k^{2}}-R^{2} \tag{18}\\
\lim _{k \rightarrow \infty} \operatorname{Var}\left(h^{*}\right) & =0 \tag{19}
\end{align*}
$$

where $N_{\text {emp }}$ is the number of simultaneous empty bins between S_{1} and S_{2} and the quantities A and B are given by

$$
\begin{aligned}
A & =\mathbb{E}\left[2 N_{e m p}+\frac{N_{e m p}\left(N_{e m p}-1\right)}{k-N_{e m p}}\right] \\
B & =\mathbb{E}\left[\left(k-N_{e m p}\right)\left(k-N_{e m p}-1\right)+2 N_{e m p}\left(k-N_{e m p}-1\right)\right. \\
& \left.+\frac{N_{e m p}\left(N_{e m p}-1\right)\left(k-N_{e m p}-1\right)}{k-N_{e m p}}\right]
\end{aligned}
$$

Proof:

The collision probability is easy using a simple observation that values coming from different bin numbers can never match across S_{1} and S_{2}, i.e. $h_{i}^{*}\left(S_{i}\right) \neq h_{j}^{*}\left(S_{2}\right)$ if $i \neq j$, as they have disjoint different range. So whenever, for a simultaneous empty bin i, i.e. $E_{i}=1$, we get $h_{i}^{*}\left(S_{1}\right)=h_{i}^{*}\left(S_{2}\right)$ after reassignment, the value must be coming from same non-empty bin, say numbers k which is not not empty. Thus,

For variance, define the number of simultaneously empty bins by

$$
\begin{equation*}
N_{e m p}=\sum_{j=0}^{k-1} \mathbb{1}\left\{E_{j}=1\right\} \tag{21}
\end{equation*}
$$

where $\mathbb{1}$ is the indicator function. We partition the event $\left(h_{j}^{*}\left(S_{1}\right)=h_{j}^{*}\left(S_{2}\right)\right)$ into two cases depending on E_{j}. Let M_{j}^{N} (Non-empty Match at j) and M_{j}^{E} (Empty Match at j) be the events defined as:

$$
\begin{align*}
M_{j}^{N} & =\mathbb{1}\left\{E_{j}=0 \text { and } h_{j}^{*}\left(S_{1}\right)=h_{j}^{*}\left(S_{2}\right)\right\} \tag{22}\\
M_{j}^{E} & =\mathbb{1}\left\{E_{j}=1 \text { and } h_{j}^{*}\left(S_{1}\right)=h_{j}^{*}\left(S_{2}\right)\right\} \tag{23}
\end{align*}
$$

Note that, $M_{j}^{N}=1 \Longrightarrow M_{j}^{E}=0$ and $M_{j}^{E}=1 \Longrightarrow$ $M_{j}^{N}=0$. From the LSH property of estimator we have

$$
\begin{align*}
\mathbb{E}\left(M_{j}^{N} \mid E_{j}=0\right) & =\mathbb{E}\left(M_{j}^{E} \mid E_{j}=1\right) \\
& =\mathbb{E}\left(M_{j}^{E}+M_{j}^{N}\right)=R \forall j \tag{24}
\end{align*}
$$

It is not difficult to show that,

$$
\mathbb{E}\left(M_{j}^{N} M_{i}^{N} \mid i \neq j, E_{j}=0 \text { and } E_{i}=0\right)=R \tilde{R}
$$

where $\tilde{R}=\frac{a-1}{f 1+f 2-a-1}$. Using these new events, we have

$$
\begin{equation*}
\hat{R}=\frac{1}{k} \sum_{j=0}^{k-1}\left[M_{j}^{E}+M_{j}^{N}\right] \tag{25}
\end{equation*}
$$

We are interested in computing

$$
\begin{equation*}
\operatorname{Var}(\hat{R})=\mathbb{E}\left(\left(\frac{1}{k} \sum_{j=0}^{k-1}\left[M_{j}^{E}+M_{j}^{N}\right]\right)^{2}\right)-R^{2} \tag{26}
\end{equation*}
$$

For notational convenience we will use m to denote the event $k-N_{\text {emp }}=m$, i.e., the expression $\mathbb{E}(. \mid m)$ means $\mathbb{E}\left(. \mid k-N_{e m p}=m\right)$. To simplify the analysis, we will first compute the conditional expectation

$$
\begin{equation*}
f(m)=\mathbb{E}\left(\left.\left(\frac{1}{k} \sum_{j=0}^{k-1}\left[M_{j}^{E}+M_{j}^{N}\right]\right)^{2} \right\rvert\, m\right) \tag{27}
\end{equation*}
$$

$\operatorname{Pr}\left(h_{i}^{*}\left(S_{1}\right)=h_{i}^{*}\left(S_{2}\right)\right)=\operatorname{Pr}\left(h_{k}^{*}\left(S_{1}\right)=h_{k}^{*}\left(S_{2}\right) \mid E_{k}=0\right)=R^{\text {By expansion and linearity of expectation, we obtain }}$

The variance is little involved. From the collision probability, we have the following is unbiased estimator.

$$
\begin{equation*}
\hat{R}=\frac{1}{k} \sum_{j=0}^{k-1} \mathbb{1}\left\{h_{j}^{*}\left(S_{1}\right)=h_{j}^{*}\left(S_{2}\right)\right\} \tag{20}
\end{equation*}
$$

$$
\begin{array}{r}
k^{2} f(m)=\mathbb{E}\left[\sum_{i \neq j} M_{i}^{N} M_{j}^{N} \mid m\right]+\mathbb{E}\left[\sum_{i \neq j} M_{i}^{N} M_{j}^{E} \mid m\right] \\
+\mathbb{E}\left[\sum_{i \neq j} M_{i}^{E} M_{j}^{E} \mid m\right]+\mathbb{E}\left[\sum_{i=1}^{k}\left[\left(M_{j}^{N}\right)^{2}+\left(M_{j}^{E}\right)^{2}\right] \mid m\right]
\end{array}
$$

$M_{j}^{N}=\left(M_{j}^{N}\right)^{2}$ and $M_{j}^{E}=\left(M_{j}^{E}\right)^{2}$ as they are indicator functions and can only take values 0 and 1 . Hence,

$$
\begin{equation*}
\mathbb{E}\left[\sum_{j=0}^{k-1}\left[\left(M_{j}^{N}\right)^{2}+\left(M_{j}^{E}\right)^{2}\right] \mid m\right]=k R \tag{28}
\end{equation*}
$$

The values of the first three terms are given by the following 3 expression using simple binomial enpension and using the fact that we are dealing with indicator random variable which can only take values 0 or 1 .

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i \neq j} M_{i}^{N} M_{j}^{N} \mid m\right]=m(m-1) R \tilde{R} \tag{29}
\end{equation*}
$$

$\mathbb{E}\left[\sum_{i \neq j} M_{i}^{N} M_{j}^{E} \mid m\right]=2 m(k-m)\left[\frac{R}{m}+\frac{(m-1) R \tilde{R}}{m}\right]$
Under any independent re-assignment, the probability that two empty bins chooses the same non-empty bin out of m non-empty bins is lower bounded by $\frac{1}{m}$ which is achieved by optimal densification.

Let p be the probability that two simultaneously empty bins i and j finally picks the same non-empty bin for reassignment. Then we have
$\mathbb{E}\left[\sum_{i \neq j} M_{i}^{E} M_{j}^{E} \mid m\right]=(k-m)(k-m-1)[p R+(1-p) R \tilde{R}]$
because with probability $(1-p)$, it uses estimators from different simultaneous non-empty bin and in that case the $M_{i}^{E} M_{j}^{E}=1$ with probability $R \tilde{R}$. We know that Algorithm 1 which uses 2-universal hashing the value of $p=\frac{1}{m}$. This is because any pairwise assignment is perfectly random with 2-universal hashing.

Substituting for all terms with value of p and rearranging terms gives the required expression.

When $k=D$, then $N_{e m p}=D-A$. Substituting this value in the variance formulas and taking the limit as $D=k \rightarrow$ ∞, we get 0 for all R.

Theorem 7

$$
\begin{equation*}
\operatorname{Var}\left(h^{*}\right) \leq \operatorname{Var}\left(h^{+}\right) \leq \operatorname{Var}(h) \tag{32}
\end{equation*}
$$

Proof: We have $p *=\frac{1}{m} \leq p^{+}=\frac{1.5}{m+1} \leq p=\frac{2}{m+1}$. The value of p^{+}and p comes from analysis in (Shrivastava \& Li, 2014c)

Theorem 8 Among all densification schemes, where the reassignment process for bin i is independent of the reassignment process of any other bin j, Algorithm 1 achieves the best possible variance.

