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Abstract
We propose a new selection rule for the coor-
dinate selection in coordinate descent methods
for huge-scale optimization. The efficiency of
this novel scheme is provably better than the effi-
ciency of uniformly random selection, and can
reach the efficiency of steepest coordinate de-
scent (SCD), enabling an acceleration of a factor
of up to n, the number of coordinates. In many
practical applications, our scheme can be imple-
mented at no extra cost and computational effi-
ciency very close to the faster uniform selection.
Numerical experiments with Lasso and Ridge re-
gression show promising improvements, in line
with our theoretical guarantees.

1. Introduction
Coordinate descent (CD) methods have attracted a substan-
tial interest the optimization community in the last few
years (Nesterov, 2012; Richtárik & Takáč, 2016). Due to
their computational efficiency, scalability, as well as their
ease of implementation, these methods are the state-of-the-
art for a wide selection of machine learning and signal pro-
cessing applications (Fu, 1998; Hsieh et al., 2008; Wright,
2015). This is also theoretically well justified: The com-
plexity estimates for CD methods are in general better than
the estimates for methods that compute the full gradient in
one batch pass (Nesterov, 2012; Nesterov & Stich, 2017).

In many CD methods, the active coordinate is picked
at random, according to a probability distribution. For
smooth functions it is theoretically well understood how
the sampling procedure is related to the efficiency of the
scheme and which distributions give the best complexity
estimates (Nesterov, 2012; Zhao & Zhang, 2015; Allen-
Zhu et al., 2016; Qu & Richtárik, 2016; Nesterov & Stich,
2017). For nonsmooth and composite functions — that
appear in many machine learning applications — the pic-
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ture is less clear. For instance in (Shalev-Shwartz &
Zhang, 2013; Friedman et al., 2007; 2010; Shalev-Shwartz
& Tewari, 2011) uniform sampling (UCD) is used, whereas
other papers propose adaptive sampling strategies that
change over time (Papa et al., 2015; Csiba et al., 2015; Os-
okin et al., 2016; Perekrestenko et al., 2017).

A very simple deterministic strategy is to move along the
direction corresponding to the component of the gradient
with the maximal absolute value (steepest coordinate de-
scent, SCD) (Boyd & Vandenberghe, 2004; Tseng & Yun,
2009). For smooth functions this strategy yields always
better progress than UCD, and the speedup can reach a fac-
tor of the dimension (Nutini et al., 2015). However, SCD
requires the computation of the whole gradient vector in
each iteration which is prohibitive (except for special appli-
cations, cf. Dhillon et al. (2011); Shrivastava & Li (2014)).

In this paper we propose approximate steepest coordinate
descent (ASCD), a novel scheme which combines the best
parts of the aforementioned strategies: (i) ASCD maintains
an approximation of the full gradient in each iteration and
selects the active coordinate among the components of this
vector that have large absolute values — similar to SCD;
and (ii) in many situations the gradient approximation can
be updated cheaply at no extra cost — similar to UCD. We
show that regardless of the errors in the gradient approxi-
mation (even if they are infinite), ASCD performs always
better than UCD.

Similar to the methods proposed in (Tseng & Yun, 2009)
we also present variants of ASCD for composite problems.
We confirm our theoretical findings by numerical experi-
ments for Lasso and Ridge regression on a synthetic dataset
as well as on the RCV1 (binary) dataset.

Structure of the Paper and Contributions. In Sec. 2 we
review the existing theory for SCD and (i) extend it to the
setting of smooth functions. We present (ii) a novel lower
bound, showing that the complexity estimates for SCD and
UCD can be equal in general. We (iii) introduce ASCD
and the save selection rules for both smooth (Sec. 3) and
to composite functions (Sec. 5). We prove that (iv) ASCD
performs always better than UCD (Sec. 3) and (v) it can
reach the performance of SCD (Sec. 6). In Sec. 4 we dis-
cuss important applications where the gradient estimate can
efficiently be maintained. Our theory is supported by nu-
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merical evidence in Sec. 7, which reveals that (vi) ASCD
performs extremely well on real data.

Notation. Define [x]i := 〈x, ei〉 with ei the standard
unit vectors in Rn. We abbreviate ∇if := [∇f ]i. A
convex function f : Rn → R with coordinate-wise Li-
Lipschitz continuous gradients1 for constants Li > 0,
i ∈ [n] := {1, . . . , n}, satisfies by the standard reasoning

f(x+ ηei) ≤ f(x) + η∇if(x) + Li
2 η

2 (1)

for all x ∈ Rn and η ∈ R. A function is coordinate-wise
L-smooth if Li ≤ L for i = 1, . . . , n. For an optimization
problem minx∈Rn f(x) define X? := arg minx∈Rn f(x)
and denote by x? ∈ Rn an arbitrary element x? ∈ X?.

2. Steepest Coordinate Descent
In this section we present SCD and discuss its theoretical
properties. The functions of interest are composite convex
functions F : Rn → R of the form

F (x) := f(x) + Ψ(x) (2)

where f is coordinate-wise L-smooth and Ψ convex and
separable, that is that is Ψ(x) =

∑n
i=1 Ψi([x]i). In the

first part of this section we focus on smooth problems, i.e.
we assume that Ψ ≡ 0.

Coordinate descent methods with constant step size gener-
ate a sequence {xt}t≥0 of iterates that satisfy the relation

xt+1 = xt − 1
L∇itf(x)eit . (3)

In UCD the active coordinate it is chosen uniformly at ran-
dom from the set [n], it ∈u.a.r. [n]. SCD chooses the coor-
dinate according to the Gauss-Southwell (GS) rule:

it = arg max
i∈[n]

∇i |f(xt)| . (4)

2.1. Convergence analysis

With the quadratic upper bound (1) one can easily get a
lower bound on the one step progress

E [f(xt)− f(xt+1) | xt] ≥ Eit
[

1
2L |∇itf(xt)|2

]
. (5)

For UCD and SCD the expression on the right hand side
evaluates to

τUCD(xt) := 1
2nL ‖∇f(xt)‖22

τSCD(xt) := 1
2L ‖∇f(xt)‖2∞

(6)

With Cauchy-Schwarz we find

1
nτSCD(xt) ≤ τUCD(xt) ≤ τSCD(xt) . (7)

1|∇if(x+ ηei)−∇if(x)| ≤ Li |η| , ∀x ∈ Rn, η ∈ R.

Hence, the lower bound on the one step progress of SCD is
always at least as large as the lower bound on the one step
progress of UCD. Moreover, the one step progress could
be even lager by a factor of n. However, it is very difficult
to formally prove that this linear speed-up holds for more
than one iteration, as the expressions in (7) depend on the
(a priori unknown) sequence of iterates {xt}t≥0.

Strongly Convex Objectives. Nutini et al. (2015)
present an elegant solution of this problem for µ2-strongly
convex functions2. They propose to measure the strong
convexity of the objective function in the 1-norm instead
of the 2-norm. This gives rise to the lower bound

τSCD(xt) ≥ µ1

L (f(xt)− f(x?)) , (8)

where µ1 denotes the strong convexity parameter. By this,
they get a uniform upper bound on the convergence that
does not directly depend on local properties of the function,
like for instance τSCD(xt), but just on µ1. It always holds
µ1 ≤ µ2, and for functions where both quantities are equal,
SCD enjoys a linear speedup over UCD.

Smooth Objectives. When the objective function f is
just smooth (but not necessarily strongly convex), then the
analysis mentioned above is not applicable. We here extend
the analysis from (Nutini et al., 2015) to smooth functions.
Theorem 2.1. Let f : Rn → R be convex and coordinate-
wise L-smooth. Then for the sequence {xt}t≥0 generated
by SCD it holds:

f(xt)− f(x?) ≤ 2LR2
1

t
, (9)

for R1 := max
x?∈X?

{
max
x∈Rn

[‖x− x?‖1 | f(x) ≤ f(x0)]

}
.

Proof. In the proof we first derive a lower bound on the one
step progress (Lemma A.1), similar to the analysis in (Nes-
terov, 2012). The lower bound for the one step progress of
SCD can in each iteration differ up to a factor of n from the
analogous bound derived for UCD (similar as in (7)). All
details are given in Section A.1 in the appendix.

Note that the R1 is essentially the diameter of the level set
at f(x0) measured in the 1-norm. In the complexity esti-
mate of UCD, R2

1 in (9) is replaced by nR2
2, where R2 is

the diameter of the level at f(x0) measured in the 2-norm
(cf. Nesterov (2012); Wright (2015)). As in (7) we observe
with Cauchy-Schwarz

1
nR

2
1 ≤ R2

2 ≤ R2
1 , (10)

i.e. SCD can accelerate up to a factor of n over to UCD.

2A function is µp-strongly convex in the p-norm, p ≥ 1, if
f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µp

2
‖y − x‖2p, ∀x,y ∈ Rn.
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2.2. Lower bounds

In the previous section we provided complexity estimates
for the methods SCD and UCD and showed that SCD can
converge up to a factor of the dimension n faster than UCD.
In this section we show that this analysis is tight. In The-
orem 2.2 below we give a function q : Rn → R, for which
the one step progress τSCD(xt) ≈ τUCD(xt) up to a con-
stant factor, for all iterates {xt}t≥0 generated by SCD.

By a simple technique we can also construct functions for
which the speedup is exactly equal to an arbitrary factor
λ ∈ [1, n]. For instance we can consider functions with
a (separable) low dimensional structure. Fix integers s, n
such that ns ≈ λ, define the function f : Rn → R as

f(x) := q(πs(x)) (11)

where πs denotes the projection to Rs (being the first s
out of n coordinates) and q : Rs → R is the function from
Theorem 2.2. Then

τSCD(xt) ≈ λ · τUCD(xt) , (12)

for all iterates {xt}t≥0 generated by SCD.

Theorem 2.2. Consider the function q(x) = 1
2 〈Qx,x〉 for

Q := In − 99
100nJn, where Jn = 1n1Tn , n > 2. Then

there exists x0 ∈ Rn such that for the sequence {xt}t≥0

generated by SCD it holds

‖∇q(xt)‖2∞ ≤
4
n ‖∇q(xt)‖

2
2 . (13)

Proof. In the appendix we discuss a family of functions
defined by matrices Q := (α − 1) 1

nJn + In and define
corresponding parameters 0 < cα < 1 such that for x0 de-
fined as [x0]i = ci−1

α for i = 1, . . . , n, SCD cycles through
the coordinates, that is, the sequence {xt}t≥0 generated by
SCD satisfies

[xt]1+(t−1 mod n) = cnα · [xt−1]1+(t−1 mod n) . (14)

We verify that for this sequence property (13) holds.

2.3. Composite Functions

The generalization of the GS rule (4) to composite prob-
lems (2) with nontrival Ψ is not straight forward. The
‘steepest’ direction is not always meaningful in this setting;
consider for instance a constrained problem where this rule
could yield no progress at all when stuck at the boundary.

Nutini et al. (2015) discuss several generalizations of the
Gauss-Southwell rule for composite functions. The GS-
s rule is defined to choose the coordinate with the most
negative directional derivative (Wu & Lange, 2008). This
rule is identical to (4) but requires the calculation of sub-
gradients of Ψi. However, the length of a step could be

arbitrarily small. In contrast, the GS-r rule was defined to
pick the coordinate direction that yields the longest step
(Tseng & Yun, 2009). The rule that enjoys the best theo-
retical properties (cf. Nutini et al. (2015)) is the GS-q rule,
which is defined as to maximize the progress assuming a
quadratic upper bound on f (Tseng & Yun, 2009). Con-
sider the coordinate-wise models

Vi(x, y, s) := sy + L
2 y

2 + Ψi([x]i + y) , (15)

for i ∈ [n]. The GS-q rule is formally defined as

iGS−q = arg min
i∈[n]

min
y∈R

Vi(x, y,∇if(x)) . (16)

2.4. The Complexity of the GS rule

So far we only studied the iteration complexity of SCD,
but we have disregarded the fact that the computation of
the GS rule (4) can be as expensive as the computation
of the whole gradient. The application of coordinate de-
scent methods is only justified if the complexity to compute
one directional derivative is approximately n times cheaper
than the computation of the full gradient vector (cf. Nes-
terov (2012)). By Theorem 2.2 this reasoning also applies
to SCD. A class of function with this property is given by
functions F : Rn → R

F (x) := f(Ax) +

n∑
i=1

Ψi([x]i) (17)

where A is a d × n matrix, and where f : Rd → R,
and Ψi : Rn → R are convex and simple, that is the
time complexity T for computing their gradients is linear:
T (∇yf(y),∇xΨ(x) = O(d + n). This class of func-
tions includes least squares, logistic regression, Lasso, and
SVMs (when solved in dual form).

Assuming the matrix is dense, the complexity to compute
the full gradient of F is T (∇xF (x)) = O(dn). If the value
w = Ax is already computed, one directional derivative
can be computed in time T (∇iF (x)) = O(d). The recur-
sive update of w after one step needs the addition of one
column of matrix A with some factors and can be done in
time O(d). However, we note that recursively updating the
full gradient vector takes time O(dn) and consequently the
computation of the GS rule cannot be done efficiently.

Nutini et al. (2015) consider sparse matrices, for which the
computation of the Gauss-Southwell rule becomes trace-
able. In this paper, we propose an alternative approach. In-
stead of updating the exact gradient vector, we keep track
of an approximation of the gradient vector and recursively
update this approximation in time O(n log n). With these
updates, the use of coordinate descent is still justified in
case d = Ω(n).
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Algorithm 1 Approximate SCD (ASCD)

Input: f , x0, T , δ-gradient oracle g, methodM
Initialize [g̃0]i = 0, [r0]i =∞ for i ∈ [n].
for t = 0 to T do

For i ∈ [n] define compute u.-and l.-bounds
[ut]i := max{|[g̃t]i − [rt]i| , |[g̃t]i + [rt]i|}
[`t]i := miny∈R{|y| | [g̃t]i−[rt]i ≤ y ≤ [g̃t]i+[rt]i}
av(I) := 1

|I|
∑
i∈I [`t]

2
i compute active set

It := arg minI
∣∣{I ⊆ [n] | [ut]2i < av(I),∀i /∈ I

}∣∣
Pick it ∈u.a.r. arg maxi∈It{[`]i} active coordinate

(xt+1, [g̃t+1]it , [rt+1]it) :=M(xt,∇itf(xt))

γt := [xt+1]it − [xt]it update∇f(xt+1) estimate
Update [g̃t+1]j := [g̃t]j + γtgitj(xt), j 6= it
Update [rt+1]j := [rt]j + γtδitj , j 6= it

end for

3. Algorithm
Is it possible to get the significantly improved convergence
speed from SCD, when one is only willing to pay the com-
putational cost of only the much simpler UCD? In this sec-
tion, we give a formal definition of our proposed approxi-
mate SCD method which we denote ASCD.

The core idea of the algorithm is the following: While per-
forming coordinate updates, ideally we would like to effi-
ciently track the evolution of all elements of the gradient,
not only the one coordinate which is updated in the cur-
rent step. The formal definition of the method is given in
Algorithm 1 for smooth objective functions. In each iter-
ation, only one coordinate is modified according to some
arbitrary update rule M. The coordinate update rule M
provides two things: First the new iterate xt+1, and sec-
ondly also an estimate g̃ of the it-th entry of the gradient at
the new iterate3. Formally,

(xt+1, g̃, r) :=M(xt,∇itf(xt)) (18)

such that the quality of the new gradient estimate g̃ satisfies

|∇itf(xt+1)− g̃| ≤ r . (19)

The non-active coordinates are updated with the help of
gradient oracles with accuracy δ ≥ 0 (see next subsection
for details). The scenario of exact updates of all gradient
entries is obtained for accuracy parameters δ = r = 0 and
in this case ASCD is identical to SCD.

3.1. Safe bounds for gradient evolution

ASCD maintains lower and upper bounds for the abso-
lute values of each component of the gradient ([`]i ≤

3For instance, for updates by exact coordinate optimization
(line-search), we have g̃ = r = 0.

|∇if(x)| ≤ [u]i). These bounds allow to identify the co-
ordinates on which the absolute values of the gradient are
small (and hence cannot be the steepest one). More pre-
cisely, the algorithm maintains a set It of active coordinates
(similar in spirit as in active set methods, see e.g. Kim &
Park (2008); Wen et al. (2012)). A coordinate j is excluded
from It if the estimated progress in this direction (cf. (5))
is lower than the average of the estimated progress along
coordinate directions in It, [ut]

2
j <

1
|It|
∑
i∈It [`t]

2
i . The

active set It can be computed in O(n log n) time by sort-
ing. All other operations take linear O(n) time.

Gradient Oracle. The selection mechanism in ASCD
crucially relies on the following definition of a δ-gradient
oracle. While the update M delivers the estimated active
entry of the new gradient, the additional gradient oracle is
used to update all other coordinates j 6= it of the gradient;
as in the last two lines of Algorithm 1.
Definition 3.1 (δ-gradient oracle). For a function
f : Rn → R and indices i, j ∈ [n], a (i, j)-gradient oracle
with error δij ≥ 0 is a function gij : Rn → R satisfying
∀x ∈ Rn,∀γ ∈ R:

|∇jf(x+ γei)− γgij(x)| ≤ |γ| δij . (20)

We denote by a δ-gradient oracle a family {gij}i,j∈[n] of
δij-gradient oracles.

We discuss the availability of good gradient oracles for
many problem classes in more detail in Section 4. For ex-
ample for least squares problems and general linear models,
a δ-gradient oracle is for instance given by a scalar product
estimator as in (24) below. Note that ASCD can also handle
very bad estimates, as long as the property (20) is satisfied
(possibly even with accuracy δij =∞).

Initialization. In ASCD the initial estimate g̃0 of the gra-
dient is just arbitrarily set to 0, with uncertainty r0 = ∞.
Hence in the worst case it takes Θ(n log n) iterations un-
til each coordinate gets picked at least once (cf. Dawkins
(1991)) and until corresponding gradient estimates are set
to a realistic value. If better estimates of the initial gradient
are known, they can be used for the initialization as long
as a strong error bound as in (19) is known as well. For
instance the initialization can be done with ∇f(x0) if one
is willing to compute this vector in one batch pass.

Convergence Rate Guarantee. We present our first
main result showing that the performance of ASCD is prov-
ably between UCD and SCD. First observe that if in Algo-
rithm 1 the gradient oracle is always exact, i.e. δij ≡ 0,
and if g̃0 is initialized with ∇f(x0), then in each iteration
|∇itf(xt)| = ‖∇f(xt)‖∞ and ASCD identical to SCD.
Lemma 3.1. Let imax := arg maxi∈[n] |∇if(xt)|. Then
imax ∈ It, for It as in Algorithm 1.
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Proof. This is immediate from the definitions of It and the
upper and lower bounds. Suppose imax /∈ It, then there ex-
ists j 6= imax such that [`t]j > [ut]imax , and consequently
|∇jf(xt)| > |∇imax

f(xt)|.

Theorem 3.2. Let f : Rn → R be convex and coordinate-
wise L-smooth, let τUCD, τSCD, τASCD denote the expected
one step progress (6) of UCD, SCD and ASCD, respec-
tively, and suppose all methods use the same step-size
ruleM. Then

τUCD(x) ≤ τASCD(x) ≤ τSCD(x) ∀x ∈ Rn . (21)

Proof. By (5) we get τASCD(x) = 1
2L|I|

∑
i∈I |∇if(x)|2,

where I denotes the corresponding index set of ASCD
when at iterate x. Note that for j /∈ I it must hold that
|∇jf(x)|2 ≤ [u]2j <

1
|I|
∑
i∈I [`]2i ≤ 1

|I|
∑
i∈I |∇if(x)|2

by definition of I.

Observe that the above theorem holds for all gradient or-
acles and coordinate update variants, as long as they are
used with corresponding quality parameters r (as in (19))
and δij (as in (20)) as part of the algorithm.

Heuristic variants. Below also propose three heuristic
variants of ASCD. For all these variants the active set It
can be computed O(n), but the statement of Theorem 3.2
does not apply. These variants only differ from ASCD in
the choice of the active set in Algorithm 1:

u-ASCD: It := arg maxi∈[n][ut]i

`-ASCD: It := arg maxi∈[n][`t]i

a-ASCD: It :=
{
i ∈ [n] | [ut]i ≥ maxi∈[n][`t]i

}
4. Approximate Gradient Update
In this section we argue that for a large class of objective
functions of interest in machine learning, the change in the
gradient along every coordinate direction can be estimated
efficiently.

Lemma 4.1. Consider F : Rn → R as in (17) with
twice-differentiable f : Rd → R. Then for two iterates
xt,xt+1 ∈ Rn of a coordinate descent algorithm, i.e.
xt+1 = xt + γteit , there exists a x̃ ∈ Rn on the line
segment between xt and xt+1, x̃ ∈ [xt,xt+1] with

∇iF (xt+1)−∇iF (xt) = γt〈ai,∇2f(Ax̃)ait〉 ∀i 6= it
(22)

where ai denotes the i-th column of the matrix A.

Proof. For coordinates i 6= it the gradient (or subgradient
set) of Ψi([xt]i) does not change. Hence it suffices to cal-
culate the change∇f(xt+1)−∇f(xt). This is detailed in
the appendix.

Least-Squares with Arbitrary Regularizers. The least
squares problem is defined as problem (17) with f(Ax) =
1
2 ‖Ax− b‖

2
2 for a b ∈ Rd. This function is twice differ-

entiable with∇2f(Ax) = In. Hence (22) reduces to

∇iF (xt+1)−∇iF (xt) = γt〈ai,ait〉 ∀i 6= it . (23)

This formulation gives rise to various gradient oracles (20)
for the least square problems. For for i 6= it we easily
verify that the condition (20) is satisfied:

1. g1
ij := 〈ai,ait〉; δij = 0,

2. g2
ij := max {−‖ai‖ ‖aj‖ ,min {S(i, j), ‖ai‖ ‖aj‖}};

δij = ε ‖ai‖ ‖aj‖, where S : [n]×[n] denotes a function
with the property
|S(i, j)− 〈ai,aj〉| ≤ ε ‖ai‖ ‖aj‖ , ∀i, j ∈ [n] (24)

3. g3
ij := 0; δij = ‖ai‖ ‖aj‖,

4. g4
ij ∈u.a.r. [−‖ai‖ ‖aj‖ , ‖ai‖ ‖aj‖]; δij = ‖ai‖ ‖aj‖.

Oracle g1 can be used in the rare cases where the dot prod-
uct matrix is accessible to the optimization algorithm with-
out any extra cost. In this case the updates will all be exact.
If this matrix is not available, then the computation of each
scalar product takes time O(d). Hence, they cannot be re-
computed on the fly, as argued in Section 2.4. In contrast,
the oracles g3 and g4 are extremely cheap to compute, but
the error bounds are worse. In the numerical experiments
in Section 7 we demonstrate that these oracles perform sur-
prisingly well.

The oracle g2 can for instance be realized by low-
dimensional embeddings, such as given by the Johnson-
Lindenstrauss lemma (cf. Achlioptas (2003); Matoušek
(2008)). By embedding each vector in a lower-dimensional
space of dimensionO

(
ε−2 log n

)
and computing the scalar

products of the embedding in time O(log n), relation (24)
is satisfied.

Updating the gradient of the active coordinate. So far
we only discussed the update of the passive coordinates.
For the active coordinate the best strategy depends on the
update ruleM from (18). If exact line search is used, then
0 ∈ ∇itf(xt+1). For other update rules we can update the
gradient ∇itf(xt+1) with the same gradient oracles as for
the other coordinates, however we need also to take into
account the change of the gradient of Ψi([xt]i). If Ψi is
simple, like for instance in ridge or lasso, the subgradients
at the new point can be computed efficiently.

Bounded variation. In many applications the Hessian
∇2f(Ax̃) is not so simple as in the case of square loss.
If we assume that the Hessian of f is bounded, i.e.
∇2f(Ax) � M · In for a constant M ≥ 0, ∀x ∈ Rn,
then it is easy to see that the following holds :

−M‖ai‖‖aj‖ ≤ 〈ai,∇2f(Ax̃)ait〉 ≤M‖ai‖‖aj‖ .
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Using this relation, we can define gradient oracles for more
general functions, by taking the additional approximation
factor M into account. The quality can be improved, if we
have access to local bounds on ∇2f(Ax).

Heuristic variants. By design, ASCD is robust to high
errors in the gradient estimations – the steepest descent di-
rection is always contained in the active set. However, in-
stead of using only the very crude oracle g4 to approximate
all scalar products, it might be advantageous to compute
some scalar products with higher precision. We propose to
use a caching technique to compute the scalar products with
high precision for all vectors in the active set (and storing a
matrix of size O(It × n)). This presumably works well if
the active set does not change much over time.

5. Extension to Composite Functions
The key ingredients of ASCD are the coordinate-wise up-
per and lower bounds on the gradient and the definition of
the active set It which ensures that the steepest descent di-
rection is always kept and that only provably bad directions
are removed from the active set. These ideas can also be
generalized to the setting of composite functions (2). We
already discussed some popular GS-∗ update rules in the
introduction in Section 2.3.

Implementing ASCD for the GS-s rule is straight forward,
and we comment on the GS-r in the appendix in Sec. D.2.
Here we exemplary detail the modification for the GS-q
rule (16), which turns out to be the most evolved (the same
reasoning also applies to the GSL-q rule from (Nutini et al.,
2015)). In Algo. 2 we show the construction — based just
on approximations of the gradient of the smooth part f —
of the active set I. For this we compute upper and lower
bounds v,w on miny∈R V (x, y,∇if(x)), such that

[v]i ≤ min
y∈R

V (x, y,∇if(x) ≤ [w]i ∀i ∈ [n] . (25)

The selection of the active coordinate is then based on these
bounds. Similar as in Lemma 3.1 and Theorem 3.2 this set
has the property iGS−q ∈ I, and directions are only dis-
carded in such a way that the efficiency of ASCD-q cannot
drop below the efficiency of UCD. The proof can be found
in the appendix in Section D.1.

6. Analysis of Competitive Ratio
In Section 3 we derived in Thm. 3.2 that the one step
progress of ASCD is between the bounds on the onestep
progress of UCD and SCD. However, we know that the ef-
ficiency of the latter two methods can differ much, up to
a factor of n. In this section we will argue that in certain
cases where SCD performs much better than UCD, ASCD
will accelerate as well. To measure this effect, we could for

Algorithm 2 Adaptation of ASCD for GS-q rule

Input: Gradient estimate g̃, error bounds r.
For i ∈ [n] define: compute u.-and l.-bounds
[u]i := [g̃]i + [r]i, [`]i := [g̃]i − [r]i

[u?]i := arg miny∈R V (x, y, [u]i) minimize the model
[`?]i := arg miny∈R V (x, y, [`]i)

compute u.-and l. bounds on miny∈R V (x, y,∇if(x))
[ωu]i := V (x, [u?]i, [u]i)+max{0, [u?]i([`]i − [u]i)}
[ω`]i := V (x, [`?]i, [`]i) + max{0, [`?]i([u]i − [`]i)}
[v]i := min {V (x, [u?]i, [u]i), V (x, [`?]i, [`]i)}
[w]i := min {[ωu]i, [ω`]i,Ψi([x]i)}
av(I) := 1

|I|
∑
i∈I [w]i compute active set

It := arg minI |{I ⊆ [n] | [v]i > av(I),∀i /∈ I}|

instance consider the ratio:

%t :=

∣∣{i ∈ It | |∇if(xt)| ≥ 1
2 ‖∇f(xt)‖∞

}∣∣
|It|

, (26)

For general functions this expression is a bit cumbersome
to study, therefore we restrict our discussion to the class
of objective functions (11) as introduced in Sec. 2.2. Of
course not all real-world objective functions will fall into
this class, however this problem class is still very interest-
ing in our study, as we will see in the following, because it
will highlight the ability (or disability) of the algorithms to
eventually identify the right set of ‘active’ coordinates.

For the functions with the structure (11) (and q as in
Thm. 2.2), the active set falls into the first s coordinates.
Hence it is reasonable to approximate %t by the competi-
tive ratio

ρt :=
|It ∩ [s]|
|It|

. (27)

It is also reasonable to assume that in the limit, (t → ∞),
a constant fraction of the [s] will be contained in the active
set It (it might not hold [s] ⊆ It ∀t, as for instance with
exact line search the directional derivative vanishes just af-
ter the update). In the following theorem we calculate ρt
for (t→∞), the proof is given in the appendix.
Theorem 6.1. Let f : Rn → R be of the form (11).
For indices i /∈ [s] define Ki := {t | i /∈ It, i ∈ It−1}.
For j ∈ Ki define T ij := min {t− j | i ∈ Ij+t}, i.e.
the number of iterations outside the active set, T i∞ :=
limt→∞ Ej∈Ki

[
T ij | j > k

]
, and the average T∞ :=

Ei/∈[s]

[
T i∞
]
. If there exists a constant c > 0 such that

limt→∞ |[s] ∩ It| = cs, then (with the notation ρ∞ :=
limt→∞ E [ρt]),

ρ∞ ≥
2cs

cs+ n− s− T∞ +
√
θ
, (28)

where θ ≡ θ := n2 + (c− 1)2s2 + 2n((c− 1)s− T∞) +
2(1 + c)sT∞ + T 2

∞. Especially, ρ∞ ≥ 1− n−s
T∞

.
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Figure 1. Competitive ratio ρt (blue) in comparison with ρ∞ (28)
(red) and the lower bound ρ∞ ≥ 1− n−s

T∞
(black). Simulation for

parameters n = 100, s = 10, c = 1 and T∞ ∈ {50, 100, 400}.

In Figure 1 we compare the lower bound (28) of the com-
petitive ratio in the limit (t → ∞) with actual measure-
ments of ρt for simulated example with parameters n =
100, s = 10, c = 1 and various T∞ ∈ {50, 100, 400}.
We initialized the active set I0 = [s], but we see that the
equilibrium is reached quickly.

6.1. Estimates of the competitive ratio

Based on this Thm. 6.1, we can now estimate the compet-
itive ratio in various scenarios. On the class (11) it holds
c ≈ 1 as we argued before. Hence the competitive ra-
tio (28) just depends on T∞. This quantity measures how
many iterations a coordinate j /∈ [s] is in average outside
of the active set It. From the lower bound we see that the
competitive ratio ρt approaches a constant for (t → ∞) if
T∞ = Θ (n), for instance ρ∞ ≥ 0.8 if T∞ ≥ 5n.

As an approximation to T∞, we estimate the quantities T jt0
defined in Thm. 6.1. T jt0 denotes the number of iterations
it takes until coordinate j enters the active set again, as-
suming it left the active set at iteration t0 − 1. We estimate
T jt0 ≥ T̂ , where T̂ denotes maximum number of iterations
such that

t0+T̂∑
t=t0

γtδiij ≤
1

s

s∑
k=1

∣∣∣∇kf (xt0+T̂

)∣∣∣ ∀j /∈ [s]. (29)

For smooth functions, the steps γt = Θ (|∇itf(xt)|) and if
we additionally assume that the errors of the gradient oracle
are uniformly bounded δij ≤ δ, the sum in (29) simplifies

to δ
∑t0+T̂
t=t0

|∇itf(xt)|.

For smooth, but not strongly convex function q, the norms
of the gradient changes very slowly, with a rate independent
of s or n, and we get T̂ = Θ

(
1
δ

)
. Hence, the competitive

ratio is constant for δ = Θ
(

1
n

)
.

For strongly convex function q, the norm of the gradient
decreases linearly, say ‖∇f(xt)‖22 ∝ eκt for κ ≈ 1

s . I.e.
it decreases by half after each Θ (s) iterations. Therefore
to guarantee T̂ = Θ (n) it needs to hold δ = e−Θ(ns ).
This result seems to indicate that the use of ACDM is only

justified if s is large, for instance s ≥ 1
4n. Otherwise the

convergence on q is too fast, and the gradient approxima-
tions are too weak. However, notice that we assumed δ to
be an uniform bound on all errors. If the errors have large
discrepancy the estimates become much better (this holds
for instance on datasets where the norm data vectors differs
much, or when caching techniques as mentioned in Sec. 4
are employed).

7. Empirical Observations
In this section we evaluate the empirical performance of
ASCD on synthetic and real datasets. We consider the fol-
lowing regularized general linear models:

min
x∈Rn

1
2‖Ax− b‖

2
2 + λ

2 ‖x‖
2
2 , (30)

min
x∈Rn

1
2‖Ax− b‖

2
2 + λ‖x‖1 , (31)

that is, l2-regularized least squares (30) as well as l1-
regularized linear regression (Lasso) in (31), respectively.

Datasets. The datasets A ∈ Rd×n in problems (30)
and (31) were chosen as follows for our experiments. For
the synthetic data, we follow the same generation proce-
dure as described in (Nutini et al., 2015), which gener-
ates very sparse data matrices. For completeness, full de-
tails of the data generation process are also provided in
the appendix in Sec. E. For the synthetic data we choose
n = 5000 for problem (31) and n = 1000 for problem (30).
Dimension d = 1000 is fixed for both cases.
For real datasets, we perform the experimental evaluation
on RCV1 (binary,training), which consists of 20, 242 sam-
ples, each of dimension 47, 236 (Lewis et al., 2004). We
use the un-normalized version with all non-zeros values set
to 1 (bag-of-words features).

Gradient oracles and implementation details. On the
RCV1 dataset, we approximate the scalar products with
the oracle g4 that was introduced in Sec. 4. This oracle
is extremely cheap to compute, as the norms ‖ai‖ of the
columns of A only need to be computed once.
On the synthetic data, we simulate the oracle g2 for various
precisions values ε. For this, we sample a value uniformly
at random from the allowed error interval (24). Figs. 2d
and 3d show the convergence for different accuracies.
For the l1-regularized problems, we used ASCD with the
GS-s rule (the experiments in (Nutini et al., 2015) revealed
almost identical performance of the different GS-∗ rules).
We compare the performance of UCD, SCD and ASCD.
We also implement the heuristic version a-ASCD that was
introduced in Sec. 3. All algorithm variants use the same
step size rule (i.e. the methodM in Algorithm 1). We use
exact line search for the experiment in Fig. 3c, for all oth-
ers we used a fixed step size rule (the convergence is slower
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(a) Convergence for l2 (b) Convergence for l1 (c) True vs No Initialization for l2 (d) Error Variation (ASCD)

Figure 2. Experimental results on synthetically generated datasets

(a) Convergence for l2 (b) Convergence for l1 (c) Line search for l1 (d) Error Variation (ASCD)

Figure 3. Experimental results on the RCV1-binary dataset

for all algorithms, but the different effects of the selection
of the active coordinate is more distinctly visible).
ASCD is either initialized with the true gradient (Figs. 2a,
2b, 2d, 3c, 3d) or arbitrarely (with error bounds δ =∞) in
Figs. 3a and 3b (Fig. 2c compares both initializations).
Fig. 2 shows results on the synthetic data, Fig. 3 on the
RCV1 dataset. All plots show also the size of the active
set It. The plots 3c and 3d are generated on a subspace
of RCV1, with 10000 and 5000 randomly chosen columns,
respectively.

Here are the highlights of our experimental study:

1. No initialization needed. We observe (see e.g.
Figs. 2c,3a, 3b) that initialization with the true gradient
values is not needed at beginning of the optimization
process (the cost of the initialization being as expensive
as one epoch of ASCD). Instead, the algorithm performs
strong in terms of learning the active set on its own, and
the set converges very fast after just one epoch.

2. High errors toleration. The gradient oracle g4 gives
very crude approximations, however the convergence of
ASCD is excellent on RCV1 (Fig. 3). Here the size of
the true active set is very small (in the order of 0.1% on
RCV1) and ASCD is able to identify this set. Fig. 3d
shows that almost nothing can be gained from more pre-
cise (and more expensive) oracles.

3. Heuristic a-ASCD performs well. The convergence
behavior of ASCD follows theory. For the heuristic ver-
sion a-ASCD (which computes the active set slightly

faster, but Thm. 3.2 does not hold) performs identical
to ASCD in practice (cf. Figs. 2, 3), and sometimes
slightly better. This is explained by the active set used
in ASCD typically being larger than the active set of a-
ASCD (Figs. 2a,2b, 3a, 3b).

8. Concluding Remarks
We proposed ASCD, a novel selection mechanism for the
active coordinate in CD methods. Our scheme enjoys
three favorable properties: (i) its performance can reach
the performance steepest CD — both in theory and prac-
tice, (ii) the performance is never worse than uniform CD,
(iii) in many important applications, the scheme it can be
implemented at no extra cost per iteration.

ASCD calculates the active set in a safe manner, and picks
the active coordinate uniformly at random from this smaller
set. It seems possible that an adaptive sampling strategy
on the active set could boost the performance even further.
Here we only study CD methods where a single coordinate
gets updated in each iteration. ASCD can immediately also
be generalized to block-coordinate descent methods. How-
ever, the exact implementation in a distributed setting can
be challenging.

Finally, it is an interesting direction to extend ASCD also
to the stochastic gradient descent setting (not only heuristi-
cally, but with the same strong guarantees as derived in this
paper).



Approximate Steepest Coordinate Descent (ASCD)

References
Achlioptas, Dimitris. Database-friendly random projections:

Johnson-lindenstrauss with binary coins. Journal of Computer
and System Sciences, 66(4):671 – 687, 2003.

Allen-Zhu, Z, Qu, Z, Richtarik, P, and Yuan, Y. Even faster accel-
erated coordinate descent using non-uniform sampling. 2016.

Boyd, Stephen P and Vandenberghe, Lieven. Convex optimiza-
tion. Cambridge University Press, 2004.

Csiba, Dominik, Qu, Zheng, and Richtárik, Peter. Stochastic Dual
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Appendix

A. On Steepest Coordinate Descent
A.1. Convergence on Smooth Functions

Lemma A.1 (Lower bound on the one step progress on smooth functions). Let f : Rn → R be convex and coordinate-wise
L-smooth. For a sequence of iterates {xt}t≥0 define the progress measure

∆(xt) :=
1

E [f(xt+1)− f(x?) | xt]
− 1

f(xt)− f(x?)
. (32)

For sequences {xt}t≥0 generated by SCD it holds:

∆SCD(xt) ≥
1

2L ‖xt − x?‖21
, t ≥ 0 , (33)

and for a sequences generated by UCD:

∆UCD(xt) ≥
1

2nL ‖xt − x?‖22
, t ≥ 0 . (34)

It is important to note that the lower bounds presented in Equations (33) and (34) are quite tight and equality is almost
achievable under special conditions. When comparing the per-step progress of these two methods, we find — similarly as
in (7) — the relation

1

n
∆SCD(xt) ≤ ∆UCD(xt) ≤ ∆SCD(xt) , (35)

that is, SCD can boost the performance over the random coordinate descent up to the factor of n. This also holds for a
sequence of consecutive updates, as show in Theorem 2.1.

Proof of Lemma A.1. Define f? := f(x?). From the smoothness assumption (1), we get

f(xt+1)
(5)

≤ f(xt)−
1

2L
‖∇f(xt)‖2∞

⇒
(
f(xt+1)− f?

)
≤
(
f(xt)− f?

)
− 1

2L
‖∇f(xt)‖2∞ (36)

Now from the property of a convex function and Hölder’s inequality:

f(xt)− f? ≤ 〈∇f(xt),xt − x?〉 ≤ ‖∇f(xt)‖∞‖xt − x?‖1 (37)

Hence, (
f(xt)− f?

)2 ≤ ‖∇f(xt)‖2∞‖xt − x?‖21

⇒ ‖∇f(xt)‖2∞ ≥
(
f(xt)− f?

)2
‖xt − x?‖21

(38)

From Equations (36) and (38),

1(
f(xt+1)− f?

) − 1(
f(xt)− f?

) ≥ 1

2L‖xt − x?‖21
(39)

Which concludes the proof.
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We like to remark, that the one step progress for UCD can be written as (Nesterov, 2012; Wright, 2015):

1(
E[f(xt+1)|xt]− f?

) − 1(
f(xt)− f?

) ≥ 1

2Ln‖xt − x?‖22
(40)

Proof of Theorem 2.1. From Lemma A.1,

1(
f(xt+1)− f?

) − 1(
f(xt)− f?

) ≥ 1

2L‖xt − x?‖21

Now summing up the above equation for t = 0 till t− 1, we get:

1(
f(xt)− f?

) − 1(
f(x0)− f?

) ≥ 1

2L

t−1∑
i=0

1

‖xt − x?‖21

⇒ 1(
f(xt)− f?

) ≥ 1

2L

t−1∑
i=0

1

‖x0 − x?‖21

⇒ 1(
f(xt)− f?

) ≥ t

2LR2
1

⇒ f(xt)− f? ≤
2LR2

1

t

Which concludes the proof.

A.2. Lower bounds

In this section we provide the proof of Theorem 2.2. Our result is slightly more general, we will proof the following (and
Theorem 2.2 follows by the choice α = 0.01 < 1

3 ).

Theorem A.2. Consider the function q(x) = 1
2 〈Qx,x〉 for Q := (α − 1) 1

nJn + In, where Jn = 1n1
T
n and 0 < α < 1

2 ,
n > 2. Then there exists x0 ∈ Rn such that for the sequence {xt}t≥0 generated by SCD it holds

‖∇q(xt)‖2∞ ≤
3 + 3α

n
‖∇q(xt)‖22 . (41)

In the proof below we will construct a special x0 ∈ Rn that has the claimed property. However, we would like to remark
that this is not very crucial. We observe that for functions as in Theorem A.2 almost any initial iterate (x not aligned with
the coordinate axes) the sequence {xt}t≥0 of iterates generated by SCD suffers from the same issue, i.e. relation (41)
holds for iteration counter t sufficiently large. We do not prove this formally, but demonstrate this behavior in Figure 4.
We see that the steady state is almost reached after 2n iterations.

Proof of Theorem A.2. Define the parameter cα by the equation(
1 +

α− 1

n

)
cn−1
α =

(
1− α
n

)
Sn−1(cα) (42)

cn−1
α =

(
1− α
n

)
Sn(cα) (43)

where Sn(cα) =
∑n−1
i=0 c

n
α; and define x0 as [x0]i = ci−1

α for i = 1, . . . , n. In Lemma A.3 below we show that
cα ≥ 1− 3

nα.

We now show that SCD cycles through the coordinates, i.e. the sequence {xt}t≥0 generated by SCD satisfies

[xt]1+(t−1 mod n) = cnα · [xt−1]1+(t−1 mod n) . (44)
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Figure 4. SCD on the function from Theorem A.2 in dimension n = 20 with x0 = 1n (i.e. not the worst starting point constructed in
the proof of Theorem A.2). On the right the (normalized and sorted) components of∇f(xt).

Observe ∇f(x0) = Qx0. Hence the GS rule picks i1 = 1 in the first iteration. The iterate is updated as follows:

[x1]1
(3)
= [x0]1 −

[Qx0]1
Q11

(45)

= 1−
(α− 1) 1

nSn(cα) + 1

(α− 1) 1
n + 1

(46)

=
(α− 1) 1

n (1− Sn(cα))

(α− 1) 1
n + 1

(47)

=
(α− 1) 1

n (cnα − cαSn(cα))

(α− 1) 1
n + 1

(48)

(42)
=

(α− 1) 1
nc
n
α + cnα

(α− 1) 1
n + 1

= cnα (49)

The relation (44) can now easily be checked by the same reasoning and induction.

It remains to verify that for this sequence property (41) holds. This is done in Lemma A.4. Note that∇f(x0) = Qx0 = g,
where g is defined as in the lemma, and that all gradients ∇f(xt) are up to scaling and reordering of the coordinates
equivalent to the vector g.

Lemma A.3. Let 0 < α < 1
2 and 0 < cα < 1 defined by equation (42), where Sn(cα) =

∑n−1
i=0 c

n
α. Then cα ≥ 1 − 4

nα
for α ∈ [0, 1

2 ].

Proof. Using the summation formula for geometric series, Sn(cα) =
1−cnα
1−cα we derive

α
(42)
= 1− ncn−1

α

Sn(cα)
= 1− n(1− cα)cn−1

α

1− cnα︸ ︷︷ ︸
:=Ψ(cα)

. (50)

With Taylor expansion we observe that

Ψ

(
1− 3α

n

)
≥ α , Ψ

(
1− 2α

n

)
≤ α (51)

where the first inequality only hold for n > 2 and α ≤∈ [0, 1
2 ]. Hence any solution to (50) must satisfy cα ≥ 1− 3

nα.

Lemma A.4. Let cα as in (42). Let g ∈ Rn be defined as

[g]i =
(α− 1) 1

nSn(cα) + ci−1
α

1 + α−1
n

(52)
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Then

max
i∈[n]

‖g‖2∞
1
n ‖g‖

2
2

≤ 3 + 3α . (53)

Proof. Observe

[g]i =
(α− 1) 1

n

(
Sn−1(cα) + cn−1

α

)
+ cn−1

α + (ci−1
α − cn−1

α )

1 + α−1
n

(54)

(42)
=

ci−1
α − cn−1

α

1 + α−1
n

(55)

Thus [g]1 > [g]2 > · · · > [g]n and the maximum is attained at

ω(g) :=
[g]21

1
n

∑n
i=1[g]2i

=
c2α
(
c2α − 1

) (
1− cn−1

α

)2
n

2cn+1
α + 2cn+2

α − 2c2n+1
α + (n− 1)c2n+2

α − c2α − nc2nα
(56)

For cα ≥ 1− 3
nα and α ≤ 1

2 , this latter expression can be estimated as

ω(g) ≤ 3 + 3α (57)

especially ω(g) ≤ 4 for α ≤ 1
3 .

B. Approximate Gradient Update
In this section we will prove Lemma 4.1. Consider first the following simpler case, where we assume f is given as in least
squares, i.e. f(x) := 1

2 ‖Ax− b‖
2.

In the tth iteration, we choose coordinate it to optimize upon and the update from xt+1 to xt can be written as xt+1 =
xt + γteit . Now for any coordinate i other than it, it is fairly easy to compute the change in the gradient of the other
coordinates. We already observed that [xt]j does not change, hence the sub-gradient set of Ψj([xt]j) and Ψj([xt+1]j) are
equal. For the change in ∇f , consider the analysis below:

∇iF (xt+1)−∇iF (xt) = a>i (Axt+1 − b)− a>i (Axt − b) (58)

= a>i
(
A(xt+1 − xt)

)
(59)

= a>i
(
A(xt + γteit − xt)

)
(60)

= a>i
(
γAeit

)
= γta

>
i ait (61)

Equation (60) comes from the update of xt to xt+1.

By the same reasoning, we can now derive the general proof.

Proof of Lemma 4.1. Consider a composite function F as given in Lemma 4.1. By the same reasoning as above, the two
sub-gradient sets of Ψj([xt]j) and Ψj([xt+1]j) are identical, for every passive coordinate j 6= it. The gradient of F can
be written as:

∇iF (αt) = a>i ∇f(Aαt)

For any arbitrary passive coordinate j 6= it the change of the gradient can be computed as follows:

∇jF (xt+1)−∇jF (xt) = a>j ∇f(Axt+1)− a>j ∇f(Axt)

= a>j (∇f(Axt+1)−∇f(Axt)) (62)

= a>j

(
∇f
(
A(xt + γteit)

)
−∇f

(
Axt

))
∗
=
〈
A>∇2f(Ax̃)aj ,xt+1 − xt

〉
=
〈
γt∇2f(Ax̃)aj , A(xt+1 − xt)

〉
= γta

>
j ∇2f(Ax̃)ait (63)

Here x̃ is a point on the line segment between [xt]it and [xt+1]it which can be found by the Mean Value Theorem.
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C. Algorithm and Stability
Proof of Theorem 6.1. As we are interested to study the expected competitive ration E [ρt] for t → ∞, we can assume
mixing and consider only the steady state.

Define αt ∈ [0, 1] s.t. αt(n − s) = |{i ∈ It | i > s}|. I.e. αt(n − s) denotes the number of indices in |It| which do not
belong to the set [s].

Denote α∞ := limt→∞ αt. By equilibrium considerations, the probability that an index i /∈ [s] gets picked (and removed
from the active set), i.e. 1− ρ∞, must be equal to the probability that an index j /∈ [s] enters the active set. Hence

(1− α∞)(n− s)
T∞

= 1− ρ∞ =
α∞(n− s)

α∞(n− s) + cs
. (64)

We deduce the quadratic relation α∞T∞ = (1− α∞) (α∞(n− s) + cs) with solution

α∞ =
n− (1 + c)s− T∞ +

√
n2 + (c− 1)2s2 + 2n((c− 1)s− T∞) + 2(1 + c)sT∞ + T 2

∞
2(n− s)

. (65)

Denote θ := n2 + (c− 1)2s2 + 2n((c− 1)s− T∞) + 2(1 + c)sT + T 2
∞. Hence,

ρ∞
(64)
=

cs

α∞(n− s) + cs

(65)
=

2cs

cs+ n− s− T∞ +
√
θ
. (66)

We now verify the provided lower bound on ρ∞:

ρ∞
(64)
= 1− (1− α∞)(n− s)

T∞
≥ 1− n− s

T∞
. (67)

This bound is sharp for large values of T∞, (T∞ > 2n, say), but trivial for T∞ ≤ n− s.

D. GS rule for Composite Functions
D.1. GS-q rule

In this section we show how ASCD can be implemented for the GS-q rule. Define the coordinate-wise model

Vi(x, y, s) := sy +
L

2
y2 + Ψi(xi + y) (68)

The GS-q rule is defined as (cf. Nutini et al. (2015))

i = arg min
i∈[n]

min
y∈R

V (x, y,∇if(x)) (69)

First we show that the vectors v and w defined in Algorithm 2 gives valid upper and lower bounds on the value of
miny∈R V (x, y,∇if(x)). We start with the lower bound v:

Suppose we have upper and lower bounds, ` ≤ ∇if(x) ≤ u on one component of the gradient. Define α ∈ [0, 1] such that
∇if(x) = (1− α)`+ αu. Note that

(1− α)Vi(x, y, `) + αVi(x, y, u) = Vi(x, y,∇if(x)) (70)

Hence,

min

{
min
y
Vi(x, y, u),min

y
Vi(x, y, `)

}
≤ min

y
Vi(x, y,∇if(x)) . (71)

The derivation of the upper bounds w is a bit more cumbersome. Define `? := arg miny∈R Vi(x, y, `), u? :=
arg miny∈R Vi(x, y, u) and observe:

Vi(x, u
?,∇if(x)) = Vi(x, u

?, u)− (u−∇if(x))u? ≤ Vi(x, u?, u)− uu? + max{uu?, `u?} =: ωu (72)
Vi(x, `

?,∇if(x)) = Vi(x, `
?, `)− (`−∇if(x))`? ≤ Vi(x, `?, `)− ``? + max{u`?, ``?} =: ω` (73)

Vi(x, 0,∇if(x)) = Ψi([x]i) (74)
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Hence miny Vi(x, y,∇if(x)) ≤ min{ω`, ωu,Ψi([x]i)}.

Note

ωu = Vi(x, u
?, u) + max{0, (`− u)u?} (75)

ω` = Vi(x, `
?, `) + max{0, (u− `)`?} (76)

which coincides with the formulas in Algorithm 2.

It remains to show that the computation of the active set is save, i.e. that the progress achieved by ASCD as defined in
Algorithm 2 is always better than the progress achieved by UCD. Let I be defined as in Algorithm 2. Then

1

|I|
∑
i∈I

min
y∈R

Vi(x, y,∇if(x)) ≤ 1

n

∑
i∈[n]

min
y∈R

Vi(x, y,∇if(x)) (77)

=
1

n
min
y∈Rn

∑
i∈[n]

Vi(x, y,∇if(x)) . (78)

Using this observation, and the same lines of reasoning as given in (Lee & Seung, 1999, Section H.3), it follows immedi-
ately that the one step progress of ASCD is at least as good as the for UCD.

D.2. GS-r rule

With the notation [y?]i := arg miny∈R Vi(x, y,∇if(x)), the GS-r rule is defined as (cf. Lee & Seung (1999))

i = arg max
i∈[n]

|[y?]i| . (79)

In order to implement ASCD for GS-r, we need therefore to maintain lower and upper bounds on the values |[y?]i|.

Suppose we have upper and lower bounds, ` ≤ ∇if(x) ≤ u on one component of the gradient. Define `? :=
arg miny∈R Vi(x, y, `), u? := arg miny∈R Vi(x, y, u), then y? is contained in the line segment between `? and u?. Hence
as in Algorithm 1, the lower and upper bounds can be defined as

[ut]i := max
y∈R
{`? ≤ y ≤ u?} (80)

[`t]i := min
y∈R
{`? ≤ y ≤ u?} (81)

However, note that in (Nutini et al., 2015) it is established that GS-r rule can be worse than UCD in general. Hence we
cannot expect that ASCD for the GS-r rule is better than UCD in general. However, the by the choice of the active set, the
index chosen by the GS-r rule is always contained in the active set, and ASCD approaches GS-r for small errors.

E. Experimental Details
We generate a matrix A ∈ Rm×n from the standard normal N (0, 1) distribution. m is kept fixed at 1000 but n is chosen
1000 for the l2 regularized least squares regression and 5000 for l1 regularized counterpart. 1 is added to each entry (to
induce a dependency between columns), multiplied each column by a sample from N (0, 1) multiplied by ten (to induce
different Lipschitz constants across the coordinates), and only kept each entry of A non-zero with probability 10 log(n)

n .
This is exactly the same procedure which has been discussed in (Nutini et al., 2015).


