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Abstract
We solve tensor balancing, rescaling an N th or-
der nonnegative tensor by multiplying N ten-
sors of order N −1 so that every fiber sums to
one. This generalizes a fundamental process of
matrix balancing used to compare matrices in a
wide range of applications from biology to eco-
nomics. We present an efficient balancing al-
gorithm with quadratic convergence using New-
ton’s method and show in numerical experiments
that the proposed algorithm is several orders of
magnitude faster than existing ones. To theo-
retically prove the correctness of the algorithm,
we model tensors as probability distributions in
a statistical manifold and realize tensor balanc-
ing as projection onto a submanifold. The key to
our algorithm is that the gradient of the manifold,
used as a Jacobian matrix in Newton’s method,
can be analytically obtained using the Möbius in-
version formula, the essential of combinatorial
mathematics. Our model is not limited to ten-
sor balancing, but has a wide applicability as it
includes various statistical and machine learning
models such as weighted DAGs and Boltzmann
machines.

1. Introduction
Matrix balancing is the problem of rescaling a given square
nonnegative matrix A ∈ Rn×n

≥0 to a doubly stochastic ma-
trix RAS, where every row and column sums to one, by
multiplying two diagonal matrices R and S. This is a
fundamental process for analyzing and comparing matri-
ces in a wide range of applications, including input-output
analysis in economics, called the RAS approach (Parikh,
1979; Miller & Blair, 2009; Lahr & de Mesnard, 2004),
seat assignments in elections (Balinski, 2008; Akartunalı &
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Figure 1. Overview of our approach.

Knight, 2016), Hi-C data analysis (Rao et al., 2014; Wu &
Michor, 2016), the Sudoku puzzle (Moon et al., 2009), and
the optimal transportation problem (Cuturi, 2013; Frogner
et al., 2015; Solomon et al., 2015). An excellent review of
this theory and its applications is given by Idel (2016).

The standard matrix balancing algorithm is the Sinkhorn-
Knopp algorithm (Sinkhorn, 1964; Sinkhorn & Knopp,
1967; Marshall & Olkin, 1968; Knight, 2008), a special
case of Bregman’s balancing method (Lamond & Stewart,
1981) that iterates rescaling of each row and column until
convergence. The algorithm is widely used in the above
applications due to its simple implementation and theo-
retically guaranteed convergence. However, the algorithm
converges linearly (Soules, 1991), which is prohibitively
slow for recently emerging large and sparse matrices. Al-
though Livne & Golub (2004) and Knight & Ruiz (2013)
tried to achieve faster convergence by approximating each
step of Newton’s method, the exact Newton’s method with
quadratic convergence has not been intensively studied yet.

Another open problem is tensor balancing, which is a gen-
eralization of balancing from matrices to higher-order mul-
tidimentional arrays, or tensors. The task is to rescale an
N th order nonnegative tensor to a multistochastic tensor,
in which every fiber sums to one, by multiplying (N −1)th
order N tensors. There are some results about mathemat-
ical properties of multistochastic tensors (Cui et al., 2014;
Chang et al., 2016; Ahmed et al., 2003). However, there
is no result for tensor balancing algorithms with guaran-
teed convergence that transforms a given tensor to a multi-
stochastic tensor until now.
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Here we show that Newton’s method with quadratic con-
vergence can be applied to tensor balancing while avoid-
ing solving a linear system on the full tensor. Our strat-
egy is to realize matrix and tensor balancing as projec-
tion onto a dually flat Riemmanian submanifold (Figure 1),
which is a statistical manifold and known to be the es-
sential structure for probability distributions in information
geometry (Amari, 2016). Using a partially ordered out-
come space, we generalize the log-linear model (Agresti,
2012) used to model the higher-order combinations of bi-
nary variables (Amari, 2001; Ganmor et al., 2011; Naka-
hara & Amari, 2002; Nakahara et al., 2003), which allows
us to model tensors as probability distributions in the sta-
tistical manifold. The remarkable property of our model is
that the gradient of the manifold can be analytically com-
puted using the Möbius inversion formula (Rota, 1964), the
heart of combinatorial mathematics (Ito, 1993), which en-
ables us to directly obtain the Jacobian matrix in Newton’s
method. Moreover, we show that (n − 1)N entries for the
size nN of a tensor are invariant with respect to one of the
two coordinate systems of the statistical manifold. Thus
the number of equations in Newton’s method is O(nN−1).

The remainder of this paper is organized as follows: We
begin with a low-level description of our matrix balancing
algorithm in Section 2 and demonstrate its efficiency in nu-
merical experiments in Section 3. To guarantee the correct-
ness of the algorithm and extend it to tensor balancing, we
provide theoretical analysis in Section 4. In Section 4.1, we
introduce a generalized log-linear model associated with a
partial order structured outcome space, followed by intro-
ducing the dually flat Riemannian structure in Section 4.2.
In Section 4.3, we show how to use Newton’s method to
compute projection of a probability distribution onto a sub-
manifold. Finally, we formulate the matrix and tensor bal-
ancing problem in Section 5 and summarize our contribu-
tions in Section 6.

2. The Matrix Balancing Algorithm
Given a nonnegative square matrix A = (aij) ∈ Rn×n

≥0 , the
task of matrix balancing is to find r, s ∈ Rn that satisfy

(RAS)1 = 1, (RAS)T1 = 1, (1)

where R = diag(r) and S = diag(s). The balanced matrix
A′ = RAS is called doubly stochastic, in which each entry
a′ij = aijrisj and all the rows and columns sum to one.
The most popular algorithm is the Sinkhorn-Knopp algo-
rithm, which repeats updating r and s as r = 1/(As) and
s = 1/(ATr). We denote by [n] = {1, 2, . . . , n} hereafter.

In our algorithm, instead of directly updating r and s, we
update two parameters θ and η defined as

log pij =
∑
i′≤i

∑
j′≤j

θi′j′ , ηij =
∑
i′≥i

∑
j′≥j

pi′j′ (2)
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Figure 2. Matrix balancing with two parameters θ and η.

for each i, j ∈ [n], where we normalized entries as pij =
aij/

∑
ij aij so that

∑
ij pij = 1. We assume for simplic-

ity that each entry is strictly larger than zero. The assump-
tion will be removed in Section 5.

The key to our approach is that we update θ(t)ij with i = 1
or j = 1 by Newton’s method at each iteration t = 1, 2, . . .

while fixing θij with i, j ̸= 1 so that η(t)ij satisfies the fol-
lowing condition (Figure 2):

η
(t)
i1 = (n− i+ 1)/n, η

(t)
1j = (n− j + 1)/n.

Note that the rows and columns sum not to 1 but to 1/n due
to the normalization. The update formula is described as

θ
(t+1)
11

...
θ
(t+1)
1n

θ
(t+1)
21

...
θ
(t+1)
n1


=



θ
(t)
11
...
θ
(t)
1n

θ
(t)
21
...
θ
(t)
n1


− J−1



η
(t)
11 − (n− 1 + 1)/n

...
η
(t)
1n − (n− n+ 1)/n

η
(t)
21 − (n− 2 + 1)/n

...
η
(t)
n1 − (n− n+ 1)/n


, (3)

where J is the Jacobian matrix given as

J(ij)(i′j′)=
∂η

(t)
ij

∂θ
(t)
i′j′

= ηmax{i,i′}max{j,j′}−n2ηijηi′j′ , (4)

which is derived from our theoretical result in Theorem 3.
Since J is a (2n−1)×(2n−1) matrix, the time complexity
of each update is O(n3), which is needed to compute the
inverse of J .

After updating to θ(t+1)
ij , we can compute p(t+1)

ij and η(t+1)
ij

by Equation (2). Since this update does not ensure the
condition

∑
ij p

(t+1)
ij = 1, we again update θ

(t+1)
11 as

θ
(t+1)
11 = θ

(t+1)
11 − log

∑
ij p

(t+1)
ij and recompute p(t+1)

ij

and η(t+1)
ij for each i, j ∈ [n].

By iterating the above update process in Equation (3) until
convergence, A = (aij) with aij = npij becomes doubly
stochastic.

3. Numerical Experiments
We evaluate the efficiency of our algorithm compared to the
two prominent balancing methods, the standard Sinkhorn-
Knopp algorithm (Sinkhorn, 1964) and the state-of-the-art
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Figure 3. Results on Hessenberg matrices. The BNEWT algo-
rithm (green) failed to converge for n ≥ 200.
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Figure 4. Convergence graph on H20.

algorithm BNEWT (Knight & Ruiz, 2013), which uses
Newton’s method-like iterations with conjugate gradients.
All experiments were conducted on Amazon Linux AMI
release 2016.09 with a single core of 2.3 GHz Intel Xeon
CPU E5-2686 v4 and 256 GB of memory. All methods
were implemented in C++ with the Eigen library and
compiled with gcc 4.8.31. We have carefully implemented
BNEWT by directly translating the MATLAB code pro-
vided in (Knight & Ruiz, 2013) into C++ with the Eigen
library for fair comparison, and used the default parame-
ters. We measured the residual of a matrix A′ = (a′ij) by
the squared norm ∥(A′1−1, A′T1−1)∥2, where each en-
try a′ij is obtained as npij in our algorithm, and ran each
of three algorithms until the residual is below the tolerance
threshold 10−6.

Hessenberg Matrix. The first set of experiments used a
Hessenberg matrix, which has been a standard benchmark
for matrix balancing (Parlett & Landis, 1982; Knight &
Ruiz, 2013). Each entry of an n × n Hessenberg matrix
Hn = (hij) is given as hij = 0 if j < i − 1 and hij = 1
otherwise. We varied the size n from 10 to 5, 000, and
measured running time (in seconds) and the number of it-
erations of each method.

Results are plotted in Figure 3. Our balancing algorithm
with the Newton’s method (plotted in blue in the figures)

1An implementation of algorithms for matrices and third
order tensors is available at: https://github.com/
mahito-sugiyama/newton-balancing
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Figure 5. Results on Trefethen matrices. The BNEWT algorithm
(green) failed to converge for n ≥ 200.

is clearly the fastest: It is three to five orders of magnitude
faster than the standard Sinkhorn-Knopp algorithm (plotted
in red). Although the BNEWT algorithm (plotted in green)
is competitive if n is small, it suddenly fails to converge
whenever n ≥ 200, which is consistent with results in the
original paper (Knight & Ruiz, 2013) where there is no re-
sult for the setting n ≥ 200 on the same matrix. Moreover,
our method converges around 10 to 20 steps, which is about
three and seven orders of magnitude smaller than BNEWT
and Sinkhorn-Knopp, respectively, at n = 100.

To see the behavior of the rate of convergence in detail, we
plot the convergence graph in Figure 4 for n = 20, where
we observe the slow convergence rate of the Sinkhorn-
Knopp algorithm and unstable convergence of the BNEWT
algorithm, which contrasts with our quick convergence.

Trefethen Matrix. Next, we collected a set of Trefethen
matrices from a collection website2, which are nonnega-
tive diagonal matrices with primes. Results are plotted in
Figure 5, where we observe the same trend as before: Our
algorithm is the fastest and about four orders of magnitude
faster than the Sinkhorn-Knopp algorithm. Note that larger
matrices with n > 300 do not have total support, which
is the necessary condition for matrix balancing (Knight &
Ruiz, 2013), while the BNEWT algorithm fails to converge
if n = 200 or n = 300.

4. Theoretical Analysis
In the following, we provide theoretical support to our al-
gorithm by formulating the problem as a projection within
a statistical manifold, in which a matrix corresponds to an
element, that is, a probability distribution, in the manifold.

We show that a balanced matrix forms a submanifold and
matrix balancing is projection of a given distribution onto
the submanifold, where the Jacobian matrix in Equation (4)
is derived from the gradient of the manifold.

2http://www.cise.ufl.edu/research/sparse/
matrices/

https://github.com/mahito-sugiyama/newton-balancing
https://github.com/mahito-sugiyama/newton-balancing
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
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4.1. Formulation

We introduce our log-linear probabilistic model, where the
outcome space is a partially ordered set, or a poset (Gierz
et al., 2003). We prepare basic notations and the key math-
ematical tool for posets, the Möbius inversion formula, fol-
lowed by formulating the log-linear model.

4.1.1. MÖBIUS INVERSION

A poset (S,≤), the set of elements S and a partial order
≤ on S, is a fundamental structured space in computer
science. A partial order “≤” is a relation between el-
ements in S that satisfies the following three properties:
For all x, y, z ∈ S, (1) x ≤ x (reflexivity), (2) x ≤ y,
y ≤ x ⇒ x = y (antisymmetry), and (3) x ≤ y,
y ≤ z ⇒ x ≤ z (transitivity). In what follows, S is al-
ways finite and includes the least element (bottom) ⊥ ∈ S;
that is, ⊥ ≤ x for all x ∈ S. We denote S \ {⊥} by S+.

Rota (1964) introduced the Möbius inversion formula on
posets by generalizing the inclusion-exclusion principle.
Let ζ :S × S → {0, 1} be the zeta function defined as

ζ(s, x) =

{
1 if s ≤ x,
0 otherwise.

The Möbius function µ :S×S → Z satisfies ζµ = I , which
is inductively defined for all x, y with x ≤ y as

µ(x, y) =


1 if x = y,
−
∑

x≤s<y µ(x, s) if x < y,

0 otherwise.

From the definition, it follows that∑
s∈S

ζ(s, y)µ(x, s) =
∑

x≤s≤y

µ(x, s) = δxy,∑
s∈S

ζ(x, s)µ(s, y) =
∑

x≤s≤y

µ(s, y) = δxy
(5)

with the Kronecker delta δ such that δxy = 1 if x = y and
δxy = 0 otherwise. Then for any functions f , g, and h with
the domain S such that

g(x) =
∑
s∈S

ζ(s, x)f(s) =
∑
s≤x

f(s),

h(x) =
∑
s∈S

ζ(x, s)f(s) =
∑
s≥x

f(s),

f is uniquely recovered with the Möbius function:

f(x) =
∑
s∈S

µ(s, x)g(s), f(x) =
∑
s∈S

µ(x, s)h(s).

This is called the Möbius inversion formula and is at the
heart of enumerative combinatorics (Ito, 1993).

4.1.2. LOG-LINEAR MODEL ON POSETS

We consider a probability vector p on (S,≤) that gives a
discrete probability distribution with the outcome space S.

A probability vector is treated as a mapping p :S → (0, 1)
such that

∑
x∈S p(x) = 1, where every entry p(x) is as-

sumed to be strictly larger than zero.

Using the zeta and the Möbius functions, let us introduce
two mappings θ :S → R and η :S → R as

θ(x) =
∑
s∈S

µ(s, x) log p(s), (6)

η(x) =
∑
s∈S

ζ(x, s)p(s) =
∑
s≥x

p(s). (7)

From the Möbius inversion formula, we have

log p(x) =
∑
s∈S

ζ(s, x)θ(s) =
∑
s≤x

θ(s), (8)

p(x) =
∑
s∈S

µ(x, s)η(s). (9)

They are generalization of the log-linear model (Agresti,
2012) that gives the probability p(x) of an n-dimensional
binary vector x = (x1, . . . , xn) ∈ {0, 1}n as

log p(x) =
∑
i

θixi +
∑
i<j

θijxixj +
∑

i<j<k

θijkxixjxk

+ · · ·+ θ1...nx1x2 . . . xn − ψ,

where θ = (θ1, . . . , θ12...n) is a parameter vector, ψ is a
normalizer, and η = (η1, . . . , η12...n) represents the ex-
pectation of variable combinations such that

ηi = E[xi] = Pr(xi = 1),

ηij = E[xixj ] = Pr(xi = xj = 1), i < j, . . .

η1...n = E[x1 . . . xn] = Pr(x1 = · · · = xn = 1).

They coincide with Equations (8) and (7) when we let
S = 2V with V = {1, 2, . . . , n}, each x ∈ S as the set
of indices of “1” of x, and the order ≤ as the inclusion re-
lationship, that is, x ≤ y if and only if x ⊆ y. Nakahara
et al. (2006) have pointed out that θ can be computed from
p using the inclusion-exclusion principle in the log-linear
model. We exploit this combinatorial property of the log-
linear model using the Möbius inversion formula on posets
and extend the log-linear model from the power set 2V to
any kind of posets (S,≤). Sugiyama et al. (2016) studied a
relevant log-linear model, but the relationship with Möbius
inversion formula has not been analyzed yet.

4.2. Dually Flat Riemannian Manifold

We theoretically analyze our log-linear model introduced in
Equations (6), (7) and show that they form dual coordinate
systems on a dually flat manifold, which has been mainly
studied in the area of information geometry (Amari, 2001;
Nakahara & Amari, 2002; Amari, 2014; 2016). Moreover,
we show that the Riemannian metric and connection of our
model can be analytically computed in closed forms.
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In the following, we denote by ξ the function θ or η and by
∇ the gradient operator with respect to S+ = S \{⊥}, i.e.,
(∇f(ξ))(x) = ∂f/∂ξ(x) for x ∈ S+, and denote by S the
set of probability distributions specified by probability vec-
tors, which forms a statistical manifold. We use uppercase
letters P,Q,R, . . . for points (distributions) in S and their
lowercase letters p, q, r, . . . for the corresponding probabil-
ity vectors treated as mappings. We write θP and ηP if they
are connected with p by Equations (6) and (7), respectively,
and abbreviate subscripts if there is no ambiguity.

4.2.1. DUALLY FLAT STRUCTURE

We show that S has the dually flat Riemannian structure
induced by two functions θ and η in Equation (6) and (7).
We define ψ(θ) as

ψ(θ) = −θ(⊥) = − log p(⊥), (10)

which corresponds to the normalizer of p. It is a convex
function since we have

ψ(θ) = log
∑
x∈S

exp

 ∑
⊥<s≤x

θ(s)


from log p(x) =

∑
⊥<s≤x θ(s)−ψ(θ). We apply the Leg-

endre transformation to ψ(θ) given as

φ(η) = max
θ′

(
θ′η − ψ(θ′)

)
, θ′η =

∑
x∈S+

θ′(x)η(x). (11)

Then φ(η) coincides with the negative entropy.

Theorem 1 (Legendre dual).

φ(η) =
∑
x∈S

p(x) log p(x).

Proof. From Equation (5), we have

θ′η =
∑
x∈S+

 ∑
⊥<s≤x

µ(s, x) log p′(s)
∑
s≥x

p(s)


=
∑
x∈S+

p(x) ( log p′(x)− log p′(⊥) ) .

Thus it holds that

θ′η − ψ(θ′) =
∑
x∈S

p(x) log p′(x). (12)

Hence it is maximized with p(x) = p′(x).

Since they are connected with each other by the Legendre
transformation, they form a dual coordinate system ∇ψ(θ)
and ∇φ(η) of S (Amari, 2016, Section 1.5), which coin-
cides with θ and η as follows.

Theorem 2 (dual coordinate system).

∇ψ(θ) = η, ∇φ(η) = θ. (13)

Proof. They can be directly derived from our definitions
(Equations (6) and (11)) as

∂ψ(θ)

∂θ(x)
=

∑
y≥x exp

(∑
⊥<s≤y θ(s)

)
∑

y∈S exp
(∑

⊥<s≤y θ(s)
) =

∑
s≥x

p(s) = η(x),

∂φ(η)

∂η(x)
=

∂

∂η(x)

(
θη − ψ(θ)

)
= θ(x).

Moreover, we can confirm the orthogonality of θ and η as

E

[
∂ log p(s)

∂θ(x)

∂ log p(s)

∂η(y)

]
=
∑
s∈S

ζ(x, s)µ(s, y) = δxy.

The last equation holds from Equation (5), hence the
Möbius inversion directly leads to the orthogonality.

The Bregman divergence is known to be the canonical di-
vergence (Amari, 2016, Section 6.6) to measure the differ-
ence between two distributions P and Q on a dually flat
manifold, which is defined as

D [P,Q] = ψ(θP ) + φ(ηQ)− θP ηQ.

In our case, since we have φ(ηQ) =
∑

x∈S q(x) log q(x)
and θP ηQ−ψ(θP ) =

∑
x∈S q(x) log p(x) from Theorem 1

and Equation (12), it is given as

D [P,Q] =
∑
x∈S

q(x) log
q(x)

p(x)
,

which coincides with the Kullback–Leibler divergence (KL
divergence) from Q to P : D [P,Q] = DKL [Q,P ].

4.2.2. RIEMANNIAN STRUCTURE

Next we analyze the Riemannian structure on S and show
that the Möbius inversion formula enables us to compute
the Riemannian metric of S.

Theorem 3 (Riemannian metric). The manifold (S, g(ξ))
is a Riemannian manifold with the Riemannian metric g(ξ)
such that for all x, y ∈ S+

gxy(ξ) =


∑
s∈S

[
ζ(x, s)ζ(y, s)p(s)− η(x)η(y)

]
if ξ = θ,

∑
s∈S

µ(s, x)µ(s, y)p(s)−1 if ξ = η.

Proof. Since the Riemannian metric is defined as

g(θ) = ∇∇ψ(θ), g(η) = ∇∇φ(η),

when ξ = θ we have

gxy(θ) =
∂2

∂θ(x)∂θ(y)
ψ(θ) =

∂

∂θ(x)
η(y)

=
∂

∂θ(x)

∑
s∈S

ζ(y, s) exp

 ∑
⊥<u≤s

θ(u)− ψ(θ)
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=
∑
s∈S

ζ(x, s)ζ(y, s)p(s)− |S|η(x)η(y).

When ξ = η, it follows that

gxy(η) =
∂2

∂η(x)∂η(y)
φ(η) =

∂

∂η(x)
θ(y)

=
∂

∂η(x)

∑
s≤y

µ(s, y) log

∑
u≥s

µ(s, u)η(u)


=
∑
s∈S

µ(s, x)µ(s, y)p(s)−1.

Since g(ξ) coincides with the Fisher information matrix,

E

[
∂

∂θ(x)
log p(s)

∂

∂θ(y)
log p(s)

]
= gxy(θ),

E

[
∂

∂η(x)
log p(s)

∂

∂η(y)
log p(s)

]
= gxy(η).

Then the Riemannian (Levi–Chivita) connection Γ(ξ) with
respect to ξ, which is defined as

Γxyz(ξ) =
1

2

(
∂gyz(ξ)

∂ξ(x)
+
∂gxz(ξ)

∂ξ(y)
− ∂gxy(ξ)

∂ξ(z)

)
for all x, y, z ∈ S+, can be analytically obtained.

Theorem 4 (Riemannian connection). The Riemannian
connection Γ(ξ) on the manifold (S, g(ξ)) is given in the
following for all x, y, z ∈ S+,

Γxyz(ξ) =



1

2

∑
s∈S

(
ζ(x, s)− η(x)

)(
ζ(y, s)− η(y)

)
(
ζ(z, s)− η(z)

)
p(s) if ξ = θ,

−1

2

∑
s∈S

µ(s, x)µ(s, y)µ(s, z)p(s)−2 if ξ = η.

Proof. Connections Γxyz(θ) and Γxyz(η) can be obtained
by directly computing ∂gyz(θ)/∂θ(x) and ∂gyz(η)/∂η(x),
respectively.

4.3. The Projection Algorithm

Projection of a distribution onto a submanifold is essen-
tial; several machine learning algorithms are known to be
formulated as projection of a distribution empirically esti-
mated from data onto a submanifold that is specified by the
target model (Amari, 2016). Here we define projection of
distributions on posets and show that Newton’s method can
be applied to perform projection as the Jacobian matrix can
be analytically computed.

4.3.1. DEFINITION

Let S(β) be a submanifold of S such that

S(β) = {P ∈ S | θP (x) = β(x), ∀x ∈ dom(β)} (14)

specified by a function β with dom(β) ⊆ S+. Projection
of P ∈ S onto S(β), calledm-projection, which is defined
as the distribution Pβ ∈ S(β) such that{

θPβ
(x) = β(x) if x ∈ dom(β),

ηPβ
(x) = ηP (x) if x ∈ S+ \ dom(β),

is the minimizer of the KL divergence from P to S(β):

Pβ = argmin
Q∈S(β)

DKL[P,Q].

The dually flat structure with the coordinate systems θ and
η guarantees that the projected distribution Pβ always ex-
ists and is unique (Amari, 2009, Theorem 3). Moreover,
the Pythagorean theorem holds in the dually flat manifold,
that is, for any Q ∈ S(β) we have

DKL[P,Q] = DKL[P, Pβ ] +DKL[Pβ , Q].

We can switch η and θ in the submanifold S(β) by chang-
ing DKL[P,Q] to DKL[Q,P ], where the projected distri-
bution Pβ of P is given as{

θPβ
(x) = θP (x) if x ∈ S+ \ dom(β),

ηPβ
(x) = β(x) if x ∈ dom(β),

This projection is called e-projection.

Example 1 (Boltzmann machine). Given a Boltzmann ma-
chine represented as an undirected graph G = (V,E) with
a vertex set V and an edge set E ⊆ {{i, j} | i, j ∈ V }.
The set of probability distributions that can be modeled by
a Boltzmann machine G coincides with the submanifold

SB = {P ∈ S | θP (x) = 0 if |x| > 2 or x ̸∈ E},

with S = 2V . Let P̂ be an empirical distribution esti-
mated from a given dataset. The learned model is the m-
projection of the empirical distribution P̂ onto SB, where
the resulting distribution Pβ is given as{

θPβ
(x) = 0 if |x| > 2 or x ̸∈ E,

ηPβ
(x) = ηP̂ (x) if |x| = 1 or x ∈ E.

4.3.2. COMPUTATION

Here we show how to compute projection of a given prob-
ability distribution. We show that Newton’s method can be
used to efficiently compute the projected distribution Pβ by
iteratively updating P (0)

β = P as P (0)
β , P

(1)
β , P

(2)
β , . . . until

converging to Pβ .

Let us start with the m-projection with initializing P (0)
β =

P . In each iteration t, we update θ(t)Pβ
(x) for all x ∈ domβ

while fixing η(t)Pβ
(x) = ηP (x) for all x ∈ S+ \ dom(β),

which is possible from the orthogonality of θ and η. Using
Newton’s method, η(t+1)

Pβ
(x) should satisfy(

θ
(t)
Pβ

(x)− β(x)
)
+
∑

y∈dom(β)

Jxy

(
η
(t+1)
Pβ

(y)− η
(t)
Pβ

(y)
)
= 0,
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for every x ∈ dom(β), where Jxy is an entry of the
|dom(β)| × |dom(β)| Jacobian matrix J and given as

Jxy =
∂θ

(t)
Pβ

(x)

∂η
(t)
Pβ

(y)
=
∑
s∈S

µ(s, x)µ(s, y)p
(t)
β (s)−1

from Theorem 3. Therefore, we have the update formula
for all x ∈ dom(β) as

η
(t+1)
Pβ

(x) = η
(t)
Pβ

(x)−
∑

y∈dom(β)

J−1
xy

(
θ
(t)
Pβ

(y)− β(y)
)
.

In e-projection, update η(t)Pβ
(x) for x ∈ dom(β) while fix-

ing θ(t)Pβ
(x) = θP (x) for all x ∈ S+ \ dom(β). To ensure

η
(t)
Pβ

(⊥) = 1, we add ⊥ to dom(β) and β(⊥) = 1. We

update θ(t)Pβ
(x) at each step t as

θ
(t+1)
Pβ

(x) = θ
(t)
Pβ

(x)−
∑

y∈dom(β)

J ′−1
xy

(
η
(t)
Pβ

(y)− β(y)
)
,

J ′
xy =

∂η
(t)
Pβ

(x)

∂θ
(t)
Pβ

(y)
=
∑
s∈S

ζ(x, s)ζ(y, s)p
(t)
β (s)

− |S|η(t)Pβ
(x)η

(t)
Pβ

(y).

In this case, we also need to update θ(t)Pβ
(⊥) as it is not

guaranteed to be fixed. Let us define

p
′(t+1)
β (x) = p

(t)
β (x)

∏
s∈dom(β)

exp
(
θ
(t+1)
Pβ

(s)
)

exp
(
θ
(t)
Pβ

(s)
) ζ(s, x).

Since we have

p
(t+1)
β (x) =

exp
(
θ
(t+1)
Pβ

(⊥)
)

exp
(
θ
(t)
Pβ

(⊥)
) p

′(t+1)
β (x),

it follows that

θ
(t+1)
Pβ

(⊥)− θ
(t)
Pβ

(⊥)

= − log

(
exp

(
θ
(t)
Pβ

(⊥)
)
+
∑
x∈S+

p
′(t+1)
β (x)

)
,

The time complexity of each iteration is O(|dom(β)|3),
which is required to compute the inverse of the Jacobian
matrix.

Global convergence of the projection algorithm is always
guaranteed by the convexity of a submanifold S(β) defined
in Equation (14). Since S(β) is always convex with respect
to the θ- and η-coordinates, it is straightforward to see that
our e-projection is an instance of the Bregman algorithm
onto a convex region, which is well known to always con-
verge to the global solution (Censor & Lent, 1981).

5. Balancing Matrices and Tensors
Now we are ready to solve the problem of matrix and tensor
balancing as projection on a dually flat manifold.

5.1. Matrix Balancing

Recall that the task of matrix balancing is to find r, s ∈ Rn

that satisfy (RAS)1 = 1 and (RAS)T1 = 1 with R =
diag(r) and S = diag(s) for a given nonnegative square
matrix A = (aij) ∈ Rn×n

≥0 .

Let us define S as
S = {(i, j) | i, j ∈ [n] and aij ̸= 0}, (15)

where we remove zero entries from the outcome space S as
our formulation cannot treat zero probability, and give each
probability as p((i, j)) = aij/

∑
ij aij . The partial order

≤ of S is naturally introduced as
x = (i, j) ≤ y = (k, l) ⇔ i ≤ j and k ≤ l, (16)

resulting in ⊥ = (1, 1). In addition, we define ιk,m for
each k ∈ [n] and m ∈ {1, 2} such that

ιk,m = min{x = (i1, i2) ∈ S | im = k },
where the minimum is with respect to the order ≤. If ιk,m
does not exist, we just remove the entire kth row if m = 1
or kth column if m = 2 from A. Then we switch rows and
columns of A so that the condition

ι1,m ≤ ι2,m ≤ · · · ≤ ιn,m (17)
is satisfied for each m ∈ {1, 2}, which is possible for any
matrices. Since we have

η(ιk,m)− η(ιk+1,m) =

{ ∑n
j=1 p((k, j)) if m = 1,∑n
i=1 p((i, k)) if m = 2

if the condition (17) is satisfied, the probability distribution
is balanced if for all k ∈ [n] and m ∈ {1, 2}

η(ιk,m) =
n−k+1

n
.

Therefore, we obtain the following result.

Matrix balancing as e-projection:
Given a matrix A ∈ Rn×n with its normalized probabil-
ity distribution P ∈ S such that p((i, j)) = aij/

∑
ij aij .

Define the poset (S,≤) by Equations (15) and (16) and let
S(β) be the submanifold of S such that
S(β) = {P ∈ S | ηP (x) = β(x) for all x ∈ dom(β)},

where the function β is given as
dom(β) = {ιk,m ∈ S | k ∈ [n],m ∈ {1, 2}},

β(ιk,m) =
n−k+1

n
.

Matrix balancing is the e-projection of P onto the subman-
ifold S(β), that is, the balanced matrix (RAS)/n is the
distribution Pβ such that{

θPβ
(x) = θP (x) if x ∈ S+ \ dom(β),

ηPβ
(x) = β(x) if x ∈ dom(β),

which is unique and always exists in S, thanks to its dually
flat structure. Moreover, two balancing vectors r and s are

exp

(
i∑

k=1

θPβ
(ιk,m)− θP (ιk,m)

)
=

{
ri if m = 1,
ai if m = 2,

for every i ∈ [n] and r = rn/
∑

ij aij . ■
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5.2. Tensor Balancing

Next, we generalize our approach from matrices to tensors.
For anN th order tensorA = (ai1i2...iN ) ∈ Rn1×n2×···×nN

and a vector b ∈ Rnm , the m-mode product of A and b is
defined as

(A×m b)i1...im−1im+1...iN
=

nm∑
im=1

ai1i2...iN bim .

We define tensor balancing as follows: Given a tensor A ∈
Rn1×n2×···×nN with n1 = · · · = nN = n, find (N − 1)
order tensors R1, R2, . . . , RN such that

A′ ×m 1 = 1 (∈ Rn1×···×nm−1×nm+1×···×nN ) (18)

for all m ∈ [N ], i.e.,
∑n

im=1 a
′
i1i2...iN

= 1, where each
entry a′i1i2...iN of the balanced tensor A′ is given as

a′i1i2...iN = ai1i2...iN
∏

m∈[N ]

Rm
i1...im−1im+1...iN .

A tensor A′ that satisfies Equation (18) is called multi-
stochastic (Cui et al., 2014). Note that this is exactly the
same as the matrix balancing problem if N = 2.

It is straightforward to extend matrix balancing to tensor
balancing as e-projection onto a submanifold. Given a ten-
sor A ∈ Rn1×n2×···×nN with its normalized probability
distribution P such that

p(x) = ai1i2...iN
/ ∑
j1j2...jN

aj1j2...jN (19)

for all x = (i1, i2, . . . , iN ). The objective is to obtain
Pβ such that

∑n
im=1 pβ((i1, . . . , iN )) = 1/(nN−1) for all

m ∈ [N ] and i1, . . . , iN ∈ [n]. In the same way as matrix
balancing, we define S as

S =
{
(i1, i2, . . . , iN ) ∈ [n]N

∣∣ ai1i2...iN ̸= 0
}

with removing zero entries and the partial order ≤ as

x = (i1 . . . iN ) ≤ y = (j1 . . . jN ) ⇔ ∀m ∈ [N ], im ≤ jm.

In addition, we introduce ιk,m as

ιk,m = min{x = (i1, i2, . . . , iN ) ∈ S | im = k }.

and require the condition in Equation (17).

Tensor balancing as e-projection:
Given a tensor A ∈ Rn1×n2×···×nN with its normalized
probability distribution P ∈ S given in Equation (19). The
submanifold S(β) of multistochastic tensors is given as

S(β) = {P ∈ S | ηP (x) = β(x) for all x ∈ dom(β)},

where the domain of the function β is given as

dom(β) = { ιk,m | k ∈ [n],m ∈ [N ] }

and each value is described using the zeta function as

β(ιk,m) =
∑
l∈[n]

ζ(ιk,m, ιl,m)
1

nN−1
.

Tensor balancing is the e-projection of P onto the subman-
ifold S(β), that is, the multistochastic tensor is the distri-
bution Pβ such that{

θPβ
(x) = θP (x) if x ∈ S+ \ dom(β),

ηPβ
(x) = β(x) if x ∈ dom(β),

which is unique and always exists in S, thanks to its dually
flat structure. Moreover, each balancing tensor Rm is

Rm
i1...im−1im+1...iN

= exp

 ∑
m′ ̸=m

im′∑
k=1

θPβ
(ιk,m′)− θP (ιk,m′)


for every m ∈ [N ] and R1 = R1nN−1/

∑
j1...jN

aj1...jN
to recover a multistochastic tensor. ■
Our result means that the e-projection algorithm based on
Newton’s method proposed in Section 4.3 converges to the
unique balanced tensor whenever S(β) ̸= ∅ holds.

6. Conclusion
In this paper, we have solved the open problem of tensor
balancing and presented an efficient balancing algorithm
using Newton’s method. Our algorithm quadratically con-
verges, while the popular Sinkhorn-Knopp algorithm lin-
early converges. We have examined the efficiency of our
algorithm in numerical experiments on matrix balancing
and showed that the proposed algorithm is several orders
of magnitude faster than the existing approaches.

We have analyzed theories behind the algorithm, and
proved that balancing is e-projection in a special type of
a statistical manifold, in particular, a dually flat Rieman-
nian manifold studied in information geometry. Our key
finding is that the gradient of the manifold, equivalent to
Riemannian metric or the Fisher information matrix, can be
analytically obtained using the Möbius inversion formula.

Our information geometric formulation can model several
machine learning applications such as statistical analysis
on a DAG structure. Thus, we can perform efficient learn-
ing as projection using information of the gradient of man-
ifolds by reformulating such models, which we will study
in future work.
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