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Appendix

A. Proof of Proposition 2.1
Proof. The proof is mainly about adapting the specific two-player game presented in (Mannor et al., 2009) to the general
online convex programming setting with adversarial constraints. We closely follow the notations in the example from
Proposition 4 in (Mannor et al., 2009).

Let us define the decision set X = �([1, 2]), namely a 2-D simplex. We design two different loss functions: `1(x) =

[�1, 0]x, and `2(x) = [�1, 1]x (here [a, b] stands for a 2-d row vector and hence [a, b]x stands for the regular vector inner
product). We also design two different constraints as: f1

(x) = [�1,�1]x  0 and f2
(x) = [1,�1]x  0. Note that both

` and f are linear functions with respect x, hence they are convex loss functions and constraints with respect to x. The
adversary picks loss functions among {`1, `2} and constraints among {f1, f2} and will generate the following sequence of
loss functions and constraints. Initialize a counter k = 0, then:

1. while k = 0 or 1
t�1

P
t�1
i=1 xi
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t

= `2(x) and f
t
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(x), and set k := k + 1.

2. For next k steps, the adversary set `
t

= `1(x) and f
t

= f1
(x). Then reset k = 0 and go back to step 1.

For any time step t, let us define q̂
t

=

1
t

P
t
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i
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), namely the fraction of the adversary picking the second type of

constraint. Let us define ↵̂
t

=
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t
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and the minimum loss the learner can get in hindsight with decisions restricted to O0 is:
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The cumulative constraint violation at time step t can be computed as
P

t
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) =
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i
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. We want to show that no matter what strategy the learner uses, as long as 1
t
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Following a similar argument from (Mannor et al., 2009), we can show that Step 2 is entered an infinite number of times. To
show this, assume that step 2 only enters finite number of times. Hence as the game keeps staying in Step 1, the fraction of
the adversary picking the second constraint f2 approaches to one (q̂

t

! 1), we will have as t approaches to infinity,
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Since
P

t

i=1 xi

/t 2 �([1, 2]), we must have ↵̂
t

=

P
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[1]/t <= 1/2 to ensure that the long-term constraint is satisfied:
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Hence step 2 is entered infinite number of times. In particular, there exist infinite sequences t
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and the adversary picks f2, `2 in (t
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, t0
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, t
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It is easy to verify that 1
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Namely, we have shown that for cumulative regret, regardless what sequence of decisions x1, ..., xt

the learner has played,
as long as it needs to satisfy lim sup
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Hence we cannot guarantee to achieve no-regret when competing agains the decisions in O0 while satisfying the long-term
constraint.

B. Analysis of Alg. 1 and Proof Of Theorem 3.1
Proof of Theorem 3.1. Since the algorithm runs online mirror descent on the sequence of loss {L

t

(x,�
t
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t

with respect to
x, using the existing results of online mirror descent (Theorem 4.2 and Eq. 4.10 from (Bubeck, 2015)), we know that for the
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Also, we know that the algorithm runs online gradient ascent on the sequence of loss {L
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the existing analysis of online gradient descent (Zinkevich, 2003), we have for the sequence of �
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where we first used triangle inequality for kr
x

L
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)k⇤ and then use the inequality of 2ab  a2 + b2, 8a, b 2 R+.
We also assume that the norm of the gradients are bounded as max(kr`
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Using the saddle-point convex and concave formation for L
t

, we have:
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Note that based on the setting of � and µ, we can show that � � �2µ2
+ G2/↵. This is because �2µ2
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Now set x = x⇤, and set � = 0, since f
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Substitute µ =
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Take the square root on both sides of the above inequality and observe that T 3/2
p

8F 2G2/↵ dominates the RHS of the
above inequality, we prove the theorem.

C. Analysis of EXP4.R
In this section we provide the full proof of theorem 4.2.

Proof of Theorem 4.2. We first present several known facts. First we have that for wT
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For E
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Note that here for analysis simplicity we consider asymptotic property of the algorithm and assume T is large enough and
particularly larger than any constant. We don’t necessarily have to assume T � 4B here because we can explicitly solve the inequality
� � �2µ2

+G2/↵ to find the valid range of �, as (Mahdavi et al., 2012) did.
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which gives us E
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. Similarly we can easily verify that E
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Now we are going to take expectation with respect to the randomized decisions {a
i

} on both sides of Inequality. 11. Fix
time step t, conditioned on a1, ..., at�1, we have:
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Take the expectation with respect to a1, ..., aT on the LHS of Inequality 11, we have:
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Now take the expectation with respect to a1, ..., aT on the RHS of Inequality 11 (we use E
at|�at

to represent the expectation
over the distribution of a
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�2

µ
+

ln(|⇧|)
µ

+ µ

TX

t=1

⇣
E
at|a�t

(

|⇧|X

i=1

w
t

[i]ŷ
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t

[i]2) + E
at|a�t

(wT

t

ẑ
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Note that based on the setting of � and µ, we can show that � � 2K + 2�2µ2. This is because 2K + 2�2µ2
= 2K +

18K2
ln(|⇧|)/(T (K + 4))  2K + 18K ln(|⇧|)/T  3K, where for simplicity we assume that T is large enough

(T � 18 ln(|⇧|)).
Chain Eq. 40 and 41 together and get rid of the terms that have �
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terms, we get:

E
� TX

t=1

c
t

[a
t

]�
TX

t=1

yT
t

w
�
+

TX

t=1

�
�(Er

t

[a
t

]� �)� �
t

(zT
t

w � �)
�� (

�µT

2

+

1

µ
)�2

 ln(|⇧|)
µ

+ µT (K + 4). (42)

The above inequality holds for any w. Substitute w⇤ into Eq. 42, we get:
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Now let us set � = 0, for regret, we get:
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Substitute µ =

p
ln(|⇧|)/T (K + 4) and � = 3K back to the above equation, it is easy to verity that:
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Since we consider the asymptotic property when T ! 1, we can see that the LHS of the above inequality is dominated byp
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Take the square root on both sides of the above inequality, we prove the theorem.

D. Algorithm and Analysis of EXP4.P.R
D.1. Algorithm

We present the EXP4.P.R algorithm in Alg. 3.



Safety-Aware Algorithms for Adversarial Contextual Bandit

Algorithm 3 Exp4.P with Risk Constraints (EXP4.P.R)
1: Input: Policy Set ⇧
2: Initialize w1 = [1/N, ..., 1/N ]

T and �1 = 0.
3: for t = 1 to T do
4: Receive context s

t

.
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ŷ
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t

[j] = ⇡
j

(s
t

)

T r̂
t

, 8j 2 {1, 2..., N}. (48)

11: Set x̃
t

= ŷ
t

+ �
t

ẑ
t

.
12: Update w

t+1 as:

w
t+1[i] =

w
t

[i] exp(�µ(x̃
t

[i]� 
P

K

k=1
⇡i(st)[k]
pt[k]

))

P|⇧|
j=1 wt

[j] exp(�µ(x̃
t

[j]� 
P

K

k=1
⇡j(st)[k]

pt[k]
))

,

13: Update �
t+1 as:

�
t+1 = max{0,�

t

+ µ(wT

t

ẑ
t

� � � �µ�
t

)}.

14: end for
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D.2. Analysis of EXP4.P.R

We give detailed regret analysis of EXP4.P.R in this section. Let us define x̂
t

(�) as x̂
t

(�)[i] = ŷ
t

[i] + �ẑ
t

[i] �

P

K

k=1
⇡i(st)[k]
pt[k]

, 8i 2 [N ] and L
t

(w,�) = wT x̂
t

� �� � �µ

2 �2. As we can see that Line 3 is essentially running
Weighted Majority algorithm on the sequence of functions {L

t

(w,�
t

)}
t

while Line 3 is running Online Gradient Ascent on
the sequence of functions {L

t

(w
t

,�)}
t

. Applying the classic analysis of Weighted Majority and analysis of Online Gradient
Descent, we can show that:

Lemma D.1. The sequences {w
t

}
t

and {�
t

}
t

generated from Lines 3 and 3 in EXP4.P.R has the following property:

TX

t=1

L
t

(w
t

,�)�
TX

t=1

L
t

(w,�
t

)

 �2

µ
+

ln(|⇧|)
µ

+

µ

2

TX

t=1

⇣ |⇧|X

i=1

w
t

[i](x̂
t

(�
t

)[i])2 + 2(wT

t

ẑ
t

� �)2 + 2�2µ2�2
t

⌘
. (49)

Proof. Using the classic analysis of Weighted Majority algorithm, we can get that for the sequence of loss {L
t

(w,�
t

)}
t

:

TX

t=1

L
t

(w
t

,�
t

)�
TX

t=1

L
t

(w,�
t

)  ln(|⇧|)
µ

+

1

2

µ

TX

t=1

|⇧|X

i=1

w
t

[i]
�
x̂
t

(�
t

)[i]
�2
,

for any w 2 B. On the other hand, we know that we compute �
t

by running Online Gradient Descent on the loss functions
{L

t

(w
t

,�)}
t

. Applying the classic analysis of Online Gradient Descent, we can get:

TX

t=1

L
t

(w
t

,�)�
TX

t=1

L
t

(w
t

,�
t

)  1

µ
�2

+

µ

2

TX

t=1

�@L
t

(w
t

,�
t

)

@�
t

�2
,

for any � � 0.

We know that @L
t

(w
t

,�)/@�
t

= wT

t

ẑ
t

� � � �µ�
t

. Substitute these gradient and derivatives back to the above two
inequalities, and then sum the above two inequality together we get:

TX

t=1

L
t

(w
t

,�)�
TX

t=1

L
t

(w,�
t

)

 �2

µ
+

ln(|⇧|)
µ

+

µ

2

TX
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⇣ |⇧|X

i=1

w
t

[i](x̂
t

(�
t

)[i])2 + (wT

t

ẑ
t

� � � �µ�
t

)

2
⌘

 �2

µ
+

ln(|⇧|)
µ

+

µ

2

TX

t=1

⇣ |⇧|X

i=1

w
t

[i](x
t

(�
t

)[i])2 + 2(wT

t

ẑ
t

� �)2 + 2�2µ2�2
t

⌘
,

where in the last ineqaulity we use the fact that (a+ b)2  2a2 + 2b2, for any a, b 2 R.

We first show that the Lagrangian dual parameter �
t

can be upper bounded:

Lemma D.2. Assume that �  1/µ2. For any t 2 [T ], we have �
t

 |�|
�µ

.

Proof. Remember that the update rule for �
t

is defined as:

�
t+1 = max{0,�

t

+ µ(wT

t

ẑ
t

� � � �µ�
t

)}. (50)

We prove the lemma by induction. For t = 0, since we set �0 = 0, we have �0  (|�|/(�µ). Now let us consider time step t
and assume that that �

t

 (|�|)/(�µ) for ⌧  t. Note that wT

t

ẑ
t

= r
t

[a
t

]  0 and from the update rule of �, we have:

�
t+1  max{0,�

t

+ µ(|�|� �µ�
t

)} (51)
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For the case when �
t

= 0, we have �
t+1 = µ|�|. Since we assume that �  1/µ2, we can easily verify that �

t+1  µ|�| 
|�|/(�µ).
For the case when �

t

� 0, since we see that �
t

+ µ(|�|� �µ�
t

) � 0 from the induction hypothesis that �
t

 |�|/(�µ), we
must have:

�
t+1 = �

t

+ µ(|�|� �µ�
t

). (52)

Subtract |�|/µ� on both sides of the above inequality, we get:

�
t+1 � |�|

�µ
= (1� �µ2

)

�
�
t

� |�|
�µ

�
(53)

Since we have �
t

 |�|/(�µ) and �  1/µ2, it is easy to see that we have for �
t+1:

�
t+1 � |�|

�µ
 0. (54)

Hence we prove the lemma.

For notation simplicity, let us denote |�|
�µ

as �
m

.

We now show how to relate
P

t

ŷ[i] + �
t

ẑ[i]� 
P

K

j=1
⇡i(st)[j]
pt[j]

to
P

t

y
t

[i] + �
t

z[i] for any i 2 [|⇧|]:
Lemma D.3. In EXP4.P.R (Alg. 3), with probability at least 1� �, for any w 2 �⇧, we have:

TX

t=1

|⇧|X

i=1

w[i](ŷ
t

[i] + �
t

ẑ
t

[i]� 

KX

j=1

⇡
i

(s
t

)[j]

p
t

j]
)


TX

t=1

|⇧|X

i=1

(w[i](y
t

[i] + �
t

z
t

[i]) + (1 + �
m

)

ln(|⇧|/�)


.

We use similar proof strategy as shown in the proof of Lemma 3.1 in (Bubeck et al., 2012) with three additional steps:(1)
union bound over all polices in ⇧, (2) introduction of a distribution w 2 �(⇧), (3) taking care of �

t

by using its upper
bound from Lemma D.2.

Proof. Let us set �0 = �/|⇧| and fix i 2 [|⇧|]. Define x̃
t

(�
t

) = ŷ
t

+ �
t

ẑ
t

and we denote x̂
t

(�
t

)[i] = x̃
t

(�
t

)[i] �

P

K

j=1(⇡i

(s
t

)[j]/p
t

[j]).

For notation simplicity, we are going to use x̃
t

and x̂
t

to represent x̃
t

(�
t

)[i]/(1 + �
m

) and x̂
t

(�
t

)[i]/(1 + �
m

) respectively
in the rest of the proof.

Let us also define x
t

= (y
t

[i] + �
t

z
t

[i])/(1 + �
m

). It is also straightforward to check that (x̂
t

� x
t

)  1 since x̂
t

 0,
�x

t

 1 and 0 <   1. Note that it is straightforward to show that E
t

(x̃
t

) = x
t

, where we denote E
t

as the expectation
conditioned on randomness from a1, ..., at�1.

Following the same strategy in the proof of Lemma 3.1 in (Bubeck et al., 2012), we can show that:

E
t

⇥
exp((x̂

t

� x
t

))

⇤
= E

t

⇥
exp((x̃

t

� 

KX

j=1

(⇡
i

(s
t

)[j]/p
t

[j])� x
t

)

⇤

 (1 + E
t

(x̃
t

� x
t

) + 2E
t

(x̃
t

� x
t

)

2
) exp(�2

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
)

 (1 + 2E
t

(x̃2
t

)) exp(�2
KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
) (55)
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We can upper bound E
t

(x̃2
t

) as follows:

E
t

(x̃2
t

) = E
t

h⇣� KX

j=1

⇡
i

(s
t

)[j]
c
t

[j] (a
t

= j)

p
t

[j]
+ �

t

KX
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⇡
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(s
t

)[j]
r
t

[j] (a
t

= j)

p
t

[j]

�
/(1 + �

m

)

⌘2i

 E
t,j⇠⇡i(st)

⇣�
ĉ[j]/p

t

[j] + �
t
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t

[j]/p
t

[j]
�
/(1 + �

m

)

⌘2

= E
j⇠⇡i(st)((ct[j] + �

t

r
t

[j])/(1 + �
m

))

2/p
t

[j]  E
j⇠⇡t(st)(1/pt(j)) =

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
(56)

where the first inequality comes from Jensen’s inequality and the last inequality comes from the fact that |c
t

[j]|  1 and
|�

t

r
t

[j]|  �
m

. Substitute the above results in Eq. 55, we get:

E
t

⇥
exp((x̂

t

� x
t

))

⇤  (1 + 2
KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
) exp(�2

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
)

 exp(2
KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
) exp(�2

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
)  1. (57)

Hence, we have:

E exp(
X

t=1

(x̂
t

� x
t

))  1. (58)

Now from Markov inequality we know P (X � ln(��1
))  �E(eX). Hence, this gives us that with probability least 1� �:


X

t

(x̂
t

� x
t

)  ln(1/�). (59)

Substitute the representation of x̂
t

, x
t

in, we get for i, with probability 1� �0:

TX

t=1

ŷ
t

[i] + �
t

ẑ
t

[i]� 

KX

j=1

(⇡
i

(s
t

)[j]/p
t

[j]) 
TX

t=1

y
t

[i] + �
t

z
t

[i] + (1 + �
m

)

ln(1/�0)


.

Now apply union bound over all policies in ⇧, it is straightforward to show that for any i 2 |⇧|, with probability at least
1� �, we have:

TX

t=1

ŷ
t

[i] + �
t

ẑ
t

[i]� 

KX

j=1

(⇡
i

(s
t

)[j]/p
t

[j]) 
TX

t=1

y
t

[i] + �
t

z
t

[i] + (1 + �
m

)

ln(|⇧|/�)


.

To prove the lemma, now let us fix any w 2 �(|⇧|), we can simply multiple w[i] on the both sides of the above inequality,
and then sum over from i = 1 to |⇧|.

Let us define ŵ 2 �(⇧) as:

ŵ = arg min

w2�(⇧)

TX

t=1

|⇧|X

i=1

w[i](ŷ[i] + �
t

ẑ[i]� 

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]
), (60)

and ŵ⇤ 2 �(⇧) as:

ŵ⇤
= arg min

w2�(⇧)

TX

t=1

|⇧|X

i=1

w[i](y[i] + �
t

z[i]) (61)

Now we turn to prove Theorem 4.3.
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Proof of Theorem 4.3. We prove the asymptotic property of Alg. 3 when T approaches to infinity. Since we set µ =q
ln(|⇧|)

(3K+4)T and � = T�✏+1/2K, we can first verify the condition �  1/µ2 in Lemma D.2. This condition holds since
� = O(T 0.5

) while 1/µ2
= ⇥(T ).

Let us first compute some facts. For wT

t
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t

, we have:
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For
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where the first inequality comes from Jesen’s inequality and the last inequality uses the assumption that the ⇧ contains the
uniform policy (i.e., the policy that assign probability 1/K to each action). Consider the RHS of Eq. 49, we have:
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ẑ
t

[i]� 

KX

j=1

⇡
i

(s
t

)[j]

p
t

[j]

�⌘
+ µ

TX

t=1

((wT

t

ẑ
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(64)

Consider the LHS of Eq. 49, set w = ŵ, we have:
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Chaining Eq. 64 and Eq. 65 together and rearrange terms, we will get:
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Since we have � � |�|
2/K�µ�µ

, we can show that 1� µK

2 (1 + �
t

+ ) � 0.

Now back to Eq. 66, using Lemma. D.3, we have with probability 1� ⌫:

TX

t=1

h
c
t

[a
t

] + �(r
t

[a
t

]� �) + �
t

� + �µ�2
t

/2
i
� T �µ�2/2

 TK +

�2
+ ln(|⇧|)

µ
+

TX

t=1

(1� µK

2

(1 + �
t

+ ))
⇣ |⇧|X

i=1

ŵ⇤
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where the last inequality follows from the definition of ŵ⇤ and w⇤. Rearrange terms, we get:
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(68)

Note that under the setting of � and µ we have �µ

2 � Kµ

2 + µ3�2 (we will verify it at the end of the proof), we can drop
the terms that relates to �2

t

in the above inequality. Note that we have �µ = T�✏

p
K ln(|⇧|) � T�✏, where ✏ 2 (0, 1/2).

Substitute �µ � T�✏ into the above inequality and rearrange terms, we get:
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t
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t

]� w⇤T y
t

+ �(r
t
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t

]� �)� �
t

(w⇤T z
t

� �)� T �µ�2/2

=

�2
+ ln(|⇧|)

µ
+ TK + (K + 2 + 2�2

+ 2K|�|)Tµ+ (1 + |�|T ✏

)

ln(|⇧|/⌫)


(69)
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Now let us set � = 0 and since we have that
P

T

t=1 �t

(w⇤T z
t

� �)  0, we get:

X
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c
t

[a
t

]� w⇤T y
t

 ln(|⇧|)
µ

+ TK + (K + 2 + 2�2
+ 2K|�|)Tµ+ (1 + |�|T ✏

)

ln(|⇧|/⌫)


 ln(|⇧|)
µ

+ TK + (3K + 4)Tµ+ (1 + T ✏

)

ln(|⇧|/⌫)


 2

p
T (ln(|⇧|)(3K + 4)) + 2

p
TK(1 + T ✏

) ln(|⇧|/⌫) = O(

p
T 1+✏K ln(|⇧|/⌫)) (70)

where we set µ and  as:

µ =

s
ln(|⇧|)

(3K + 4)T
,  =

r
(1 + T ✏

) ln(|⇧|/⌫)
TK

. (71)

Now let us consider
P

t

(r
t

[a
t

]� �). Let us assume
P

t

(r
t

[a
t

]� �) � 0, otherwise we prove the theorem already. Note
that

P
T

t=1 ct[at]� w⇤T y
t

� �2T . Hence we have:

�
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 2T + 2

p
T (ln(|⇧|)(3K + 4)) + 2

p
TK(1 + T ✏

) ln(|⇧|/⌫).

To maximize the LHS of the above inequality, we set � =

PT
t=1(rt[at]��)
�µT+2/µ . Substitute � into the above inequality, we get:
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p
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p
TK(1 + T ✏
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= 24(T 2�✏

p
K ln(|⇧|) + T 1.5�✏K ln(|⇧|) + T 1.5�0.5✏K ln(|⇧|) + T 1.5

p
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p
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�

= O(T 2�✏K ln(|⇧|)). (72)

Hence we have:
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]� �) = O(T 1�✏/2
p

K ln(|⇧|)). (73)

Note that for �, we have � = KT�✏+0.5. To verify that � � |�|
2/K�µ�µ

, we can see that as long as ✏ 2 (0, 1/2), we
have � = ⇥(T 0.5�✏

) while |�|/(2/K � µ� µ) = O(1). Hence when T is big enough, we can see that it always holds
that � � |�|

2/K�µ�µ

. For the second condition that � � K + 2µ2�2 = K + 2 ln(|⇧|)KT�2✏. Note that again as long
as ✏ 2 (0, 1/2), we have � = ⇥(T 0.5�✏

), and K + 2 ln(|⇧|)KT�2✏
= O(1). Hence we have � � K + 2 ln(|⇧|)KT�2✏.

Hence, we have shown that when µ =

q
ln(|⇧|)

(3K+4)T ,  =

q
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✏) ln(|⇧|/⌫)
TK

, and � = T�✏+1/2K, we have that as T ! 1:
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