Appendix

A. Proof of Proposition 2.1

Proof. The proof is mainly about adapting the specific two-player game presented in (Mannor et al., 2009) to the general online convex programming setting with adversarial constraints. We closely follow the notations in the example from Proposition 4 in (Mannor et al., 2009).

Let us define the decision set $\mathcal{X}=\Delta([1,2])$, namely a 2-D simplex. We design two different loss functions: $\ell^{1}(x)=$ $[-1,0] x$, and $\ell^{2}(x)=[-1,1] x$ (here $[a, b]$ stands for a 2-d row vector and hence $[a, b] x$ stands for the regular vector inner product). We also design two different constraints as: $f^{1}(x)=[-1,-1] x \leq 0$ and $f^{2}(x)=[1,-1] x \leq 0$. Note that both ℓ and f are linear functions with respect x, hence they are convex loss functions and constraints with respect to x. The adversary picks loss functions among $\left\{\ell^{1}, \ell^{2}\right\}$ and constraints among $\left\{f^{1}, f^{2}\right\}$ and will generate the following sequence of loss functions and constraints. Initialize a counter $k=0$, then:

1. while $k=0$ or $\frac{1}{t-1} \sum_{i=1}^{t-1} x_{i}[1]>3 / 4$, the adversary set $\ell_{t}=\ell^{2}(x)$ and $f_{t}=f^{2}(x)$, and set $k:=k+1$.
2. For next k steps, the adversary set $\ell_{t}=\ell^{1}(x)$ and $f_{t}=f^{1}(x)$. Then reset $k=0$ and go back to step 1 .

For any time step t, let us define $\hat{q}_{t}=\frac{1}{t} \sum_{i=1}^{t} \mathbb{1}\left(f_{i}=f^{2}\right)$, namely the fraction of the adversary picking the second type of constraint. Let us define $\hat{\alpha}_{t}=\sum_{i=1}^{t} x_{i}[1] / t$. Given any \hat{q}_{t}, we see that \mathcal{O}^{\prime} can be defined as

$$
\begin{align*}
\mathcal{O}^{\prime} & \left.=\left\{x \in \Delta([1,2]): \hat{q}_{t}[1,-1] x+\left(1-\hat{q}_{t}\right)[-1,-1] x \leq 0\right)\right\} \\
& =\left\{x \in \Delta([1,2]):\left[2 \hat{q}_{t}-1,-1\right] x \leq 0\right\}=\left\{x \in \Delta([1,2]): 2 \hat{q}_{t} x[1]-1 \leq 0\right\} \tag{17}
\end{align*}
$$

and the minimum loss the learner can get in hindsight with decisions restricted to \mathcal{O}^{\prime} is:

$$
\begin{align*}
r_{t}^{\min } & =\min _{x \in \mathcal{O}^{\prime}}\left(1-\hat{q}_{t}\right)[-1,0] x+\hat{q}_{t}[-1,1] x \\
& = \begin{cases}-1 & 0 \leq \hat{q}_{t} \leq 1 / 2 \\
-1 / 2-1 /\left(2 \hat{q}_{t}\right)+\hat{q}_{t} & 1 / 2 \leq \hat{q}_{t} \leq 1\end{cases} \tag{18}
\end{align*}
$$

The cumulative constraint violation at time step t can be computed as $\sum_{i=1}^{t} f_{i}\left(x_{i}\right)=\sum_{i=1}^{t} \mathbb{1}\left(f_{i}=f^{1}\right)[-1,-1] x_{i}+\mathbb{1}\left(f_{i}=\right.$ $\left.f^{2}\right)[1,-1] x_{i}$. We want to show that no matter what strategy the learner uses, as long as $\frac{1}{t} \lim \sup _{i \rightarrow \infty} \sum_{i} f_{i}\left(x_{i}\right) \leq 0$, we will have $\lim \sup _{t \rightarrow \infty}\left(\sum_{i=1}^{t} \ell_{i}\left(x_{i}\right) / t\right)-r_{t}^{\min }>0$.
Following a similar argument from (Mannor et al., 2009), we can show that Step 2 is entered an infinite number of times. To show this, assume that step 2 only enters finite number of times. Hence as the game keeps staying in Step 1, the fraction of the adversary picking the second constraint f^{2} approaches to one ($\hat{q}_{t} \rightarrow 1$), we will have as t approaches to infinity,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t} f_{i}\left(x_{i}\right)=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t} \mathbb{1}\left(f_{i}=f^{1}\right)[-1,-1] x_{i}+\frac{1}{t} \sum_{i=1}^{t} \mathbb{1}\left(f_{i}=f^{2}\right)[1,-1] x_{i} \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t} \mathbb{1}\left(f_{i}=f^{2}\right)[1,-1] x_{i}=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t}[1,-1] x_{i}=\lim _{t \rightarrow \infty}[1,-1]\left(\frac{1}{t} \sum_{i=1}^{t} x_{i}\right) . \tag{19}
\end{align*}
$$

Since $\sum_{i=1}^{t} x_{i} / t \in \Delta([1,2])$, we must have $\hat{\alpha}_{t}=\sum_{i=1}^{t} x_{i}[1] / t<=1 / 2$ to ensure that the long-term constraint is satisfied: $\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t} f_{i}\left(x_{i}\right) \leq 0$. But when $\hat{\alpha}_{t} \leq 1 / 2$, the condition of entering Step 1 is violated and we must enter step 2 . Hence step 2 is entered infinite number of times. In particular, there exist infinite sequences t_{i} and t_{i}^{\prime} such that $t_{i}<t_{i}^{\prime}<t_{t+1}$, and the adversary picks f^{2}, ℓ^{2} in $\left(t_{i}, t_{i}^{\prime}\right]$ (Step 1) and the adversary picks f^{1}, ℓ^{1} in $\left(t_{i}^{\prime}, t_{i+1}\right]$ (Step 2). Since step 1 and step 2 executes the same number of steps (i.e., using the counter k 's value), we must have $\hat{q}_{t_{i}}=1 / 2$ and $r_{t_{i}}^{m i n}=1$. Furthermore, we must have $t_{i}^{\prime} \geq t_{t+1} / 2$. Note that $\hat{\alpha}_{t_{i}^{\prime}} \leq 3 / 4$ since otherwise the adversary would be in step 1 at time $t_{i}^{\prime}+1$. Thus, during the first t_{i+1} steps, we must have:

$$
\begin{equation*}
\sum_{j=1}^{t_{i+1}} x_{j}[1]=\sum_{j=1}^{t_{i}^{\prime}} x_{j}[1]+\sum_{j=t_{i}^{\prime}+1}^{t_{i+1}} x_{j}[1] \leq \frac{3}{4} t_{i^{\prime}}+\left(t_{i+1}-t_{i}^{\prime}\right)=t_{i+1}-t_{i}^{\prime} / 4 \leq \frac{7}{8} t_{i+1} \tag{20}
\end{equation*}
$$

It is easy to verify that $\frac{1}{t_{i+1}} \sum_{t=1}^{t_{i+1}} \ell_{t}\left(x_{t}\right) \geq-\frac{1}{t_{i+1}} \sum_{t=1}^{t_{i+1}} x_{t}[1] \geq-\frac{7}{8}$. Hence, simply let $i \rightarrow \infty$, we have:

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\frac{1}{t} \sum_{i=1}^{t} \ell_{i}\left(x_{i}\right)-r_{t}^{m i n}\right) \geq-7 / 8+1=1 / 8 \tag{21}
\end{equation*}
$$

Namely, we have shown that for cumulative regret, regardless what sequence of decisions x_{1}, \ldots, x_{t} the learner has played, as long as it needs to satisfy $\lim \sup _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{t} f_{i}\left(x_{i}\right) \leq 0$, we must have:

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(\sum_{i=1}^{t} \ell_{i}\left(x_{i}\right)-\min _{x \in \mathcal{O}^{\prime}} \sum_{i=1}^{t} \ell_{i}(x)\right) \geq t / 8=\Omega(t) \tag{22}
\end{equation*}
$$

Hence we cannot guarantee to achieve no-regret when competing agains the decisions in \mathcal{O}^{\prime} while satisfying the long-term constraint.

B. Analysis of Alg. 1 and Proof Of Theorem 3.1

Proof of Theorem 3.1. Since the algorithm runs online mirror descent on the sequence of loss $\left\{\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right\}_{t}$ with respect to x, using the existing results of online mirror descent (Theorem 4.2 and Eq. 4.10 from (Bubeck, 2015)), we know that for the sequence of $\left\{x_{t}\right\}_{t}$:

$$
\begin{equation*}
\sum_{t=1}^{T}\left(\mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)\right) \leq \frac{D_{R}\left(x, x_{1}\right)}{\mu}+\frac{\mu}{2 \alpha} \sum_{t=1}^{T}\left\|\nabla_{x} \mathcal{L}\left(x_{t}, \lambda_{t}\right)\right\|_{*}^{2} \tag{23}
\end{equation*}
$$

Also, we know that the algorithm runs online gradient ascent on the sequence of loss $\left\{\mathcal{L}_{t}\left(x_{t}, \lambda\right)\right\}_{t}$ with respect to λ, using the existing analysis of online gradient descent (Zinkevich, 2003), we have for the sequence of λ_{t} :

$$
\begin{equation*}
\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right) \leq \frac{1}{\mu} \lambda^{2}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\frac{\partial \mathcal{L}_{t}\left(w_{t}, \lambda_{t}\right)}{\partial \lambda_{t}}\right)^{2} \tag{24}
\end{equation*}
$$

Note that for $\left(\nabla_{\lambda} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right)^{2}=\left(f_{t}\left(x_{t}\right)-\delta \mu \lambda_{t}\right)^{2} \leq 2 f_{t}^{2}\left(x_{t}\right)+2 \delta^{2} \mu^{2} \lambda_{t}^{2} \leq 2 D^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}$. Similarly for $\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|_{*}^{2}$, we also have:

$$
\begin{equation*}
\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|_{*}^{2} \leq 2\left\|\nabla \ell_{t}\left(x_{t}\right)\right\|_{*}^{2}+2\left\|\lambda_{t} \nabla f_{t}\left(x_{t}\right)\right\|_{*}^{2} \leq 2 G^{2}\left(1+\lambda_{t}^{2}\right) \tag{25}
\end{equation*}
$$

where we first used triangle inequality for $\left\|\nabla_{x} \mathcal{L}_{t}\left(x_{t}, \lambda_{t}\right)\right\|_{*}$ and then use the inequality of $2 a b \leq a^{2}+b^{2}, \forall a, b \in \mathcal{R}^{+}$. We also assume that the norm of the gradients are bounded as $\max \left(\left\|\nabla \ell_{t}\left(x_{t}\right)\right\|_{*},\left\|\nabla f_{t}\left(x_{t}\right)\right\|_{*}\right) \leq G \in \mathcal{R}^{+}$. Now sum Inequality 23 and 24 from $t=1$ to T, we get:

$$
\begin{align*}
& \sum_{t} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right) \\
& \leq \frac{2 D_{R}\left(x, x_{0}\right)+\lambda^{2}}{2 \mu}+\sum_{t} \mu\left(D^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}\right)+\sum_{t} \frac{\mu G^{2}}{\alpha}\left(1+\lambda_{t}^{2}\right) \\
& =\frac{2 D_{R}\left(x, x_{0}\right)+\lambda^{2}}{2 \mu}+T \mu\left(D^{2}+\frac{G^{2}}{\alpha}\right)+\mu\left(\delta^{2} \mu^{2}+\frac{G^{2}}{\alpha}\right) \sum \lambda_{t}^{2} \tag{26}
\end{align*}
$$

Using the saddle-point convex and concave formation for \mathcal{L}_{t}, we have:

$$
\begin{align*}
& \sum_{t} \mathcal{L}_{t}\left(x_{t}, \lambda\right)-\mathcal{L}_{t}\left(x, \lambda_{t}\right)=\sum_{t}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}(x)\right)+\sum_{t}\left(\lambda f_{t}\left(x_{t}\right)-\lambda_{t} f_{t}(x)\right)+\frac{\delta \mu}{2} \sum \lambda_{t}^{2}-\frac{\delta \mu T}{2} \lambda^{2} \\
& \leq \frac{2 B+\lambda^{2}}{2 \mu}+T \mu\left(D^{2}+\frac{G^{2}}{\alpha}\right)+\mu\left(\delta^{2} \mu^{2}+\frac{G^{2}}{\alpha}\right) \sum \lambda_{t}^{2} \tag{27}
\end{align*}
$$

Note that based on the setting of δ and μ, we can show that $\delta \geq \delta^{2} \mu^{2}+G^{2} / \alpha$. This is because $\delta^{2} \mu^{2}+G^{2} / \alpha=$ $\frac{4 G^{4} B}{\alpha^{2} T\left(D^{2}+G^{2} / \alpha\right)}+G^{2} / \alpha \leq \frac{4 G^{2} B}{T \alpha}+G^{2} / \alpha \leq 2 G^{2} / \alpha$, where we assume that T is large enough such that $T \geq 4 B$.
Since we have $\delta \geq \delta^{2} \mu^{2}+G^{2} / \alpha$, we can remove the term $\sum_{t} \lambda_{t}^{2}$ in the above inequality.

$$
\begin{equation*}
\sum_{t}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}(x)\right)+\sum_{t}\left(\lambda f_{t}\left(x_{t}\right)-\lambda_{t} f_{t}(x)\right)-\left(\frac{\delta \mu T}{2}+\frac{1}{2 \mu}\right) \lambda^{2} \leq \frac{2 B}{2 \mu}+T \mu\left(D^{2}+G^{2} / \alpha\right) \tag{28}
\end{equation*}
$$

Now set $x=x^{*}$, and set $\lambda=0$, since $f_{t}\left(x^{*}\right) \leq 0$ for all t, we get:

$$
\begin{equation*}
\sum_{t}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}\left(x^{*}\right)\right) \leq \frac{2 B}{2 \mu}+T \mu\left(D^{2}+G^{2} / \alpha\right) \leq 2 \sqrt{B T\left(D^{2}+G^{2} / \alpha\right)} \tag{29}
\end{equation*}
$$

where we set $\mu=\sqrt{B /\left(T\left(D^{2}+G^{2} / \alpha\right)\right)}$.
To upper bound $\sum_{t} f_{t}\left(x_{t}\right)$, we first note that we can lower bound $\sum_{t=1}^{T}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}(x)\right)$ as $\sum_{t=1}^{T}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}(x)\right) \geq-2 F T$. Now let us assume that $\sum_{t} f_{t}\left(x_{t}\right)>0$ (otherwise we are done). We set $\lambda=\left(\sum_{t} f_{t}\left(x_{t}\right)\right) /(\delta \mu T+1 / \mu)$, we have:

$$
\begin{align*}
& \frac{\left(\sum_{t} f_{t}\left(x_{t}\right)\right)^{2}}{2 \delta \mu T+1 / \mu} \leq \frac{2 B}{2 \mu}+T \mu\left(D^{2}+G^{2} / \alpha\right)+\sum_{t}\left(\ell_{t}\left(x^{*}\right)-\ell_{t}\left(x_{t}\right)\right) \\
& \leq 2 \sqrt{B T\left(D^{2}+G^{2} / \alpha\right)}+2 F T \tag{30}
\end{align*}
$$

Substitute $\mu=\sqrt{B /\left(T\left(D^{2}+G^{2} / \alpha\right)\right)}$ into the above inequality, we have:

$$
\begin{align*}
& \left(\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right)^{2} \leq 2 \sqrt{B T\left(D^{2}+G^{2} / \alpha\right)}(2 \delta \mu T+1 / \mu)+2 F T(2 \delta \mu T+1 / \mu) \\
& \leq \frac{8 G^{2}}{\alpha} B T+2 T\left(D^{2}+\frac{D^{2}}{\alpha}\right)+2 T\left(D^{2}+\frac{G^{2}}{\alpha}\right)+T^{3 / 2} \sqrt{8 F^{2} G^{2} / \alpha} \tag{31}
\end{align*}
$$

Take the square root on both sides of the above inequality and observe that $T^{3 / 2} \sqrt{8 F^{2} G^{2} / \alpha}$ dominates the RHS of the above inequality, we prove the theorem.

C. Analysis of EXP4.R

In this section we provide the full proof of theorem 4.2.
Proof of Theorem 4.2. We first present several known facts. First we have that for $w_{t}^{T} \hat{z}_{t}$:

$$
\begin{equation*}
w_{t}^{T} \hat{z}_{t}=\mathbb{E}_{i \sim w_{t}} \hat{z}_{t}[i]=\mathbb{E}_{i \sim w_{t}} \pi_{i}\left(s_{t}\right)^{T} \hat{r}_{t}=\mathbb{E}_{i \sim w_{t}} \mathbb{E}_{j \sim \pi_{i}\left(s_{t}\right)} \hat{r}_{t}[j]=\mathbb{E}_{j \sim p_{t}} \hat{r}_{t}[j]=r_{t}\left[a_{t}\right] \leq 1 \tag{32}
\end{equation*}
$$

For $w_{t}^{T} \hat{y}_{t}$, we have:

$$
\begin{equation*}
w_{t}^{T} \hat{y}_{t}=\mathbb{E}_{i \sim w_{t}} \hat{y}_{t}[i]=\mathbb{E}_{i \sim w_{t}} \pi_{i}\left(s_{t}\right)^{T} \hat{c}_{t}=\mathbb{E}_{j \sim p_{t}} \hat{c}_{t}[j]=c_{t}\left[a_{t}\right] \leq 1 \tag{33}
\end{equation*}
$$

For $\mathbb{E}_{a_{t} \sim p_{t}}\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}$, we then have:

$$
\begin{equation*}
\mathbb{E}_{a_{t} \sim p_{t}}\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}=\mathbb{E}_{a_{t} \sim p_{t}}\left(r_{t}\left[a_{t}\right]-\beta\right)^{2} \leq \mathbb{E}_{a_{t}} 2 r_{t}\left[a_{t}\right]^{2}+2 \beta^{2} \leq 4 \tag{34}
\end{equation*}
$$

For $\mathbb{E}_{a_{t} \sim p_{t}} \hat{y}_{t}$, we have:

$$
\begin{equation*}
\mathbb{E}_{a_{t} \sim p_{t}} \hat{y}_{t}[j]=\pi_{j}\left(s_{t}\right)^{T} \mathbb{E}_{a_{t} \sim p_{t}} \hat{c}_{t}=\pi_{j}\left(s_{t}\right)^{T} c_{t}=y_{t}[j] \tag{35}
\end{equation*}
$$

[^0]which gives us $\mathbb{E}_{a_{t} \sim p_{t}} \hat{y}_{t}=y_{t}$. Similarly we can easily verify that $\mathbb{E}_{a_{t} \sim p_{t}} \hat{z}_{t}=z_{t}$.
For $\sum_{i=1}^{|\Pi|} w_{t}[i] \hat{y}_{t}[i]^{2}$, we have:
\[

$$
\begin{align*}
& \sum_{i=1}^{|\Pi|} w_{t}[i] \hat{y}_{t}[i]^{2}=\mathbb{E}_{i \sim w_{t}} \hat{y}_{t}[i]^{2}=\mathbb{E}_{i \sim w_{t}}\left(\pi_{j}\left(s_{t}\right)^{T} \hat{c}_{t}\right)^{2}=\mathbb{E}_{i \sim w_{t}}\left(\mathbb{E}_{j \sim \pi_{i}\left(s_{t}\right)} \hat{c}_{t}[j]\right)^{2} \\
& \leq \mathbb{E}_{i \sim w_{t}} \mathbb{E}_{j \sim \pi_{i}\left(s_{t}\right)}\left(\hat{c}_{t}[j]\right)^{2}=\mathbb{E}_{j \sim p_{t}}\left(\hat{c}_{t}[j]\right)^{2}=\frac{c_{t}\left[a_{t}\right]^{2}}{p_{t}\left[a_{t}\right]} \tag{36}
\end{align*}
$$
\]

Hence, for $\mathbb{E}_{a_{t} \sim p_{t}} \sum_{i=1}^{|\Pi|} w_{t}[i] \hat{y}_{t}[i]^{2}$ we have:

$$
\begin{equation*}
\mathbb{E}_{a_{t} \sim p_{t}} \sum_{i=1}^{|\Pi|} w_{t}[i] \hat{y}_{t}[i]^{2} \leq \mathbb{E}_{a_{t} \sim p_{t}} \frac{c_{t}\left[a_{t}\right]^{2}}{p_{t}\left[a_{t}\right]}=\sum_{k=0}^{K} c_{t}[k]^{2} \leq K \tag{37}
\end{equation*}
$$

Similarly, for $\sum_{i=1}^{|\Pi|} w_{t}[i] \hat{z}_{t}[i]^{2}$, we have:

$$
\begin{equation*}
\sum_{i=1}^{|\Pi|} w_{t}[i] \hat{z}_{t}[i]^{2}=\mathbb{E}_{i \sim w_{t}}\left(\pi_{i}\left(s_{t}\right)^{T} \hat{r}_{t}\right)^{2} \leq \mathbb{E}_{j \sim p_{t}}\left(\hat{r}_{t}[j]\right)^{2}=\frac{r_{t}\left[a_{t}\right]^{2}}{p_{t}\left[a_{t}\right]} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{a_{t} \sim p_{t}} \sum_{i=1}^{|\Pi|} w_{t}[i] \hat{z}_{t}[i]^{2} \leq K \tag{39}
\end{equation*}
$$

Now we are going to take expectation with respect to the randomized decisions $\left\{a_{i}\right\}$ on both sides of Inequality. 11. Fix time step t, conditioned on a_{1}, \ldots, a_{t-1}, we have:

$$
\begin{aligned}
& \mathbb{E}_{a_{t}}\left[\mathcal{L}_{t}\left(w_{t}, \lambda\right)-\mathcal{L}_{t}\left(w, \lambda_{t}\right)\right] \\
& =\mathbb{E}_{a_{t}}\left[c_{t}\left[a_{t}\right]+\lambda\left(r_{t}\left[a_{t}\right]-\beta\right)-\frac{\delta \mu}{2} \lambda^{2}-\hat{y}_{t}^{T} w-\lambda_{t}\left(\hat{z}_{t}^{T} w-\beta\right)+\frac{\delta \mu}{2} \lambda_{t}^{2}\right] \\
& =\mathbb{E}_{a_{t}} c_{t}\left[a_{t}\right]+\lambda\left(\mathbb{E}_{a_{t}} r_{t}\left[a_{t}\right]-\beta\right)-\frac{\delta \mu}{2} \lambda^{2}-y_{t}^{T} w-\lambda_{t}\left(z_{t}^{T} w-\beta\right)+\frac{\delta \mu}{2} \lambda_{t}^{2}
\end{aligned}
$$

(Used fact that $\mathbb{E}_{a_{t} \sim p_{t}} \hat{y}_{t}=y_{t}$ and $\left.\mathbb{E}_{a_{t} \sim p_{t}} \hat{z}_{t}=z_{t}\right)$
Take the expectation with respect to a_{1}, \ldots, a_{T} on the LHS of Inequality 11 , we have:

$$
\begin{align*}
& \mathbb{E}_{\left\{a_{t}\right\}_{t}} \sum_{t=1}^{T}\left[\mathcal{L}_{t}\left(w_{t}, \lambda\right)-\mathcal{L}_{t}\left(w, \lambda_{t}\right)\right]=\sum_{t=1}^{T} \mathbb{E}_{a_{1}, \ldots, a_{t-1}} \mathbb{E}_{a_{t} \mid a_{1}, \ldots, a_{t-1}}\left[\mathcal{L}_{t}\left(w_{t}, \lambda\right)-\mathcal{L}_{t}\left(w, \lambda_{t}\right)\right] \\
& =\sum_{t=1}^{T}\left[\mathbb{E} c_{t}\left[a_{t}\right]+\lambda\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)-y_{t}^{T} w-\lambda_{t}\left(z_{t}^{T} w-\beta\right)+\frac{\delta \mu}{2} \lambda_{t}^{2}\right]-\frac{\delta \mu T}{2} \lambda^{2} \tag{40}
\end{align*}
$$

Now take the expectation with respect to a_{1}, \ldots, a_{T} on the RHS of Inequality 11 (we use $\mathbb{E}_{a_{t} \mid-a_{t}}$ to represent the expectation over the distribution of a_{t} conditioned on a_{1}, \ldots, a_{t-1}), we have:

$$
\begin{align*}
& \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\mu \sum_{t=1}^{T}\left(\mathbb{E}_{a_{t} \mid a_{-t}}\left(\sum_{i=1}^{|\Pi|} w_{t}[i] \hat{y}_{t}[i]^{2}+\lambda_{t}^{2} w_{t}[i] \hat{z}_{t}[i]^{2}\right)+\mathbb{E}_{a_{t} \mid a_{-t}}\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}\right) \\
& \leq \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\mu \sum_{t=1}^{T}\left(K+\lambda_{t}^{2} K+4+\delta^{2} \mu^{2} \lambda_{t}^{2}\right) \\
&(\text { Used Eq. } 37 \text { and } 39) \\
&= \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\mu T(K+4)+\mu\left(K+\delta^{2} \mu^{2}\right) \sum_{t=1}^{T} \lambda_{t}^{2} . \tag{41}
\end{align*}
$$

Note that based on the setting of δ and μ, we can show that $\delta \geq 2 K+2 \delta^{2} \mu^{2}$. This is because $2 K+2 \delta^{2} \mu^{2}=2 K+$ $18 K^{2} \ln (|\Pi|) /(T(K+4)) \leq 2 K+18 K \ln (|\Pi|) / T \leq 3 K$, where for simplicity we assume that T is large enough $(T \geq 18 \ln (|\Pi|))$.
Chain Eq. 40 and 41 together and get rid of the terms that have λ_{t} (due to the fact that $\delta \geq 2 K+2 \delta^{2} \mu^{2}$) and rearrange terms, we get:

$$
\begin{align*}
& \mathbb{E}\left(\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-\sum_{t=1}^{T} y_{t}^{T} w\right)+\sum_{t=1}^{T}\left(\lambda\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)-\lambda_{t}\left(z_{t}^{T} w-\beta\right)\right)-\left(\frac{\delta \mu T}{2}+\frac{1}{\mu}\right) \lambda^{2} \\
& \leq \frac{\ln (|\Pi|)}{\mu}+\mu T(K+4) \tag{42}
\end{align*}
$$

The above inequality holds for any w. Substitute w^{*} into Eq. 42, we get:

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-\sum_{t=1}^{T} y_{t}^{T} w^{*}\right)+\sum_{t=1}^{T} \lambda\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)-\left(\frac{\delta \mu T}{2}+\frac{1}{\mu}\right) \lambda^{2} \\
& \leq \frac{\ln (|\Pi|)}{\mu}+\mu T(K+4)
\end{aligned}
$$

Now let us set $\lambda=0$, for regret, we get:

$$
\begin{align*}
& \mathbb{E}\left(\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-\sum_{t=1}^{T} y_{t}^{T} w^{*}\right) \leq \ln (|\Pi|) / \mu+\mu T(K+4) \\
& \leq 2 \sqrt{\ln (|\Pi|) T(K+4)}=O(\sqrt{T K \ln (|\Pi|)}) \tag{43}
\end{align*}
$$

where $\mu=\sqrt{\ln (|\Pi|) / T(K+4)}$.
For constraints $\sum\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)$, let us assume that $\sum \mathbb{E}\left(r_{t}\left[a_{t}\right]-\beta\right)>0$ (otherwise we are done), and substitute $\lambda=$ $\left(\sum \mathbb{E} r_{t}\left[a_{t}\right]-\beta\right) /(\delta \mu T+2 / \mu)$ into inequality 43 (note that $\lambda>0$). Using the fact that $\mathbb{E}\left(\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-\sum_{t=1}^{T} y_{t}^{T} w^{*}\right) \geq$ $-2 T$, we get:

$$
\begin{equation*}
\left(\sum_{t=1}^{T}\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)\right)^{2} \leq(2 \delta \mu T+4 / \mu)\left(2 T+2 \sqrt{\ln (|\Pi|) T\left(K+2+2 \beta^{2}\right)}\right) \tag{44}
\end{equation*}
$$

Substitute $\mu=\sqrt{\ln (|\Pi|) / T(K+4)}$ and $\delta=3 K$ back to the above equation, it is easy to verity that:

$$
\begin{equation*}
\left(\sum_{t=1}^{T}\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)\right)^{2} \leq 12 K \sqrt{\frac{\ln (|\Pi|)}{K+4}} T^{3 / 2}+12 K \ln (|\Pi|) T+8 T^{3 / 2} \sqrt{\frac{K+4}{\ln (|\Pi|)}}+8 T(K+4) \tag{45}
\end{equation*}
$$

Since we consider the asymptotic property when $T \rightarrow \infty$, we can see that the LHS of the above inequality is dominated by $\sqrt{K \ln (|\Pi|)} T^{3 / 2}$. Hence,

$$
\begin{equation*}
\left(\sum_{t=1}^{T}\left(\mathbb{E} r_{t}\left[a_{t}\right]-\beta\right)\right)^{2} \leq O\left(\sqrt{K \ln (|\Pi|)} T^{3 / 2}\right) \tag{46}
\end{equation*}
$$

Take the square root on both sides of the above inequality, we prove the theorem.

D. Algorithm and Analysis of EXP4.P.R

D.1. Algorithm

We present the EXP4.P.R algorithm in Alg. 3.

```
Algorithm 3 Exp4.P with Risk Constraints (EXP4.P.R)
    Input: Policy Set \(\Pi\)
    Initialize \(w_{1}=[1 / N, \ldots, 1 / N]^{T}\) and \(\lambda_{1}=0\).
    for \(t=1\) to T do
        Receive context \(s_{t}\).
        Query each experts to get the sequence of advice \(\left\{\pi_{i}\left(s_{t}\right)\right\}_{i=1}^{N}\).
        Set \(p_{t}=\sum_{i=1}^{N} w_{t}[i] \pi_{i}\left(s_{t}\right)\).
        Draw action \(a_{t}\) randomly according to probability \(p_{t}\).
        Receive cost \(c_{t}\left[a_{t}\right]\) and risk \(r_{t}\left[a_{t}\right]\).
        Set the cost vector \(\hat{c}_{t} \in R^{K}\) and the risk vector \(\hat{r}_{t} \in R^{K}\) as:
\[
\begin{equation*}
\hat{c}_{t}[i]=\frac{c_{t}[i] \mathbb{1}\left(a_{t}=i\right)}{p_{t}[i]}, \quad \hat{r}_{t}[i]=\frac{r_{t}[i] \mathbb{1}\left(a_{t}=i\right)}{p_{t}[i]}, \forall i \in\{1,2, \ldots, K\} . \tag{47}
\end{equation*}
\]
```

10: For each expert j, set:

$$
\begin{equation*}
\hat{y}_{t}[j]=\pi_{j}\left(s_{t}\right)^{T} \hat{c}_{t}, \quad \hat{z}_{t}[j]=\pi_{j}\left(s_{t}\right)^{T} \hat{r}_{t}, \forall j \in\{1,2 \ldots, N\} \tag{48}
\end{equation*}
$$

11: \quad Set $\tilde{x}_{t}=\hat{y}_{t}+\lambda_{t} \hat{z}_{t}$.
12: Update w_{t+1} as:

$$
w_{t+1}[i]=\frac{w_{t}[i] \exp \left(-\mu\left(\tilde{x}_{t}[i]-\kappa \sum_{k=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[k]}{p_{t}[k]}\right)\right)}{\sum_{j=1}^{|\Pi|} w_{t}[j] \exp \left(-\mu\left(\tilde{x}_{t}[j]-\kappa \sum_{k=1}^{K} \frac{\pi_{j}\left(s_{t}\right)[k]}{p_{t}[k]}\right)\right)},
$$

13: Update λ_{t+1} as:

$$
\lambda_{t+1}=\max \left\{0, \lambda_{t}+\mu\left(w_{t}^{T} \hat{z}_{t}-\beta-\delta \mu \lambda_{t}\right)\right\}
$$

end for

D.2. Analysis of EXP4.P.R

We give detailed regret analysis of EXP4.P.R in this section. Let us define $\hat{x}_{t}(\lambda)$ as $\hat{x}_{t}(\lambda)[i]=\hat{y}_{t}[i]+\lambda \hat{z}_{t}[i]-$ $\kappa \sum_{k=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[k]}{p_{t}[k]}, \forall i \in[N]$ and $\mathcal{L}_{t}(w, \lambda)=w^{T} \hat{x}_{t}-\lambda \beta-\frac{\delta \mu}{2} \lambda^{2}$. As we can see that Line 3 is essentially running Weighted Majority algorithm on the sequence of functions $\left\{\mathcal{L}_{t}\left(w, \lambda_{t}\right)\right\}_{t}$ while Line 3 is running Online Gradient Ascent on the sequence of functions $\left\{\mathcal{L}_{t}\left(w_{t}, \lambda\right)\right\}_{t}$. Applying the classic analysis of Weighted Majority and analysis of Online Gradient Descent, we can show that:
Lemma D.1. The sequences $\left\{w_{t}\right\}_{t}$ and $\left\{\lambda_{t}\right\}_{t}$ generated from Lines 3 and 3 in EXP4.P.R has the following property:

$$
\begin{align*}
& \sum_{t=1}^{T} \mathcal{L}_{t}\left(w_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(w, \lambda_{t}\right) \\
& \leq \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}+2\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}+2 \delta^{2} \mu^{2} \lambda_{t}^{2}\right) \tag{49}
\end{align*}
$$

Proof. Using the classic analysis of Weighted Majority algorithm, we can get that for the sequence of loss $\left\{\mathcal{L}_{t}\left(w, \lambda_{t}\right)\right\}_{t}$:

$$
\sum_{t=1}^{T} \mathcal{L}_{t}\left(w_{t}, \lambda_{t}\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(w, \lambda_{t}\right) \leq \frac{\ln (|\Pi|)}{\mu}+\frac{1}{2} \mu \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}
$$

for any $w \in \mathcal{B}$. On the other hand, we know that we compute λ_{t} by running Online Gradient Descent on the loss functions $\left\{\mathcal{L}_{t}\left(w_{t}, \lambda\right)\right\}_{t}$. Applying the classic analysis of Online Gradient Descent, we can get:

$$
\sum_{t=1}^{T} \mathcal{L}_{t}\left(w_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(w_{t}, \lambda_{t}\right) \leq \frac{1}{\mu} \lambda^{2}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\frac{\partial \mathcal{L}_{t}\left(w_{t}, \lambda_{t}\right)}{\partial \lambda_{t}}\right)^{2}
$$

for any $\lambda \geq 0$.
We know that $\partial \mathcal{L}_{t}\left(w_{t}, \lambda\right) / \partial \lambda_{t}=w_{t}^{T} \hat{z}_{t}-\beta-\delta \mu \lambda_{t}$. Substitute these gradient and derivatives back to the above two inequalities, and then sum the above two inequality together we get:

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathcal{L}_{t}\left(w_{t}, \lambda\right)-\sum_{t=1}^{T} \mathcal{L}_{t}\left(w, \lambda_{t}\right) \\
& \leq \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}+\left(w_{t}^{T} \hat{z}_{t}-\beta-\delta \mu \lambda_{t}\right)^{2}\right) \\
& \leq \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T}\left(\sum_{i=1}^{|\Pi|} w_{t}[i]\left(x_{t}\left(\lambda_{t}\right)[i]\right)^{2}+2\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}+2 \delta^{2} \mu^{2} \lambda_{t}^{2}\right)
\end{aligned}
$$

where in the last ineqaulity we use the fact that $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, for any $a, b \in \mathbb{R}$.
We first show that the Lagrangian dual parameter λ_{t} can be upper bounded:
Lemma D.2. Assume that $\delta \leq 1 / \mu^{2}$. For any $t \in[T]$, we have $\lambda_{t} \leq \frac{|\beta|}{\delta \mu}$.
Proof. Remember that the update rule for λ_{t} is defined as:

$$
\begin{equation*}
\lambda_{t+1}=\max \left\{0, \lambda_{t}+\mu\left(w_{t}^{T} \hat{z}_{t}-\beta-\delta \mu \lambda_{t}\right)\right\} \tag{50}
\end{equation*}
$$

We prove the lemma by induction. For $t=0$, since we set $\lambda_{0}=0$, we have $\lambda_{0} \leq(|\beta| /(\delta \mu)$. Now let us consider time step t and assume that that $\lambda_{t} \leq(|\beta|) /(\delta \mu)$ for $\tau \leq t$. Note that $w_{t}^{T} \hat{z}_{t}=r_{t}\left[a_{t}\right] \leq 0$ and from the update rule of λ, we have:

$$
\begin{equation*}
\lambda_{t+1} \leq \max \left\{0, \lambda_{t}+\mu\left(|\beta|-\delta \mu \lambda_{t}\right)\right\} \tag{51}
\end{equation*}
$$

For the case when $\lambda_{t}=0$, we have $\lambda_{t+1}=\mu|\beta|$. Since we assume that $\delta \leq 1 / \mu^{2}$, we can easily verify that $\lambda_{t+1} \leq \mu|\beta| \leq$ $|\beta| /(\delta \mu)$.
For the case when $\lambda_{t} \geq 0$, since we see that $\lambda_{t}+\mu\left(|\beta|-\delta \mu \lambda_{t}\right) \geq 0$ from the induction hypothesis that $\lambda_{t} \leq|\beta| /(\delta \mu)$, we must have:

$$
\begin{equation*}
\lambda_{t+1}=\lambda_{t}+\mu\left(|\beta|-\delta \mu \lambda_{t}\right) \tag{52}
\end{equation*}
$$

Subtract $|\delta| / \mu \beta$ on both sides of the above inequality, we get:

$$
\begin{equation*}
\lambda_{t+1}-\frac{|\beta|}{\delta \mu}=\left(1-\delta \mu^{2}\right)\left(\lambda_{t}-\frac{|\beta|}{\delta \mu}\right) \tag{53}
\end{equation*}
$$

Since we have $\lambda_{t} \leq|\beta| /(\delta \mu)$ and $\delta \leq 1 / \mu^{2}$, it is easy to see that we have for λ_{t+1} :

$$
\begin{equation*}
\lambda_{t+1}-\frac{|\beta|}{\delta \mu} \leq 0 \tag{54}
\end{equation*}
$$

Hence we prove the lemma.
For notation simplicity, let us denote $\frac{|\beta|}{\delta \mu}$ as λ_{m}.
We now show how to relate $\sum_{t} \hat{y}[i]+\lambda_{t} \hat{z}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}$ to $\sum_{t} y_{t}[i]+\lambda_{t} z[i]$ for any $i \in[|\Pi|]$:
Lemma D.3. In EXP4.P.R (Alg. 3), with probability at least $1-\delta$, for any $w \in \Delta \Pi$, we have:

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|} w[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{\left.p_{t} j\right]}\right) \\
& \quad \leq \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|}\left(w[i]\left(y_{t}[i]+\lambda_{t} z_{t}[i]\right)+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \delta)}{\kappa}\right.
\end{aligned}
$$

We use similar proof strategy as shown in the proof of Lemma 3.1 in (Bubeck et al., 2012) with three additional steps:(1) union bound over all polices in Π, (2) introduction of a distribution $w \in \Delta(\Pi)$, (3) taking care of λ_{t} by using its upper bound from Lemma D.2.

Proof. Let us set $\delta^{\prime}=\delta /|\Pi|$ and fix $i \in[|\Pi|]$. Define $\tilde{x}_{t}\left(\lambda_{t}\right)=\hat{y}_{t}+\lambda_{t} \hat{z}_{t}$ and we denote $\hat{x}_{t}\left(\lambda_{t}\right)[i]=\tilde{x}_{t}\left(\lambda_{t}\right)[i]-$ $\kappa \sum_{j=1}^{K}\left(\pi_{i}\left(s_{t}\right)[j] / p_{t}[j]\right)$.
For notation simplicity, we are going to use \tilde{x}_{t} and \hat{x}_{t} to represent $\tilde{x}_{t}\left(\lambda_{t}\right)[i] /\left(1+\lambda_{m}\right)$ and $\hat{x}_{t}\left(\lambda_{t}\right)[i] /\left(1+\lambda_{m}\right)$ respectively in the rest of the proof.
Let us also define $x_{t}=\left(y_{t}[i]+\lambda_{t} z_{t}[i]\right) /\left(1+\lambda_{m}\right)$. It is also straightforward to check that $\kappa\left(\hat{x}_{t}-x_{t}\right) \leq 1$ since $\hat{x}_{t} \leq 0$, $-x_{t} \leq 1$ and $0<\kappa \leq 1$. Note that it is straightforward to show that $\mathbb{E}_{t}\left(\tilde{x}_{t}\right)=x_{t}$, where we denote \mathbb{E}_{t} as the expectation conditioned on randomness from a_{1}, \ldots, a_{t-1}.
Following the same strategy in the proof of Lemma 3.1 in (Bubeck et al., 2012), we can show that:

$$
\begin{align*}
& \mathbb{E}_{t}\left[\exp \left(\kappa\left(\hat{x}_{t}-x_{t}\right)\right)\right]=\mathbb{E}_{t}\left[\exp \left(\kappa\left(\tilde{x}_{t}-\kappa \sum_{j=1}^{K}\left(\pi_{i}\left(s_{t}\right)[j] / p_{t}[j]\right)-x_{t}\right)\right]\right. \\
& \leq\left(1+\mathbb{E}_{t} \kappa\left(\tilde{x}_{t}-x_{t}\right)+\kappa^{2} \mathbb{E}_{t}\left(\tilde{x}_{t}-x_{t}\right)^{2}\right) \exp \left(-\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \\
& \leq\left(1+\kappa^{2} \mathbb{E}_{t}\left(\tilde{x}_{t}^{2}\right)\right) \exp \left(-\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \tag{55}
\end{align*}
$$

We can upper bound $\mathbb{E}_{t}\left(\tilde{x}_{t}^{2}\right)$ as follows:

$$
\begin{align*}
& \mathbb{E}_{t}\left(\tilde{x}_{t}^{2}\right)=\mathbb{E}_{t}\left[\left(\left(\sum_{j=1}^{K} \pi_{i}\left(s_{t}\right)[j] \frac{c_{t}[j] \mathbb{1}\left(a_{t}=j\right)}{p_{t}[j]}+\lambda_{t} \sum_{j=1}^{K} \pi_{i}\left(s_{t}\right)[j] \frac{r_{t}[j] \mathbb{1}\left(a_{t}=j\right)}{p_{t}[j]}\right) /\left(1+\lambda_{m}\right)\right)^{2}\right] \\
& \leq \mathbb{E}_{t, j \sim \pi_{i}\left(s_{t}\right)}\left(\left(\hat{c}[j] / p_{t}[j]+\lambda_{t} \hat{r}_{t}[j] / p_{t}[j]\right) /\left(1+\lambda_{m}\right)\right)^{2} \\
& =\mathbb{E}_{j \sim \pi_{i}\left(s_{t}\right)}\left(\left(c_{t}[j]+\lambda_{t} r_{t}[j]\right) /\left(1+\lambda_{m}\right)\right)^{2} / p_{t}[j] \leq \mathbb{E}_{j \sim \pi_{t}\left(s_{t}\right)}\left(1 / p_{t}(j)\right)=\sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]} \tag{56}
\end{align*}
$$

where the first inequality comes from Jensen's inequality and the last inequality comes from the fact that $\left|c_{t}[j]\right| \leq 1$ and $\left|\lambda_{t} r_{t}[j]\right| \leq \lambda_{m}$. Substitute the above results in Eq. 55, we get:

$$
\begin{align*}
& \mathbb{E}_{t}\left[\exp \left(\kappa\left(\hat{x}_{t}-x_{t}\right)\right)\right] \leq\left(1+\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \exp \left(-\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \\
& \leq \exp \left(\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \exp \left(-\kappa^{2} \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right) \leq 1 \tag{57}
\end{align*}
$$

Hence, we have:

$$
\begin{equation*}
\mathbb{E} \exp \left(\kappa \sum_{t=1}\left(\hat{x}_{t}-x_{t}\right)\right) \leq 1 \tag{58}
\end{equation*}
$$

Now from Markov inequality we know $P\left(X \geq \ln \left(\delta^{-1}\right)\right) \leq \delta \mathbb{E}\left(e^{X}\right)$. Hence, this gives us that with probability least $1-\delta$:

$$
\begin{equation*}
\kappa \sum_{t}\left(\hat{x}_{t}-x_{t}\right) \leq \ln (1 / \delta) \tag{59}
\end{equation*}
$$

Substitute the representation of \hat{x}_{t}, x_{t} in, we get for i, with probability $1-\delta^{\prime}$:

$$
\sum_{t=1}^{T} \hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K}\left(\pi_{i}\left(s_{t}\right)[j] / p_{t}[j]\right) \leq \sum_{t=1}^{T} y_{t}[i]+\lambda_{t} z_{t}[i]+\left(1+\lambda_{m}\right) \frac{\ln \left(1 / \delta^{\prime}\right)}{\kappa}
$$

Now apply union bound over all policies in Π, it is straightforward to show that for any $i \in|\Pi|$, with probability at least $1-\delta$, we have:

$$
\sum_{t=1}^{T} \hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K}\left(\pi_{i}\left(s_{t}\right)[j] / p_{t}[j]\right) \leq \sum_{t=1}^{T} y_{t}[i]+\lambda_{t} z_{t}[i]+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \delta)}{\kappa}
$$

To prove the lemma, now let us fix any $w \in \Delta(|\Pi|)$, we can simply multiple $w[i]$ on the both sides of the above inequality, and then sum over from $i=1$ to $|\Pi|$.

Let us define $\hat{w} \in \Delta(\Pi)$ as:

$$
\begin{equation*}
\hat{w}=\arg \min _{w \in \Delta(\Pi)} \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|} w[i]\left(\hat{y}[i]+\lambda_{t} \hat{z}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right), \tag{60}
\end{equation*}
$$

and $\hat{w}^{*} \in \Delta(\Pi)$ as:

$$
\begin{equation*}
\hat{w}^{*}=\arg \min _{w \in \Delta(\Pi)} \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|} w[i]\left(y[i]+\lambda_{t} z[i]\right) \tag{61}
\end{equation*}
$$

Now we turn to prove Theorem 4.3.

Proof of Theorem 4.3. We prove the asymptotic property of Alg. 3 when T approaches to infinity. Since we set $\mu=$ $\sqrt{\frac{\ln (|\Pi|)}{(3 K+4) T}}$ and $\delta=T^{-\epsilon+1 / 2} K$, we can first verify the condition $\delta \leq 1 / \mu^{2}$ in Lemma D.2. This condition holds since $\delta=O\left(T^{0.5}\right)$ while $1 / \mu^{2}=\Theta(T)$.
Let us first compute some facts. For $w_{t}^{T} \hat{x}_{t}$, we have:

$$
\begin{align*}
& w_{t}^{T} \hat{x}_{t}\left(\lambda_{t}\right)=\mathbb{E}_{j \sim w_{t}}\left(\hat{y}_{t}[j]+\lambda_{t} \hat{z}_{t}[j]-\kappa \sum_{i=1}^{K} \frac{\pi_{j}\left(s_{t}\right)[i]}{p_{t}[i]}\right)=\mathbb{E}_{j \sim p_{t}} \hat{c}_{t}[j]+\lambda_{t} \mathbb{E}_{j \sim p_{t}} \hat{r}_{t}[j]-\kappa \mathbb{E}_{j \sim p_{t}} \frac{1}{p_{t}[j]} \\
& =c_{t}\left[a_{t}\right]+\lambda_{t} r_{t}\left[a_{t}\right]-\kappa K . \tag{62}
\end{align*}
$$

For $\sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}$, we have:

$$
\begin{align*}
& \sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}=\mathbb{E}_{i \sim w_{t}}\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}=\mathbb{E}_{i \sim w_{t}}\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}(i)-k \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)^{2} \\
& \leq \mathbb{E}_{i \sim w_{t}, j \sim \pi_{i}\left(s_{t}\right)}\left(\hat{c}_{t}[j]+\lambda_{t} \hat{r}_{t}[j]-\kappa / p_{t}[j]\right)^{2}=\mathbb{E}_{j \sim p_{t}}\left(\hat{c}_{t}[j]+\lambda_{t} \hat{r}_{t}[j]-\kappa / p_{t}[j]\right)^{2} \\
& =\sum_{i=1}^{K} p_{t}[i] \frac{\left(c_{t}[i] \mathbb{1}\left(a_{t}=i\right)+\lambda_{t} r_{t}[i] \mathbb{1}\left(a_{t}=i\right)-\kappa\right)^{2}}{p_{t}[i]^{2}} \\
& =\sum_{i=1}^{K} \frac{\left(c_{t}[i] \mathbb{1}\left(a_{t}=i\right)+\lambda_{t} r_{t}[i] \mathbb{1}\left(a_{t}=i\right)-\kappa\right)^{2}}{p_{t}[i]} \\
& \leq \sum_{i=1}^{K}\left(-1-\lambda_{t}-\kappa\right)\left(\hat{c}_{t}[i]+\lambda_{t} \hat{r}_{t}[i]-\kappa / p_{t}[i]\right) \\
& =K\left(-1-\lambda_{t}-\kappa\right) \sum_{i=1}^{K}\left((1 / K) \hat{c}_{t}[i]+\lambda_{t}(1 / K) \hat{r}_{t}[i]-\kappa \frac{1 / K}{p_{t}[i]}\right) \\
& \leq K\left(-1-\lambda_{t}-\kappa\right)\left(\sum_{i=1}^{|\Pi|} \hat{w}[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)\right) \tag{63}
\end{align*}
$$

where the first inequality comes from Jesen's inequality and the last inequality uses the assumption that the Π contains the uniform policy (i.e., the policy that assign probability $1 / K$ to each action). Consider the RHS of Eq. 49, we have:

$$
\begin{align*}
& \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T} \sum_{i=1}^{|\Pi|} w_{t}[i]\left(\hat{x}_{t}\left(\lambda_{t}\right)[i]\right)^{2}+\frac{\mu}{2} \sum_{t=1}^{T}\left(w_{t}^{T} \hat{z}_{t}-\beta-\delta \mu \lambda_{t}\right)^{2} \\
& \leq \frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T} K\left(-1-\lambda_{t}-\kappa\right)\left(\sum_{i=1}^{|\Pi|} \hat{w}[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)\right)+\mu \sum_{t=1}^{T}\left(\left(w_{t}^{T} \hat{z}_{t}-\beta\right)^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}\right) \\
& =\frac{\lambda^{2}}{\mu}+\frac{\ln (|\Pi|)}{\mu}+\frac{\mu}{2} \sum_{t=1}^{T} K\left(-1-\lambda_{t}-\kappa\right)\left(\sum_{i=1}^{|\Pi|} \hat{w}[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)\right)+\mu \sum_{t=1}^{T}\left(\left(r_{t}\left[a_{t}\right]-\beta\right)^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}\right) \tag{64}
\end{align*}
$$

Consider the LHS of Eq. 49, set $w=\hat{w}$, we have:

$$
\begin{align*}
& \sum_{t=1}^{T}\left[\mathcal{L}_{t}\left(w_{t}, \lambda\right)-\mathcal{L}_{t}\left(\hat{w}, \lambda_{t}\right)\right] \\
& =\sum_{t=1}^{T}\left[c_{t}\left[a_{t}\right]+\lambda r_{t}\left[a_{t}\right]-\kappa K-\lambda \beta-\delta \mu \lambda^{2} / 2-\left(\sum_{i=1}^{|\Pi|} \hat{w}[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)\right)+\lambda_{t} \beta+\delta \mu \lambda_{t}^{2} / 2\right] \tag{65}
\end{align*}
$$

Chaining Eq. 64 and Eq. 65 together and rearrange terms, we will get:

$$
\begin{align*}
& \sum_{t=1}^{T}\left[c_{t}\left[a_{t}\right]+\lambda\left(r_{t}\left[a_{t}\right]-\beta\right)+\lambda_{t} \beta+\delta \mu \lambda_{t}^{2} / 2\right]-T \delta \mu \lambda^{2} / 2 \\
& \leq T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T}\left(1-\frac{\mu K}{2}\left(1+\lambda_{t}+\kappa\right)\right)\left(\sum_{i=1}^{|\Pi|} \hat{w}[i]\left(\hat{y}_{t}[i]+\lambda_{t} \hat{z}_{t}[i]-\kappa \sum_{j=1}^{K} \frac{\pi_{i}\left(s_{t}\right)[j]}{p_{t}[j]}\right)\right) \\
& \quad+\mu \sum_{t=1}^{T}\left(2+2 \beta^{2}+\delta^{2} \mu^{2} \lambda_{t}^{2}\right) \tag{66}
\end{align*}
$$

Since we have $\delta \geq \frac{|\beta|}{2 / K-\mu-\kappa \mu}$, we can show that $1-\frac{\mu K}{2}\left(1+\lambda_{t}+\kappa\right) \geq 0$.
Now back to Eq. 66, using Lemma. D.3, we have with probability $1-\nu$:

$$
\begin{align*}
& \sum_{t=1}^{T}\left[c_{t}\left[a_{t}\right]+\lambda\left(r_{t}\left[a_{t}\right]-\beta\right)+\lambda_{t} \beta+\delta \mu \lambda_{t}^{2} / 2\right]-T \delta \mu \lambda^{2} / 2 \\
& \leq T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T}\left(1-\frac{\mu K}{2}\left(1+\lambda_{t}+\kappa\right)\right)\left(\sum_{i=1}^{|\Pi|} \hat{w}^{*}[i]\left(y_{t}[i]+\lambda_{t} z_{t}[i]\right)\right) \\
& \quad+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \nu)}{\kappa}+\left(2+2 \beta^{2}\right) T \mu+\mu^{3} \delta^{2} \sum_{t} \lambda_{t}^{2} \\
& \leq T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T}\left(1-\frac{\mu K}{2}\left(1+\lambda_{t}+\kappa\right)\right)\left(\sum_{i=1}^{|\Pi|} w^{*}[i]\left(y_{t}[i]+\lambda_{t} z_{t}[i]\right)\right) \\
& \quad+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \nu)}{\kappa}+\left(2+2 \beta^{2}\right) T \mu+\mu^{3} \delta^{2} \sum_{t} \lambda_{t}^{2} . \tag{67}
\end{align*}
$$

where the last inequality follows from the definition of \hat{w}^{*} and w^{*}. Rearrange terms, we get:

$$
\begin{align*}
& \sum_{t=1}^{T}\left[\left(c_{t}\left[a_{t}\right]-w^{* T} y_{t}\right)+\lambda\left(r_{t}\left[a_{t}\right]-\beta\right)-\lambda_{t}\left(w^{* T} z_{t}-\beta\right)\right]-T \delta \mu \lambda^{2} / 2+\sum_{t=1}^{T} \delta \mu \lambda_{t}^{2} / 2 \\
& \leq T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T} \frac{\mu K}{2}\left(1+\lambda_{t}+\kappa\right)\left(1+\lambda_{t}\right)+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \nu)}{\kappa}+\left(2+2 \beta^{2}\right) T \mu+\mu^{3} \delta^{2} \sum_{t} \lambda_{t}^{2} \\
& \leq T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T} \frac{\mu K}{2}\left(1+(2+\kappa) \lambda_{t}+\kappa\right)+\left(1+\lambda_{m}\right) \frac{\ln (|\Pi| / \nu)}{\kappa}+\left(2+2 \beta^{2}\right) T \mu+\left(\frac{K \mu}{2}+\mu^{3} \delta^{2}\right) \sum_{t} \lambda_{t}^{2} \\
& =T \kappa K+\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+\sum_{t=1}^{T} \frac{\mu K}{2}\left(1+(2+\kappa) \lambda_{t}+\kappa\right)+\left(1+\frac{|\beta|}{\delta \mu}\right) \frac{\ln (|\Pi| / \nu)}{\kappa}+\left(2+2 \beta^{2}\right) T \mu+\left(\frac{K \mu}{2}+\mu^{3} \delta^{2}\right) \sum_{t} \lambda_{t}^{2} \tag{68}
\end{align*}
$$

Note that under the setting of δ and μ we have $\frac{\delta \mu}{2} \geq \frac{K \mu}{2}+\mu^{3} \delta^{2}$ (we will verify it at the end of the proof), we can drop the terms that relates to λ_{t}^{2} in the above inequality. Note that we have $\delta \mu=T^{-\epsilon} \sqrt{K \ln (|\Pi|)} \geq T^{-\epsilon}$, where $\epsilon \in(0,1 / 2)$. Substitute $\delta \mu \geq T^{-\epsilon}$ into the above inequality and rearrange terms, we get:

$$
\begin{align*}
& \sum_{t=1}^{T} c_{t}\left[a_{t}\right]-w^{* T} y_{t}+\lambda\left(r_{t}\left[a_{t}\right]-\beta\right)-\lambda_{t}\left(w^{* T} z_{t}-\beta\right)-T \delta \mu \lambda^{2} / 2 \\
& =\frac{\lambda^{2}+\ln (|\Pi|)}{\mu}+T \kappa K+\left(K+2+2 \beta^{2}+2 K|\beta|\right) T \mu+\left(1+|\beta| T^{\epsilon}\right) \frac{\ln (|\Pi| / \nu)}{\kappa} \tag{69}
\end{align*}
$$

Now let us set $\lambda=0$ and since we have that $\sum_{t=1}^{T} \lambda_{t}\left(w^{* T} z_{t}-\beta\right) \leq 0$, we get:

$$
\begin{align*}
& \sum_{t=1} c_{t}\left[a_{t}\right]-w^{* T} y_{t} \leq \frac{\ln (|\Pi|)}{\mu}+T \kappa K+\left(K+2+2 \beta^{2}+2 K|\beta|\right) T \mu+\left(1+|\beta| T^{\epsilon}\right) \frac{\ln (|\Pi| / \nu)}{\kappa} \\
& \leq \frac{\ln (|\Pi|)}{\mu}+T \kappa K+(3 K+4) T \mu+\left(1+T^{\epsilon}\right) \frac{\ln (|\Pi| / \nu)}{\kappa} \\
& \leq 2 \sqrt{T(\ln (|\Pi|)(3 K+4))}+2 \sqrt{T K\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}=O\left(\sqrt{T^{1+\epsilon} K \ln (|\Pi| / \nu)}\right) \tag{70}
\end{align*}
$$

where we set μ and κ as:

$$
\begin{equation*}
\mu=\sqrt{\frac{\ln (|\Pi|)}{(3 K+4) T}}, \quad \kappa=\sqrt{\frac{\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}{T K}} \tag{71}
\end{equation*}
$$

Now let us consider $\sum_{t}\left(r_{t}\left[a_{t}\right]-\beta\right)$. Let us assume $\sum_{t}\left(r_{t}\left[a_{t}\right]-\beta\right) \geq 0$, otherwise we prove the theorem already. Note that $\sum_{t=1}^{T} c_{t}\left[a_{t}\right]-w^{* T} y_{t} \geq-2 T$. Hence we have:

$$
\begin{aligned}
& \lambda \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right)-\lambda^{2}(\delta \mu T / 2+1 / \mu) \\
& \leq 2 T+2 \sqrt{T(\ln (|\Pi|)(3 K+4))}+2 \sqrt{T K\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}
\end{aligned}
$$

To maximize the LHS of the above inequality, we set $\lambda=\frac{\sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right)}{\delta \mu T+2 / \mu}$. Substitute λ into the above inequality, we get:

$$
\begin{align*}
& \left(\sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right)\right)^{2} \leq\left(2 \delta \mu T+\frac{4}{\mu}\right)\left(2 T+2 \sqrt{T(\ln (|\Pi|)(3 K+4))}+2 \sqrt{T K\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}\right) \\
& \leq\left(2 T^{1-\epsilon} \sqrt{\ln (|\Pi|) K}+\frac{4}{\mu}\right)\left(2 T+2 \sqrt{T(\ln (|\Pi|)(3 K+4))}+2 \sqrt{T K\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}\right) \\
& =24\left(T^{2-\epsilon} \sqrt{K \ln (|\Pi|)}+T^{1.5-\epsilon} K \ln (|\Pi|)+T^{1.5-0.5 \epsilon} K \ln (|\Pi|)+T^{1.5} \sqrt{K}+T K+T^{1+\epsilon} K \sqrt{\ln (1 / \delta)}\right) \\
& =O\left(T^{2-\epsilon} K \ln (|\Pi|)\right) \tag{72}
\end{align*}
$$

Hence we have:

$$
\begin{equation*}
\sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right)=O\left(T^{1-\epsilon / 2} \sqrt{K \ln (|\Pi|)}\right) \tag{73}
\end{equation*}
$$

Note that for δ, we have $\delta=K T^{-\epsilon+0.5}$. To verify that $\delta \geq \frac{|\beta|}{2 / K-\mu-\kappa \mu}$, we can see that as long as $\epsilon \in(0,1 / 2)$, we have $\delta=\Theta\left(T^{0.5-\epsilon}\right)$ while $|\beta| /(2 / K-\mu-\kappa \mu)=O(1)$. Hence when T is big enough, we can see that it always holds that $\delta \geq \frac{|\beta|}{2 / K-\mu-\kappa \mu}$. For the second condition that $\delta \geq K+2 \mu^{2} \delta^{2}=K+2 \ln (|\Pi|) K T^{-2 \epsilon}$. Note that again as long as $\epsilon \in(0,1 / 2)$, we have $\delta=\Theta\left(T^{0.5-\epsilon}\right)$, and $K+2 \ln (|\Pi|) K T^{-2 \epsilon}=O(1)$. Hence we have $\delta \geq K+2 \ln (|\Pi|) K T^{-2 \epsilon}$. Hence, we have shown that when $\mu=\sqrt{\frac{\ln (|\Pi|)}{(3 K+4) T}}, \kappa=\sqrt{\frac{\left(1+T^{\epsilon}\right) \ln (|\Pi| / \nu)}{T K}}$, and $\delta=T^{-\epsilon+1 / 2} K$, we have that as $T \rightarrow \infty$:

$$
\begin{align*}
& \sum_{t=1}^{T}\left(c_{t}\left[a_{t}\right]-w^{* T} y_{t}\right)=O\left(\sqrt{T^{1+\epsilon} \ln (|\Pi| / \nu)}\right) \\
& \sum_{t=1}^{T}\left(r_{t}\left[a_{t}\right]-\beta\right) \leq O\left(T^{1-\epsilon / 2} \sqrt{K \ln (|\Pi|)}\right) \tag{74}
\end{align*}
$$

[^0]: Note that here for analysis simplicity we consider asymptotic property of the algorithm and assume T is large enough and particularly larger than any constant. We don't necessarily have to assume $T \geq 4 B$ here because we can explicitly solve the inequality $\delta \geq \delta^{2} \mu^{2}+G^{2} / \alpha$ to find the valid range of δ, as (Mahdavi et al., 2012) did.

