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1 Non-linear Activation Functions

By definition,

tanh(t)
def
=

exp(t)− exp(−t)
exp(t) + exp(−t)

, (1)

and

sech(t)
def
=

2

exp(t) + exp(−t)
.

It is easy to verify that

sech2(t) = [1 + tanh(t)] [1− tanh(t)] = 1− tanh2(t).
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By eq. (1),

tanh′(t) =
exp(t) + exp(−t)
exp(t) + exp(−t)

− exp(t)− exp(−t)
[exp(t) + exp(−t)]2

[exp(t)− exp(−t)]

=
[exp(t) + exp(−t)]2 − [exp(t)− exp(−t)]2

[exp(t) + exp(−t)]2
=

4

[exp(t) + exp(−t)]2
= sech2(t).

By definition,

sigm(t)
def
=

1

1 + exp(−t)
.

Therefore

sigm′(t) = − 1

[1 + exp(−t)]2
(− exp(−t)) =

exp(−t)
[1 + exp(−t)]2

= sigm(t) [1− sigm(t)] .

A smoothed version of the relu function is given by

reluω(t)
def
= ω ln

(
exp

(
ιt

ω

)
+ exp

(
t

ω

))
,

where ω > 0 and 0 ≤ ι < 1. Then,

relu′ω(t) = ω
1

exp
(
ιt
ω

)
+ exp

(
t
ω

) ( ι
ω

exp

(
ιt

ω

)
+

1

ω
exp

(
t

ω

))
=
ι exp

(
ιt
ω

)
+ exp

(
t
ω

)
exp

(
ιt
ω

)
+ exp

(
t
ω

)
= ι+ (1− ι)

exp
(
t
ω

)
exp

(
ιt
ω

)
+ exp

(
t
ω

)
= ι+ (1− ι) 1

exp
(
(ι− 1) tω

)
+ 1

= ι+ (1− ι)sigm
(

1− ι
ω

t

)
. (2)

By definition,

elu(t) =

{
t if t ≥ 0
α (exp(t)− 1) if t < 0.

Therefore

elu′(t) =

{
1 if t ≥ 0
α exp(t) if t < 0.

(3)

2 Examples of RFIMs

Table 1 shows a list of commonly used RFIMs, with detailed derivations given in the following
subsections.
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Table 1: Commonly used RFIMs
Subsystem the RFIM gy(w)

A tanh neuron sech2(wᵀx̃)x̃x̃ᵀ

A sigm neuron sigm(wᵀx̃) [1− sigm(wᵀx̃)] x̃x̃ᵀ

A relu neuron
[
ι+ (1− ι)sigm

(
1−ι
ω w

ᵀx̃
)]2
x̃x̃ᵀ

A elu neuron

{
x̃x̃ᵀ if wᵀx̃ ≥ 0

(α exp(wᵀx̃))
2
x̃x̃ᵀ if wᵀx̃ < 0

A linear layer diag [x̃x̃ᵀ, · · · , x̃x̃ᵀ]
A non-linear layer diag [νf (w1, x̃)x̃x̃ᵀ, · · · , νf (wm, x̃)x̃x̃ᵀ]

A soft-max layer a dense matrix as shown in eq. (10)
Two layers a dense matrix as shown in eq. (12)

2.1 A Single tanh Neuron

Consider a neuron with parameters w and a Bernoulli output y ∈ {+,−}, p(y = +) = p+,
p(y = −) = p−, and p+ + p− = 1. By the definition of RFIM, we have

gy(w) = p+
∂ ln p+

∂w

∂ ln p+

∂wᵀ
+ p−

∂ ln p−

∂w

∂ ln p−

∂wᵀ

=
1

p+
∂p+

∂w

∂p+

∂wᵀ
+

1

p−
∂p−

∂w

∂p−

∂wᵀ
.

Since p+ + p− = 1,

∂p+

∂w
+
∂p−

∂w
= 0.

Therefore, the RFIM of a Bernoulli neuron has the general form

gy(w) =

(
1

p+
+

1

p−

)
∂p+

∂w

∂p+

∂wᵀ
=

1

p+p−
∂p+

∂w

∂p+

∂wᵀ
. (4)

A single tanh neuron with stochastic output y ∈ {−1, 1} is given by

p(y = −1) =
1− µ(x)

2
, (5)

p(y = 1) =
1 + µ(x)

2
, (6)

µ(x) = tanh(wᵀx̃). (7)

By eq. (4),

gy(w) =
1

1−µ(x)
2

1+µ(x)
2

(
1

2

∂µ

∂w

)(
1

2

∂µ

∂wᵀ

)
=

1

(1− µ(x)) (1 + µ(x))

[
1− µ2(x)

]2
x̃x̃ᵀ

=
[
1− µ2(x)

]
x̃x̃ᵀ

=
[
1− tanh2(wᵀx̃)

]
x̃x̃ᵀ

= sech2(wᵀx̃)x̃x̃ᵀ.
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An alternative analysis is given as follows. By eqs. (5) to (7),

p(y = −1) =
exp(−wᵀx̃)

exp(wᵀx) + exp(−wᵀx)
,

p(y = 1) =
exp(wᵀx̃)

exp(wᵀx̃) + exp(−wᵀx̃)
.

Then,

gy(w) = Ey∼p(y |x)

(
−∂

2 ln p(y)

∂w∂wᵀ

)
=

∂2

∂w∂wᵀ
ln [exp(wᵀx̃) + exp(−wᵀx̃)] (first linear term vanishes)

=
∂

∂wᵀ

[
exp(wᵀx̃)− exp(−wᵀx̃)

exp(wᵀx̃) + exp(−wᵀx̃)

]
x̃

=
∂

∂wᵀ
tanh(wᵀx̃)x̃

= sech2(wᵀx̃)x̃x̃ᵀ.

The intuitive meaning of gy(w) is a weighted covariance to emphasize such “informative” x’s
that

• are in the linear region of tanh

• contain “ambiguous” samples

We will need at least dim(w) samples to make gy(w) full rank.

2.2 A Single sigm Neuron

A single sigm neuron is given by

p(y = 0) = 1− µ(x),

p(y = 1) = µ(x),

µ(x) = sigm(wᵀx̃).

By eq. (4),

gy(w) =
1

p(y = 0)p(y = 1)

∂p(y = 1)

∂w

∂p(y = 1)

∂wᵀ

=
1

µ(x)(1− µ(x))

∂µ

∂w

∂µ

∂wᵀ

=
1

µ(x)(1− µ(x))
µ2(x)(1− µ(x))2x̃x̃ᵀ

= µ(x)(1− µ(x))x̃x̃ᵀ

= sigm(wᵀx̃) [1− sigm(wᵀx̃)] x̃x̃ᵀ.
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2.3 A Single relu Neuron

Consider a single neuron with Gaussian output p(y |w,x) = G(y |µ(w,x), σ2). Then

gy(w |x) = Ep(y |w,x)

[
∂ lnG(y |µ, σ2)

∂w

∂ lnG(y |µ, σ2)

∂wᵀ

]
= Ep(y |w,x)

[
∂

∂w

(
− 1

2σ2
(y − µ)2

)
∂

∂wᵀ

(
− 1

2σ2
(y − µ)2

)]
= Ep(y |w,x)

[(
− 1

σ2
(µ− y)

)2
∂µ

∂w

∂µ

∂wᵀ

]

=
1

σ4
Ep(y |w,x) (µ− y)

2 ∂µ

∂w

∂µ

∂wᵀ

=
1

σ2

∂µ

∂w

∂µ

∂wᵀ
.

We set σ = 1 to get rid of a scale parameter of the RFIM. We get

gy(w |x) =
∂µ

∂w

∂µ

∂wᵀ
. (8)

A single relu neuron is given by

µ(w,x) = reluω(wᵀx̃).

By eqs. (2) and (8),

gy(w) =

[
ι+ (1− ι)sigm

(
1− ι
ω
wᵀx̃

)]2
x̃x̃ᵀ.

2.4 A Single elu Neuron

Similar to the analysis in Subsec. 2.3, a single elu neuron is given by

µ(w,x) = elu(wᵀx̃).

By eq. (3),
∂µ

∂w
=

{
x̃ if wᵀx̃ ≥ 0
α exp(wᵀx̃)x̃ if wᵀx̃ < 0.

By eq. (8),

gy(w) =

{
x̃x̃ᵀ if wᵀx̃ ≥ 0

(α exp(wᵀx̃))
2
x̃x̃ᵀ if wᵀx̃ < 0.

2.5 RFIM of a Linear Layer

Consider a linear layer
p(y) = G

(
y |W ᵀx̃, σ2I

)
,

where W = (w1, · · · ,wDy
). By the definition of the multivariate Gaussian distribution,

ln p(y) = −1

2
ln 2π − Dy

2
lnσ2 − 1

2σ2

Dy∑
i=1

(yi −wᵀ
i x̃)

2
.

5



Therefore,

∀i, ∂

∂wi
ln p(y) = − 1

σ2
(wᵀ

i x̃− yi) x̃.

Therefore,

∀i,∀j ∂

∂wi
ln p(y)

∂

∂wᵀ
j

ln p(y) =
1

σ4
(yi −wᵀ

i x̃)
(
yj −wᵀ

j x̃
)
x̃x̃ᵀ.

W is vectorized by stacking its columns {wi}
Dy

i=1. In the followingW will be used interchangeably
to denote either the matrix or its vector form. Correspondingly, the RFIM gy(W ) has Dy ×Dy

blocks, where the off-diagonal blocks are

∀i 6= j, Ep(y)

(
∂

∂wi
ln p(y)

∂

∂wᵀ
j

ln p(y)

)
=

1

σ4
Ep(y)

[
(yi −wᵀ

i x̃)
(
yj −wᵀ

j x̃
)]
x̃x̃ᵀ = 0,

and the diagonal blocks are

∀i, Ep(y)

(
∂

∂wi
ln p(y)

∂

∂wᵀ
i

ln p(y)

)
=

1

σ4
Ep(y) (yi −wᵀ

i x̃)
2
x̃x̃ᵀ =

1

σ2
x̃x̃ᵀ.

In summary,

gy(W ) =
1

σ2
diag [x̃x̃ᵀ, · · · , x̃x̃ᵀ] .

By setting σ = 1 we get
gy(W ) = diag [x̃x̃ᵀ, · · · , x̃x̃ᵀ] .

2.6 RFIM of a Non-Linear Layer

The statistical model of a non-linear layer with independent output units is

p(y |W ,x) =

Dy∏
i=1

p(yi |wi,x).

Then,

ln p(y |W ,x) =

Dy∑
i=1

ln p(yi |wi,x).

Therefore,

∂2

∂W ∂W ᵀ
ln p(y |W ,x) =


∂2

∂w1∂w
ᵀ
1

ln p(y1 |w1,x)

. . .
∂2

∂wDy∂w
ᵀ
Dy

ln p(yDy
|wDy

,x)

 .
Therefore the RFIM gy(W ) is a block-diagonal matrix, with the i’th block given by

−Ep(y |W ,x)

[
∂2

∂wi∂w
ᵀ
i

ln p(yi |wi,x)

]
= −Ep(yi |wi,x)

[
∂2

∂wi∂w
ᵀ
i

ln p(yi |wi,x)

]
,

which is simply the single neuron RFIM of the i’th neuron.
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2.7 RFIM of a Softmax Layer

Recall that

∀i ∈ {1, · · · ,m} , p(y = i) =
exp(wix̃)∑m
i=1 exp(wix̃)

.

Then

∀i, ln p(y = i) = wix̃− ln

m∑
i=1

exp(wix̃).

Hence

∀i, ∀j, ∂ ln p(y = i)

∂wj
= δijx̃−

exp(wjx̃)∑m
i=1 exp(wix̃)

x̃,

where δij = 1 if and only if i = j and δij = 0 otherwise. Then

∀i, ∀j, ∀k, ∂2 ln p(y = i)

∂wj∂w
ᵀ
k

= −δjk
exp(wjx̃)∑m
i=1 exp(wix̃)

x̃x̃ᵀ +
exp(wjx̃)

(
∑m
i=1 exp(wix̃))

2 exp(wkx̃)x̃x̃ᵀ

= (−δjkηj + ηjηk) x̃x̃ᵀ. (9)

The right-hand-side of eq. (9) does not depend on i. Therefore

gy(W ) =


(η1 − η21)x̃x̃ᵀ −η1η2x̃x̃ᵀ · · · −η1ηmx̃x̃ᵀ

−η2η1x̃x̃ᵀ (η2 − η22)x̃x̃ᵀ · · · −η2ηmx̃x̃ᵀ

...
...

. . .
...

−ηmη1x̃x̃ᵀ −ηmη2x̃x̃ᵀ · · · (ηm − η2m)x̃x̃ᵀ

 . (10)

2.8 RFIM of Two layers

Consider a two layer structure, where the output y satisfies a multivariate Bernoulli distribution
with independent dimensions. By a similar analysis to Subsec. 2.1, we have

gy(W ) =

Dy∑
l=1

νf (cl,h)
∂cᵀl h

∂W

∂cᵀl h

∂W ᵀ
. (11)

It can be written block by block as gy(W ) = [Gij ]Dh×Dh
, where each block Gij means the

correlation between the i’th hidden neuron with weights wi and the j’th hidden neuron with
weights wj . By eq. (11),

Gij =

Dy∑
l=1

νf (cl,h)
∂cᵀl h

∂wi

∂cᵀl h

∂wᵀ
j

=

Dy∑
l=1

νf (cl,h)
∂cilhi
∂wi

∂cjlhj
∂wᵀ

j

=

Dy∑
l=1

νf (cl,h)cilcjl
∂hi
∂wi

∂hj
∂wᵀ

j

=

Dy∑
l=1

νf (cl,h)cilcjl (νf (wi,x)x̃) (νf (wj ,x)x̃ᵀ)

=

Dy∑
l=1

cilcjlνf (cl,h)νf (wi,x)νf (wj ,x)x̃x̃ᵀ. (12)

The proof of the other case, where two relu layers have stochastic output y satisfying a
multivariate Gaussian distribution with independent dimensions, is very similar and is omitted.
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3 Proof of Theorem 3

Proof. By assumption, the joint distribution p(x, h) is in a factorable form. Therefore

log p(x, h) =

L∑
l=1

log p(hl |θl, rl), (13)

where l = 1, · · · , L is the index of subsystems, hl is the subsystem output, and rl is the reference
of the subsystem. We have

⊎L
l=1{hl} = {x,h} and

⊎L
l=1{θl} = {Θ}. Therefore

Ep

(
− ∂2

∂θl∂θ
ᵀ
l

log p(x, h)

)
= Ep

(
− ∂2

∂θl∂θ
ᵀ
l

log p(hl |θl, rl)
)

= Ep(rl)

(
Ep(hl | rl)

(
− ∂2

∂θl∂θ
ᵀ
l

log p(hl |θl, rl)
))

= Ep
(
ghl(θl)

)
,

and

Ep

(
− ∂2

∂θl1∂θ
ᵀ
l2

log p(x, h)

)
= 0 (∀l1 6= l2).

Based on the Hessian expression of RFIM, J (Θ) is in a block-diagonal form, with each block
given by Ep

(
ghl(θl)

)
.

4 Experimental Settings & Zoomed Learning Curves

The training/validation/testing sets have 50,000/10,000/10,000 images, respectively. Each sam-
ple is a gray scale image of size 28× 28 (784 dimensional feature space) and is labeled as one of
ten different classes. For all methods, the mini-batch size is fixed to 50 and the L2 regularization
strength is fixed to 10−3. For each optimizer, we try to find the best learning rate in the range
{· · · , 10−1, 5×10−2, 10−2, 5×10−3, 10−3, · · · }. On the tested architectures, a good learning rate
configuration for RNGD is usually around 10−2 or 5× 10−3. The optimizers are in their default
settings in TensorFlow 1.0. For the Adam optimizer, β1 = 0.9, β2 = 0.999, ε = 10−8. For RNGD,
we set empirically T = 100, λ = 0.005 and ω = 1. We use the Glorot uniform initializer to set
the initial weights.

For each method and each learning rate configuration, we try 40 independent runs with
different random seeds. Then, we select the best configuration based on the validation accuracy.
Then, we plot the 40 learning curves as well as the average validation curve. The learning curves
are obtained by evaluating the training error and validation accuracy after each epoch (one pass
over all available training data).

See the following figs. (1–4) for the learning curves on four different architectures with relu

activation units and L2 regularization. Only the training curves and validation curves are shown
for a clear presentation. The testing accuracy is close to the validation accuracy (run our codes
to see the detailed results).
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Figure 1: A MLP with shape 784–80–80–80–10.
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Figure 2: A MLP with shape 784–80–80–80–10 and batch normalization after each hidden layer.
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Figure 3: A MLP with shape 784–100–100–100–10.
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Figure 4: A MLP with shape 784–100–100–100–10 and batch normalization after each hidden
layer.
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