## A. Proofs

## A.1. Proof of Lamma 1

Proof. In the following, we abbreviate $j$ in Lemma 1 for the simplicity of the notation unless there is no confusion, and prove the lemma in slightly general case of $\mathrm{V}[\boldsymbol{y}]=\Sigma$. To prove the lemma, we first state the polyhedral lemma in Lee et al. (2016) as follows:

Lemma 7 (Polyhedral Lemma; (Lee et al., 2016)). Suppose $\boldsymbol{y} \sim \mathrm{N}(\boldsymbol{\mu}, \Sigma)$. Let $\boldsymbol{c}=\Sigma \boldsymbol{\eta}\left(\boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}\right)^{-1}$ for any $\boldsymbol{\eta} \in \mathbb{R}^{n}$, and let $\boldsymbol{z}=\left(I_{n}-\boldsymbol{c} \boldsymbol{\eta}^{\top}\right) \boldsymbol{y}$. Then we have

$$
\left.\begin{array}{rl}
\operatorname{Pol}(S) & =\left\{\boldsymbol{y} \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
A \boldsymbol{y} \leq \boldsymbol{b}\} \\
\end{array}\right.\right. \\
=\left\{\boldsymbol{y} \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
L(S, \boldsymbol{z}) \leq \boldsymbol{\eta}^{\top} \boldsymbol{y} \leq U(S, \boldsymbol{z}) \\
N(S, \boldsymbol{z}) \geq 0
\end{array}\right.\right.
\end{array}\right\},
$$

where

$$
\begin{align*}
& L(S, \boldsymbol{z})=\max _{j:(A \boldsymbol{c})_{j}<0} \frac{b_{j}-(A \boldsymbol{z})_{j}}{(A \boldsymbol{c})_{j}}  \tag{13a}\\
& U(S, \boldsymbol{z})=\min _{j:(A \boldsymbol{c})_{j}>0} \frac{b_{j}-(A \boldsymbol{z})_{j}}{(A \boldsymbol{c})_{j}} \tag{13b}
\end{align*}
$$

and $N(S, \boldsymbol{z})=\max _{j:(A \boldsymbol{c})_{j}=0} b_{j}-(A \boldsymbol{z})_{j}$. In addition, $(L(S, \boldsymbol{z}), U(S, \boldsymbol{z}), N(S, \boldsymbol{z}))$ is independent of $\boldsymbol{\eta}^{\top} \boldsymbol{y}$.

The polyhedral lemma allows us to construct a pivotal quantity as a truncated normal distribution, that is, for any $\boldsymbol{z}$, we have

$$
\begin{equation*}
\left[F_{0, \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}}^{[L(S, \boldsymbol{z}), U(S, \boldsymbol{z})]}\left(\boldsymbol{\eta}^{\top} \boldsymbol{y}\right) \mid \boldsymbol{y} \in \operatorname{Pol}(S)\right] \sim \operatorname{Unif}(0,1) \tag{14}
\end{equation*}
$$

where $\operatorname{Unif}(0,1)$ denotes the standard (continuous) uniform distribution. In fact, by letting $\boldsymbol{z}_{0}$ be an arbitrary realization of $\boldsymbol{z}$, one can see that

$$
\begin{aligned}
& {\left[\boldsymbol{\eta}^{\top} \boldsymbol{y} \mid \boldsymbol{y} \in \operatorname{Pol}(S), \boldsymbol{z}=\boldsymbol{z}_{0}\right]} \\
& \stackrel{\mathrm{d}}{=}\left[\boldsymbol{\eta}^{\top} \boldsymbol{y} \mid L\left(S, \boldsymbol{z}_{0}\right) \leq \boldsymbol{\eta}^{\top} \boldsymbol{y} \leq U\left(S, \boldsymbol{z}_{0}\right)\right] \\
& \sim \operatorname{TN}\left(\boldsymbol{\eta}^{\top} \boldsymbol{\mu}, \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}, L\left(S, \boldsymbol{z}_{0}\right), U\left(S, \boldsymbol{z}_{0}\right)\right)
\end{aligned}
$$

where $\stackrel{\mathrm{d}}{=}$ denotes the equality of random variables in distribution. Therefore, probability integral transformation implies

$$
\left[F_{\boldsymbol{\eta}^{\top} \boldsymbol{\mu}, \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}}^{[L(S, \boldsymbol{z})]}\left(\boldsymbol{\eta}^{\top} \boldsymbol{y}\right) \mid \boldsymbol{y} \in \operatorname{Pol}(S), \boldsymbol{z}=\boldsymbol{z}_{0}\right]
$$

has a uniform distribution $\operatorname{Unif}(0,1)$ for any $\boldsymbol{z}_{0}$. By integrating out $z_{0}$, the pivotal quantity Eq.(14) holds. In addition, an lower $\alpha$-percentile of the distribution can be obtained as

$$
q_{\alpha}=\left(F_{\boldsymbol{\eta}^{\top} \boldsymbol{\mu}, \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}}^{[L(S, \boldsymbol{z}), U(S, \boldsymbol{z})]}\right)^{-1}(\alpha) .
$$

In the following, let us denote $(S, \boldsymbol{z})$ by $S$ for shorthand. The remaining is to show that truncation points in Eqs.(13) are equivalent to

$$
\begin{align*}
& L(S)=\boldsymbol{\eta}^{\top} \boldsymbol{y}+\theta_{L} \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}  \tag{15a}\\
& \quad \text { where } \theta_{L}=\min _{\theta \in \mathbb{R}} \theta \text { s.t. } \boldsymbol{y}+\theta \Sigma \eta \in \operatorname{Pol}(S)
\end{align*}
$$

and

$$
\begin{align*}
& U(S)=\boldsymbol{\eta}^{\top} \boldsymbol{y}+\theta_{U} \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}  \tag{15b}\\
& \text { where } \theta_{U}=\max _{\theta \in \mathbb{R}} \theta \text { s.t. } \boldsymbol{y}+\theta \Sigma \eta \in \operatorname{Pol}(S),
\end{align*}
$$

respectively. Simple calculation shows that, for any $\theta \in \mathbb{R}$, we have

$$
\begin{aligned}
& \boldsymbol{y}+\theta \Sigma \boldsymbol{\eta} \in \operatorname{Pol}(S) \\
& \Leftrightarrow A(\boldsymbol{y}+\theta \Sigma \eta) \leq \boldsymbol{b} \\
& \Leftrightarrow \theta \cdot A \Sigma \eta \leq \boldsymbol{b}-A \boldsymbol{y} \\
& \Leftrightarrow \begin{cases}\theta \leq(\boldsymbol{b}-A \boldsymbol{y})_{j} /(A \Sigma \boldsymbol{\eta})_{j}, & (A \Sigma \boldsymbol{\eta})_{j}>0 \\
\theta \geq(\boldsymbol{b}-A \boldsymbol{y})_{j} /(A \Sigma \boldsymbol{\eta})_{j}, & (A \Sigma \boldsymbol{\eta})_{j}<0 \\
0 \leq(\boldsymbol{b}-A \boldsymbol{y})_{j}, & (A \Sigma \boldsymbol{\eta})_{j}=0\end{cases}
\end{aligned}
$$

On the other hand, by the definition of $c$ and $z$ in Lemma 7, it is easy to see that

$$
L(S)=\boldsymbol{\eta}^{\top} \boldsymbol{y}+\boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta} \max _{j:(A \Sigma \boldsymbol{\eta})_{j}<0} \frac{(\boldsymbol{b}-A \boldsymbol{y})_{j}}{(A \Sigma \boldsymbol{\eta})_{j}}
$$

Therefore, for each $j$ such that $(A \Sigma \boldsymbol{\eta})_{j}<0$, we have

$$
\max _{j:(A \Sigma \boldsymbol{\eta})_{j}<0} \frac{(\boldsymbol{b}-A \boldsymbol{y})_{j}}{(A \Sigma \boldsymbol{\eta})_{j}} \leq \theta
$$

and thus the minimum possible feasible $\theta$ would be

$$
\begin{aligned}
\theta_{L} & =\min \{\theta \in \mathbb{R} \mid \boldsymbol{y}+\theta \Sigma \eta \in \operatorname{Pol}(S)\} \\
& =\max _{j:(A \Sigma \boldsymbol{\eta})_{j}<0} \frac{(\boldsymbol{b}-A \boldsymbol{y})_{j}}{(A \Sigma \boldsymbol{\eta})_{j}}
\end{aligned}
$$

Similarly, we see that the equivalency of $U(S)$.
To complete the proof, let us consider a Gaussian random variable $\boldsymbol{y}$ with mean $X \boldsymbol{\beta}^{*}$ and covariance matrix $\sigma^{2} I_{n}$ with some constant $\sigma^{2}$. We can choose $\boldsymbol{\eta}=\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j}$ for testing the null hypothesis $\mathrm{H}_{0, j}: \beta_{S, j}^{*}=0$ for each $j \in S$, since $\boldsymbol{\eta}^{\top} \boldsymbol{y}$ reduces to the $j$-th element of an ordinary least square estimator for the selected model, and in this case, $\boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}$ reduces to

$$
\sigma_{S}^{2}=\sigma^{2}\|\boldsymbol{\eta}\|^{2}=\sigma^{2}\left(X_{S}^{\top} X_{S}\right)_{j j}^{-1}
$$

Then the critical values are computed as

$$
\ell_{\alpha / 2}^{S}=q_{\alpha / 2}=\left(F_{0, \sigma_{S}^{2}}^{[L(S), U(S)]}\right)^{-1}(\alpha / 2)
$$

and

$$
u_{\alpha / 2}^{S}=q_{1-\alpha / 2}=\left(F_{0, \sigma_{S}^{2}}^{[L(S), U(S)]}\right)^{-1}(1-\alpha / 2)
$$

respectively. From the above argument, there are no matter to compute the truncation points in Eqs.(15) based on the observations. In this case, Eqs.(15) can be written as

$$
L(S)=\boldsymbol{\eta}^{\top} \boldsymbol{y}+\theta_{L} \sigma^{2}\left(X_{S}^{\top} X_{S}\right)_{j j}^{-1}
$$

where $\theta_{L}=\min _{\theta \in \mathbb{R}} \theta$ s.t. $\boldsymbol{y}+\theta \sigma^{2}\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j} \in \operatorname{Pol}(S)$
and

$$
U(S)=\boldsymbol{\eta}^{\top} \boldsymbol{y}+\theta_{U} \sigma^{2}\left(X_{S}^{\top} X_{S}\right)_{j j}^{-1}
$$

where $\theta_{U}=\max _{\theta \in \mathbb{R}} \theta$ s.t. $\boldsymbol{y}+\theta \sigma^{2}\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j} \in \operatorname{Pol}(S)$,
respectively, but we can ignore the scaling factor $\sigma^{2}$ because

$$
\begin{aligned}
& \min \left\{\theta \in \mathbb{R}^{n} \mid \boldsymbol{y}+\theta\left(X_{S}^{+}\right)^{\top} \top \boldsymbol{e}_{j} \in \operatorname{Pol}(S)\right\} \\
& =\min \left\{\sigma^{2} \theta \in \mathbb{R}^{n} \mid \boldsymbol{y}+\theta \sigma^{2}\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j} \in \operatorname{Pol}(S)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \max \left\{\theta \in \mathbb{R}^{n} \mid \boldsymbol{y}+\theta\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j} \in \operatorname{Pol}(S)\right\} \\
& =\max \left\{\sigma^{2} \theta \in \mathbb{R}^{n} \mid \boldsymbol{y}+\theta \sigma^{2}\left(X_{S}^{+}\right)^{\top} \boldsymbol{e}_{j} \in \operatorname{Pol}(S)\right\}
\end{aligned}
$$

## A.2. Proof of Lamma 3

Proof. Since $x_{i j} \in[0,1]$, for any pair $(j, \tilde{j})$ such that $\tilde{j} \in$ $\operatorname{Des}(j), x_{j} \geq x_{\tilde{j}}$ holds. Then,

$$
\begin{aligned}
\left|\boldsymbol{x}_{\cdot \tilde{j}}^{\top} \boldsymbol{y}\right| & =\left|\sum_{i: y_{i}>0} x_{i \tilde{j}} y_{i}+\sum_{i: y_{i}<0} x_{i \tilde{j}} y_{i}\right| \\
& \leq \max \left\{\sum_{i: y_{i}>0} x_{i \tilde{j}} y_{i},-\sum_{i: y_{i}<0} x_{i \tilde{j}} y_{i}\right\} \\
& \leq \max \left\{\sum_{i: y_{i}>0} x_{i j} y_{i},-\sum_{i: y_{i}<0} x_{i j} y_{i}\right\} .
\end{aligned}
$$

## A.3. Proof of Lemma 4

Proof. In MS, from Eq.(9), the constraint $\boldsymbol{y}+\theta \boldsymbol{\eta} \in \operatorname{Pol}(S)$ is written as

$$
\begin{align*}
& \left(-s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{j^{\prime}}\right)^{\top}(\boldsymbol{y}+\theta \boldsymbol{\eta}) \leq 0 \\
\Leftrightarrow & \frac{-\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y}}{\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}} \leq \theta \text { if }\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}>0 \tag{16a}
\end{align*}
$$

$$
\begin{align*}
& \text { and } \frac{-\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y}}{\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}} \geq \theta \text { if }\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}<0 . \\
& \qquad \begin{array}{l}
\left(-s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{j^{\prime}}\right)^{\top}(\boldsymbol{y}+\theta \boldsymbol{\eta}) \leq 0 \\
\Leftrightarrow \frac{-\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y}}{\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}} \leq \theta \text { if }\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}>0
\end{array} .
\end{align*}
$$

$$
\begin{equation*}
\text { and } \frac{-\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y}}{\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}} \geq \theta \text { if }\left(s_{j} \boldsymbol{x}_{\cdot j}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}<0 \tag{16d}
\end{equation*}
$$

$$
\begin{gather*}
-s_{j} \boldsymbol{x}_{\cdot j}^{\top}(\boldsymbol{y}+\theta \boldsymbol{\eta}) \leq 0  \tag{2}\\
\Leftrightarrow \frac{-s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}}{s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}} \leq \theta \text { if } s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}>0  \tag{16e}\\
\text { and } \frac{-s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}}{s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}} \geq \theta \text { if } s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}<0 \tag{16f}
\end{gather*}
$$

for all $\left(j, j^{\prime}\right) \in S \times \bar{S}$. The conditions in Eqs.(16a), (16c), and (16e) suggests that $-\theta_{L}$ must be at least smaller than $\theta_{L}^{(a)}$ in Eq.(11a), $\theta_{L}^{(b)}$ in Eq.(11c), and $\theta_{L}^{(c)}$ in the second last inequality in Eq.(11), respectively. Therefore, we have

$$
\theta_{L}=-\min \left\{\theta_{L}^{(a)}, \theta_{L}^{(b)}, \theta_{L}^{(c)}\right\}
$$

Similarly, the conditions in Eqs.(16b), (16d), and (16f) imply that

$$
\theta_{L}=-\max \left\{\theta_{U}^{(a)}, \theta_{U}^{(b)}, \theta_{U}^{(c)}\right\}
$$

## A.4. Proof of Lemma 5

Proof. First, note that $0 \leq x_{i \tilde{j}^{\prime}} \leq x_{i j^{\prime}} \leq 1$ for any $\left(j, j^{\prime}, \tilde{j}^{\prime}\right) \in S \times \bar{S} \times \operatorname{Des}_{j}\left(j^{\prime}\right)$. We first prove Eq.(12a).

$$
\begin{aligned}
\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y} & =s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}>0} x_{i \tilde{j}^{\prime}} y_{i}+\sum_{i: y_{i}<0} x_{i \tilde{j}^{\prime}} y_{i} \\
& \geq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}<0} x_{i \tilde{j}^{\prime}} y_{i} . \\
& \geq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}<0} x_{i j^{\prime}} y_{i}=L_{E}^{(a)},
\end{aligned}
$$

which proves the first line. Next, we prove Eq.(12b).

$$
\begin{aligned}
\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} \boldsymbol{y} & =s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}>0} x_{i \tilde{j}^{\prime}} y_{i}+\sum_{i: y_{i}<0} x_{i \tilde{j}^{\prime}} y_{i} \\
& \leq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}>0} x_{i \tilde{j}^{\prime}} y_{i} . \\
& \leq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\sum_{i: y_{i}>0} x_{i j^{\prime}} y_{i}=U_{E}^{(a)},
\end{aligned}
$$

which proves the second line. Eqs. (12c) to (12h) are proved similarly.

## A.5. Proof of Theorem 6

Proof. First, we prove (i). For any $\left(j, j^{\prime}, \tilde{j}^{\prime}\right) \in S \times \bar{S} \times$ $\operatorname{Des}_{j}\left(j^{\prime}\right)$, by using Lemma 5 directly, a lower and an upper bound of $s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\boldsymbol{x}_{. j_{j}^{\prime}}^{\top} \boldsymbol{y}$ can be obtained as

$$
\begin{equation*}
L_{E}^{(a)} \leq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}+\boldsymbol{x}_{\cdot j^{\prime}}^{\top} \boldsymbol{y} \leq U_{E}^{(a)} \tag{17}
\end{equation*}
$$

Similarly, a lower and an upper bound of $s_{j} \boldsymbol{x}_{. j}^{\top} \boldsymbol{\eta}+\boldsymbol{x}_{. \tilde{j}^{\prime}}^{\top} \boldsymbol{\eta}$ can be also obtained as

$$
\begin{equation*}
L_{D}^{(a)} \leq s_{j} \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}^{\top} \boldsymbol{\eta} \leq U_{D}^{(a)} \tag{18}
\end{equation*}
$$

From Eq.(18), we have

$$
U_{D}^{(a)}<0 \Rightarrow\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} \boldsymbol{\eta}<0
$$

for all $\left(j, \tilde{j}^{\prime}\right) \in S \times \operatorname{Des} s_{j}\left(j^{\prime}\right)$. It means that the $\left(j, \tilde{j}^{\prime}\right)$-th constraint does not affect the solution of the optimization problem in Eq.(11a). Now, we consider the case of $U_{D}^{(a)}>$ 0 . If $L_{D}^{(a)}>0$, the value

$$
\frac{\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{y}}{\left(s_{j} \boldsymbol{x}_{\cdot j}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} \boldsymbol{\eta}}
$$

can be bounded below by $L_{E}^{(a)} / U_{D}^{(a)}$ when $L_{E}^{(a)}>0$, and $L_{E}^{(a)} / L_{D}^{(a)}$ when $L_{E}^{(a)}<0$, while the value can take any small values if $L_{D}^{(a)}<0$. As a result, for the current optimal solution $\hat{\theta}_{L}^{(a)},\left(j, j^{\prime}\right)$-th constraint does not affect the solution of the optimization problem Eq.(11a), if
or

$$
L_{D}^{(a)}>0, L_{E}^{(a)}>0 \text { and } \frac{L_{E}^{(a)}}{U_{D}^{(a)}}>\hat{\theta}_{L}^{(a)}
$$

$$
L_{D}^{(a)}>0, L_{E}^{(a)}<0 \quad \text { and } \frac{L_{E}^{(a)}}{L_{D}^{(a)}}>\hat{\theta}_{L}^{(a)}
$$

because $L_{D}^{(a)}>0$ implies $U_{D}^{(a)}>0$. Similarly, we can prove (ii) - (iv) by the same argument.

## B. Selectivxe inference for OMP

Lemma 8. Let $\boldsymbol{\eta}:=\left(X^{+}\right)^{\top} \boldsymbol{e}_{j}$. The solutions of the optimization problems in (7) are respectively written as

$$
\begin{aligned}
& \theta_{L}=-\min \left\{\theta_{L}^{(a)}, \theta_{L}^{(b)}, \theta_{L}^{(c)}\right\} \\
& \theta_{U}=-\max \left\{\theta_{U}^{(a)}, \theta_{U}^{(b)}, \theta_{U}^{(c)}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\theta_{L}^{(a)}:=\min _{\substack{h \in[k], j^{\prime} \in \bar{S}_{h},\left(s_{(h)} \boldsymbol{x} \cdot(h)+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}>0}} \frac{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}}{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}}, \tag{19a}
\end{equation*}
$$

$$
\theta_{L}^{(b)}:=\min _{\substack{h \in[k], j^{\prime} \in \bar{S}_{h},\left(s_{(h)} \boldsymbol{x} \cdot(h) \\ \boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}}}} \frac{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}}{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}},
$$

$$
\begin{equation*}
\theta_{L}^{(c)}:=\min _{\substack{h h[k], s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{\eta}>0}} \frac{s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}}{s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{\eta}}, \tag{19b}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{U}^{(a)}:=\max _{\substack{h \in[k], j^{\prime} \in \bar{S}_{h} \\\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}}}} \frac{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}}{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}}, \tag{19d}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{U}^{(b)}:=\max _{\substack{h \in[k], j^{\prime} \in \bar{S}_{h},\left(s_{(h)} \boldsymbol{x} \cdot(h) \\-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}}}} \frac{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}}{\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot j^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}}, \tag{19e}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{U}^{(c)}:=\max _{\substack{h \in[k], s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{\eta}<0}} \frac{s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}}{s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{\eta}} . \tag{19f}
\end{equation*}
$$

Lemma 9. For any $h \in[k]$ and $\left(j^{\prime}, \tilde{j}^{\prime}\right) \in \bar{S}_{h} \times \operatorname{Des}{ }_{(h)}\left(j^{\prime}\right)$,

$$
\begin{aligned}
& L_{E}^{(a)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}+\sum_{i:\left[P_{S_{h}} \boldsymbol{y}\right]_{i}<0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{y}\right]_{i} \\
& \leq\left(s_{(h)} \boldsymbol{x} .(h)+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}, \\
& U_{E}^{(a)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}+\sum_{i:\left[P_{S_{h}} \boldsymbol{y}\right]_{i}>0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{y}\right]_{i} \\
& \geq\left(s_{(h)} \boldsymbol{x} .(h)+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}, \\
& L_{D}^{(a)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta}+\sum_{i:\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i}<0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i} \\
& \leq\left(s_{(h)} \boldsymbol{x}_{.(h)}+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}, \\
& U_{D}^{(a)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta}+\sum_{i:\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i}>0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i} \\
& \geq\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}+\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}, \\
& L_{E}^{(b)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}-\sum_{i:\left[P_{S_{h}} \boldsymbol{y}\right]_{i}>0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{y}\right]_{i} \\
& \leq\left(s_{(h)} \boldsymbol{x} .(h)-\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}, \\
& U_{E}^{(b)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y}-\sum_{i:\left[P_{S_{h}} \boldsymbol{y}\right]_{i}<0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{y}\right]_{i} \\
& \geq\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{y}, \\
& L_{D}^{(b)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta}-\sum_{i:\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i}>0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i} \\
& \leq\left(s_{(h)} \boldsymbol{x}_{\cdot(h)}-\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta}, \\
& U_{D}^{(b)}:=s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta}-\sum_{i:\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i}<0} x_{i j^{\prime}}\left[P_{S_{h}} \boldsymbol{\eta}\right]_{i} \\
& \geq\left(s_{(h)} \boldsymbol{x} .(h)-\boldsymbol{x}_{\cdot \tilde{j}^{\prime}}\right)^{\top} P_{S_{h}} \boldsymbol{\eta} .
\end{aligned}
$$

Theorem 10. (i) Consider solving the optimization problem in Eq.(19a), and let $\hat{\theta}_{L}^{(a)}$ be the current optimal solution, i.e., we know that the optimal $\theta_{L}^{(a)}$ is at least no greater than $\hat{\theta}_{L}^{(a)}$. If

$$
\begin{aligned}
\left\{U_{D}^{(a)}<0\right\} & \cup\left\{L_{D}^{(a)}>0, L_{E}^{(a)}<0, L_{E}^{(a)} / L_{D}^{(a)}>\hat{\theta}_{L}^{(a)}\right\} \\
& \cup\left\{L_{D}^{(a)}>0, L_{E}^{(a)}>0, L_{E}^{(a)} / U_{D}^{(a)}>\hat{\theta}_{L}^{(a)}\right\}
\end{aligned}
$$

is true, then the $\tilde{j}^{\prime}-$ th constraint in Eq. (10a) for any $h \in[k]$ and $\left(j^{\prime}, \tilde{j}^{\prime}\right) \in \bar{S}_{h} \times \operatorname{Des}_{(h)}\left(j^{\prime}\right)$ does not affect the optimal solution in Eq.(19a).
(ii) Next, consider solving the optimization problem in Eq.(19b), and let $\hat{\theta}_{L}^{(b)}$ be the current optimal solution. If

$$
\begin{aligned}
\left\{U_{D}^{(b)}<0\right\} & \cup\left\{L_{D}^{(b)}>0, L_{E}^{(b)}<0, L_{E}^{(b)} / L_{D}^{(b)}<\hat{\theta}_{L}^{(b)}\right\} \\
& \cup\left\{L_{D}^{(b)}>0, L_{E}^{(b)}>0, L_{E}^{(b)} / U_{D}^{(b)}<\hat{\theta}_{L}^{(b)}\right\}
\end{aligned}
$$

is true, then the $\tilde{j}^{\prime}-$ th constraint in Eq. (10b) for any $h \in[k]$ and $\left(j^{\prime}, \tilde{j}^{\prime}\right) \in \bar{S}_{h} \times \operatorname{Des}_{(h)}\left(j^{\prime}\right)$ does not affect the optimal solution in Eq.(19b).
(iii) Furthermore, consider solving the optimization problem in Eq.(19d), and let $\hat{\theta}_{U}^{(a)}$ be the current optimal solution. If

$$
\begin{aligned}
\left\{L_{D}^{(a)}>0\right\} & \cup\left\{U_{D}^{(a)}<0, L_{E}^{(a)}<0, L_{E}^{(a)} / U_{D}^{(a)}>\hat{\theta}_{U}^{(a)}\right\} \\
& \cup\left\{U_{D}^{(a)}<0, L_{E}^{(a)}>0, L_{E}^{(a)} / L_{D}^{(a)}>\hat{\theta}_{U}^{(a)}\right\}
\end{aligned}
$$

is true, then the $\tilde{j}^{\prime}$-th constraint in Eq. (10a) for any $h \in[k]$ and $\left(j^{\prime}, \tilde{j}^{\prime}\right) \in \bar{S}_{h} \times \operatorname{Des}_{(h)}\left(j^{\prime}\right)$ does not affect the optimal solution in Eq.(19d).
(iv) Finally, consider solving the optimization problem in Eq.(19e), and let $\hat{\theta}_{U}^{(b)}$ be the current optimal solution. If

$$
\begin{aligned}
\left\{L_{D}^{(b)}>0\right\} & \cup\left\{U_{D}^{(b)}<0, L_{E}^{(b)}<0, L_{E}^{(b)} / U_{D}^{(b)}>\hat{\theta}_{U}^{(b)}\right\} \\
& \cup\left\{U_{D}^{(b)}<0, L_{E}^{(b)}>0, L_{E}^{(b)} / L_{D}^{(b)}>\hat{\theta}_{U}^{(b)}\right\}
\end{aligned}
$$

is true, then the $\left(\tilde{j}^{\prime}-\right.$ th constraint in Eq. (10b) for any $h \in[k]$ and $\left(j^{\prime}, \tilde{j}^{\prime}\right) \in \bar{S}_{h} \times \operatorname{Des}_{(h)}\left(j^{\prime}\right)$ does not affect the optimal solution in Eq.(19e).

