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Abstract
Finding statistically significant high-order inter-
actions in predictive modeling is important but
challenging task because the possible number of
high-order interactions is extremely large (e.g.,
> 1017). In this paper we study feature se-
lection and statistical inference for sparse high-
order interaction models. Our main contribution
is to extend recently developed selective infer-
ence framework for linear models to high-order
interaction models by developing a novel algo-
rithm for efficiently characterizing the selection
event for the selective inference of high-order in-
teractions. We demonstrate the effectiveness of
the proposed algorithm by applying it to an HIV
drug response prediction problem.

1. Introduction
Finding statistically reliable high-order interaction features
in predictive modeling has been important challenging task.
For example, in a biomedical study, co-occurrence of mul-
tiple mutations in multiple genes may have a significant in-
fluence on a response to a drug even if occurrence of single
mutation in each of these genes has no influence (Mano-
lio & Collins, 2006; Cordell, 2009). A major challenge
in prediction modeling with high-order interaction features
is the exponentially expanded feature space. If one has a
dataset with d original variables and takes into account in-
teractions up to order r, the model has D :=

∑r
ρ=1

(
d
ρ

)
features (e.g., for d = 10, 000, r = 5, D > 1017). Unless
both d and r are fairly small, D is extremely large. Fea-
ture selection and statistical inference in such an extremely
high-dimensional model are challenging both computation-
ally and statistically.

A common approach to high-dimensional modeling is to
consider a sparse model, i.e., a model only with a selected
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Figure 1. Example of the tree structure among high-order interac-
tion features when d = 4 and r = 3.

subset of features. In the past two decades, considerable
amount of studies have been done on sparse modeling and
feature selection in high-dimensional models. In these
studies, a variety of feature selection algorithms such as
marginal screening (Fan & Lv, 2008), orthogonal match-
ing pursuit (Pati et al., 1993), LASSO (Tibshirani, 1996),
and their various extensions have been developed. On the
other hand, statistical inference for sparse models (hypoth-
esis testing or confidence interval computation of the fit-
ted coefficients) have not been deeply studied until very
recently. The main challenge in statistical inference of
sparse models is that, if the data is used for selecting a
subset of features, this selection event must be taken into
account in the following inference stage. Otherwise, the
inference results are distorted by so-called selection bias,
and false positive errors cannot be controlled at desired
levels. This problem is refereed to as selective inference
or post selection inference (Benjamini & Yekutieli, 2005;
Benjamini et al., 2009; Berk et al., 2013). After the seminal
work by Lee et al. (2016), significant progress has been re-
cently made on selective inference for sparse linear models
(Fithian et al., 2014b; Lee & Taylor, 2014; Fithian et al.,
2015; Tian & Taylor, 2015; Taylor & Tibshirani, 2016;
Yang et al., 2016; Barber & Candès, 2016).

In this paper, we study feature selection and statistical in-
ference for sparse high-order interaction models. Unfortu-
nately, neither existing feature selection methods nor ex-
isting selective inference methods can be applied to sparse
high-order interaction models because the computational
costs of these existing methods at least linearly depend on
the number of features D. The main contribution in this
paper is to develop computationally efficient algorithms for
these two tasks when the original variables are represented
in [0, 1]d. Our main idea is to exploit the underlying tree
structure of high-order interaction features as depicted in
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Figure 1. In feature selection tasks, it allows us to effi-
ciently identify interaction features that have no chance to
be selected. In statistical inference tasks, it allows us to ef-
ficiently identify interaction features that do not affect the
results of the selective inference.

We demonstrate the effectiveness of the proposed methods
through numerical experiments both on synthetic and real
datasets. In the latter, we apply the proposed method to
HIV dataset in (Rhee et al., 2003), where the goal is to iden-
tify statistically significant high-order interactions of mul-
tiple gene mutations that are significantly associated with
HIV drug responses.

Related works and our contributions Methods for effi-
ciently finding high-order interaction features and properly
evaluating their statistical significances have long been de-
sired in many scientific studies.

In the past decade, feature selection for interaction mod-
els has been studied in the context of sparse learning (Choi
et al., 2010; Hao & Zhang, 2014; Bien et al., 2013). None
of these works have a special computational trick for han-
dling exponentially large number of interaction features,
which makes their empirical evaluations restricted up-to
second order interactions. One commonly used heuristic
in the context of interaction modeling is to introduce a
prior knowledge such as strong heredity assumption where,
e.g., an interaction term z1z2 would be selected only when
both of z1 and z2 are selected. Such a heuristic restric-
tion is helpful for reducing the number of interaction terms
to be considered. However, in many scientific studies, re-
searchers are primarily interested in finding interactions
even when their main effects alone do not have any associa-
tion with the response. The idea of considering a tree struc-
ture among interaction features has been commonly used n
data mining literature (Kudo et al., 2005; Saigo et al., 2006;
Nakagawa et al., 2016). However, it is difficult to properly
assess the statistical significances of the selected features
by these mining techniques.

One traditional approach to assessing the statistical signif-
icances of selected features is multiple testing correction
(MTC). In the context of DNA microarray studies, many
MTC procedures for high-dimensional data have been pro-
posed (Tusher et al., 2001; Dudoit et al., 2003). An MTC
approach for statistical evaluation of high-order interac-
tion features was recently studied in (Terada et al., 2013;
Llinares-López et al., 2015). A main drawback of MTC is
that they are highly conservative when the number of candi-
date features increases. Another common approach is data-
splitting (DS). (Fithian et al., 2014a). In DS approach, we
split the data into two subsets, and use one for feature se-
lection and another for statistical inference, which enables
us to remove the selection bias. However, performances

of DS approach is clearly weak both in selection and in-
ference stages because only a part of the available data is
used in each stage. In addition, it is quite annoying that
different set of features would be selected if data is splitted
differently. Recently, much attention has been paid to se-
lective inference for sparse linear models. The basic idea
of selective inference is to make inferences conditional on
a feature selection event. Lee et al. (2016) recently pro-
posed a practical selective inference framework for a class
of feature selection algorithms.

The main contribution in this paper is to extend the selec-
tive inference framework into sparse high-order interaction
models by introducing novel computational algorithms. To
the best of our knowledge, there are no other existing works
for sparse high-order interaction models in which the sta-
tistical significances of the fitted coefficients are properly
evaluated in non-asymptotic sense.

Notations We use the following notations in the re-
mainder. For any natural number n, we define [n] :=
{1, . . . , n}. A vector and a matrix is denoted such as
v ∈ Rn and M ∈ Rn×m, respectively. The index func-
tion is written as 1{z} which returns 1 if z is true, and 0
otherwise. The sign function is written as sgn(z) which
returns 1 if z ≥ 0, and −1 otherwise. An n × n identity
matrix is denoted as In.

2. Preliminaries
2.1. Problem setup

Consider a regression problem with a response Y ∈ R and
d-dimensional original covariates z = [z1, . . . , zd]

> by the
following high-order interaction model up to r-th order

Y =
∑
j1∈[d]

αj1zj1 +
∑

(j1,j2)∈[d]×[d]
j1 6=j2

αj1,j2zj1zj2

+ · · ·+
∑

(j1,...,jr)∈[d]r

j1 6=...6=jr

αj1,...,jrzj1 · · · zjr + ε, (1)

where αs are the coefficients and ε is a random noise. We
assume that each original covariate zj , j ∈ [d] is defined in
a domain [0, 1]. Here, values 1 and 0 respectively might
be interpreted as the existence and the non-existence of
a certain property, and values between them indicate the
“degree” of existence. High-order interaction features thus
represent co-existence of multiple properties. For example,
if we are interested in interactions among age, body mass
index (BMI), and a mutation in a certain gene, we may code
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some covariates as

zj1 :=

 1 if BMI > 30,
(BMI− 15)/(30− 15) if BMI ∈ [15, 30],
0 if BMI < 15,

zj2 := 1{mutation in the gene}.

Then, e.g., an interaction term zj1zj2 represents the co-
existence of high BMI and a mutation in the gene.

The high-order interaction model Eq.(1) has in total D :=∑
ρ∈[r]

(
d
ρ

)
features. Let us write the mapping from the

original covariates z := [z1, . . . , zd]
> ∈ Rd to the high-

order interaction features x := [x1, . . . , xD]> ∈ RD as
φ : [0, 1]d → [0, 1]D, z 7→ x,, i.e.,

x := φ(z) = [z1, . . . , zd, z1z2, . . . , zd−1zd,

. . . , z1 ···zk, . . . , zd−r+1 ···zd]>

Then, the high-order interaction model Eq.(1) is simply
written as a D-dimensional linear model

y = β>x = β1x1 + · · ·+ βDxD,

where β1, . . . , βD are D coefficients corresponding to
αj1 , . . . , αj1,...,jr in Eq.(1). Since a high-order interaction
feature is a product of original covariates defined in [0, 1],
the range of each feature xj , j ∈ [D] is also [0, 1].

The original training set is denoted as {(zi, yi) ∈ [0, 1]d ×
R}i∈[n], while the expanded training set is written as
{(xi, yi) ∈ [0, 1]D ×R}i∈[n]. The latter is also denoted as
(X,y) ∈ [0, 1]n×D ×Rn where each row of X is xi ∈ Rd
and each element of y is yi. Furthermore, the j-th column
of X is written as x·j , j ∈ [D]. We denote the pseudo
inverse of X as X+ := (X>X)−1X>.

Our goal is to identify statistically significant high-order in-
teraction terms that have large impacts on the response Y
by identifying regression coefficients αs which are signif-
icantly deviated from zero. Unfortunately, since the num-
ber of coefficients αs to be fitted would be far greater than
the sample size n, traditional least-square estimation the-
ory cannot be used for making statistical inferences on the
fitted model. We thus consider first to perform feature se-
lection and then to make statistical inference only for the
selected features based on selective inference approach.

2.2. Selective inference for sparse linear models

In this section, we briefly review the selective inference
framework for sparse linear models developed by Lee et al.
(2016). Selective inference is developed for two stage
methods, where a subset of features is selected in the first
stage, and inferences are made only on the selected features
in the second stage. A key finding by Lee et al. (2016) is

that, if the first selection stage is described as a linear se-
lection event, then exact statistical inference of the fitted
coefficients conditional on the selection event can be done.

Consider a linear regression model y = Xβ∗ + ε, where
β∗ ∈ RD is the true coefficients and ε is distributed ac-
cording to N(0, σ2I) with known variance σ2.

Feature selection stage Suppose that, in the first feature
selection stage, a subset of features S ⊆ [D] are selected.
The selective inference framework in Lee et al. (2016) can
be applied to feature selection algorithms whose selection
process can be characterized by a set of linear inequalities
in the form of Ay ≤ b with a certain matrix A and a cer-
tain vector b that do not depend on y. This type of selec-
tion event is called a linear selection event. In the selective
inference framework, inferences are made conditional on
the selection event. It means that, in the case of a linear
selection event, we only care about the cases where y is
observed in a polytope Pol(S) := {y ∈ Rn | Ay ≤ b}.
In Lee & Taylor (2014) and Lee et al. (2016), marginal
screening, OMP and LASSO are shown to be linear selec-
tion events, indicating that the selective inference frame-
work can be applied to statistical testing of the selected
features by these algorithms.

Statistical inference stage Consider a hypothesis testing
for the j-th selected feature in S

H0,j : β∗S,j = 0 vs. H1,j : β∗S,j 6= 0. (2)

The least-square estimator of the linear model only with the
selected features S is written as β̂S = (X>S XS)−1X>S y.

If we consider the case where S is NOT selected from the
data, i.e., independent of y, then, under the null hypothesis
H0, the sampling distribution of each fitted coefficient is

β̂S,j ∼ N(0, σ2
S,j), where σ2

S,j := σ2(X>S XS)−1
jj . (3)

For two-sided test at level α, if the critical values `α/2 and
uα/2 are chosen to be the lower and the upper α/2 points
of the sampling distribution in Eq.(3), then the type I error
at level α is controlled as

Pr(β̂S,j /∈ [`α/2, uα/2]) ≤ α (4)

On the other hand, when S is selected from the data as
we consider here, we would like to control the following
selective type I error

Pr(β̂S,j /∈ [`
(S,j)
α/2 , u

(S,j)
α/2 ] | {S is selected})

=Pr(β̂S,j /∈ [`
(S,j)
α/2 , u

(S,j)
α/2 ] | y ∈ Pol(S)) ≤ α (5)

by appropriately selecting the adjusted critical values `(S,j)α/2

and u
(S,j)
α/2 , where the selection event {S is selected} is
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written as y ∈ Pol(S) in the case of a linear selection
event. Lee et al. (2016) derived how to compute these
adjusted critical values as formally stated in the following
lemma.

Lemma 1. If the critical values are computed as

`
(S,j)
α/2 := (F

[L(S,j),U(S,j)]

0,σ2
S,j

)−1(α/2), (6a)

u
(S,j)
α/2 := (F

[L(S,j),U(S,j)]

0,σ2
S,j

)−1(1− α/2), (6b)

then the selective type I error is controlled as in Eq. (5),
where F [L,U ]

µ,σ2 is the cumulative distribution function of a
truncated Normal distribution TN(µ, σ2, L, U), i.e.,

F
[L,U ]
µ,σ2 (x) =

Φ((x− µ)/σ)− Φ((L− µ)/σ)

Φ((U − µ)/σ)− Φ((L− µ)/σ)
,

and the truncation points are obtained, by using the ob-
served β̂S,j and y, as

L(S, j) = β̂S,j + θL(X>S XS)−1
jj , (7a)

where θL := min
θ∈R

θ s.t. y + θ(X+
S )>ej ∈ Pol(S),

U(S, j) = β̂S,j + θU (X>S XS)−1
jj , (7b)

where θU := max
θ∈R

θ s.t. y + θ(X+
S )>ej ∈ Pol(S).

The proof of Lemma 1 is is presented in Appendix A al-
though it is easily proved by using the results in Lee et al.
(2016). See Lee et al. (2016) for more general statement
about the selective inference framework.

Eq.(7) indicates that the truncation points are obtained by
considering the interval where the test statistic β̂S,j can
move within the polyhedron Pol(S). Figure 2 schemati-
cally illustrates that, when we make inferences conditional
on a linear selection event S, the sampling distribution is
defined within the polytope Pol(S), and it follows a trun-
cated normal distribution when y is normally distributed.

Unfortunately, we cannot directly apply this selective infer-
ence framework to high-order interaction models because
the polytope Pol(S) is characterized by extremely large
number of linear inequalities, and the optimization prob-
lems in Eq.(7) are hard to solve.

3. Feature selection for interaction models
In this section, we present two feature selection algorithms
for high-order interaction models. Since the number of fea-
tures D is extremely large, existing feature selection algo-
rithms for linear models cannot be directly applied to inter-
action models. In this paper, we study marginal screening
(MS) and orthogonal matching pursuit (OMP) as examples
of feature selection algorithms.

y

L(S, j) U(S, j)

`
(S,j)
↵/2

u
(S,j)
↵/2

✓(X+
S )>ej

Figure 2. An illustration of polyhedral lemma. The polyhedron
represents the selection event and truncation points can be com-
puted by optimizing θ along with the direction (X+

S )>ej . In ad-
dition, critical values can be obtained by computing Eq.(6), and
the red region shows the rejection region of the test in Eq.(2).

3.1. MS for interaction models

Consider selecting the top k interaction features from all
the D interaction features that have marginal strong cor-
relations with the response. Noting that each feature is
defined in [0, 1] and the value indicates (the degree of)
the existence of a certain property, we consider a score
x>·jy, j ∈ [D] for each of the D features, and select the top
k features according to their absolute scores |x>·jy|. We de-
note the index set of the selected k features by S, and that
of the unselected k̄ := D − k features by S̄ := [D] \ S.

Since D is extremely large, we cannot compute the score
for each interaction feature. We exploit the tree structure
among interaction patterns as depicted in Figure 1.

Definition 2. (Descendant features) For each j ∈ [D], let
Des(j) ⊆ [D] be the set of features corresponding to the
descendant nodes in the tree including j itself.

Lemma 3. Consider an interaction feature x·j , j ∈ [D],
whose indices are represented in a tree structure as de-
picted in Figure1. Then, for any node j ∈ [D] in the tree,

|x·j̃y| ≤ max

 ∑
i:yi>0

xijyi,−
∑
i:yi<0

xijyi

 (8)

for all j̃ ∈ Des(j).

The proof of Lemma 3 is presented in Appendix A.
Lemma 3 tells that, for a descendant feature x·j̃ , (j, j̃) ∈
S × Des(j), an upper bound of the absolute score |x>·j̃y|
can be computed based on its parent feature x·j .

We note that this simple upper bound has been used in some
data mining studies such as Saigo et al. (2006); Kudo et al.
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(2004); Nakagawa et al. (2016). When we search over the
tree, if the upper bound in Eq.(8) is smaller than the cur-
rent k-th largest score at a certain node j, then we can quit
searching over its descendant nodes j̃ ∈ Des(j).

As pointed out in Lee & Taylor (2014), feature selection
processes of marginal screening is a linear selection event,
i.e., characterized by a set of linear constraints. The event
that k features in S are selected, and k̄ features in S̄ are
not selected is rephrased as |x>·jy| ≥ |x>·j′y|, ∀ (j, j′) ∈
S × S̄. Let sj := sgn(x>·jy), j ∈ S. Then, the above
feature selection event is rewritten with the sign constraints
of the selected features by the following 2kk̄+k constraints

(−sjx·j − x·j′)>y ≤ 0, ∀ (j, j′) ∈ S × S̄, (9a)

(−sjx·j + x·j′)
>y ≤ 0, ∀ (j, j′) ∈ S × S̄, (9b)

−sjx>·jy ≤ 0, ∀ j ∈ S. (9c)

These constraints are written as Ay ≤ 0 with a matrix
A ∈ R(2kk̄+k)×n. Unfortunately, finding θmin and θmax

by naively solving the optimization problems in Eq.(7) is
computationally difficult because the polyhedron Pol(S) is
characterized by the extremely large number of constraints.
For example, when d = 10, 000, r = 5, k = 10, the
number of linear inequalities that defines the polyhedron
Pol(S) is 2kk̄ + k > 1019.

3.2. OMP for interaction models

Orthogonal matching pursuit (OMP) is a well-known iter-
ative feature selection method (Pati et al., 1993). At each
iteration, the most correlated feature with the residual of
the current model which is fitted via least-squares method
by using the features selected in earlier steps.

Consider again selecting k interaction features by OMP.
Let [(1), . . . , (h)] be the sequence of the indices of the se-
lected features from step 1 to step h for h ∈ [k], and de-
fine Sh := {(1), . . . , (h)}. Before step h + 1, we have
already selected h features x·j , j ∈ Sh. Using these h fea-
tures, the current n-dimensional model output is written as∑
j∈[h] β̂Sh,(j)x·(j), where the coefficients β̂Sh,(j), j ∈ [h]

are estimated by least-squares method. Denoting by ΓSh

the n×hmatrix whose j-th column isx·(j), the least square
estimates are written as β̂Sh

:= [β̂Sh,(1), . . . , β̂Sh,(h)]
> =

(ΓSh
)+y. Then, at the h + 1 step, we consider the corre-

lation between the residual vector rh := y − ΓSh
β̂Sh

and
a feature x·j′ for j′ ∈ S̄h, and find the one that maximizes
the absolute correlation |x>·j′rh| among them. Here, since
the number of remaining features |S̄h| = D − h is still
extremely large, it is hard to compute all these D − h cor-
relations. To overcome this difficulty, we can simply use
Lemma 3 just by replacing y with the current residual rh.
Specifically, for a descendant feature x·j̃ , j̃ ∈ Des(j), an

upper bound of |x>·j̃rh| is given as

|x>·j̃rh| ≤ max

 ∑
i:rh,i>0

xijrh,i,−
∑

i:rh,i<0

xijrh,i

 .

At each iteration, when we search over the tree, if the upper
bound is smaller than the current largest correlation, then,
in the same way as the case of MS, we can quit searching
over its descendant nodes j′ ∈ Des(j).

It is also pointed out in Lee & Taylor (2014) that a feature
selection process of OMP is linear selection event. At step
h, the event that the (h)-th feature is selected is formulated
as |x>·(h)rh| ≥ |x

>
·j′rh|, for all j′ ∈ S̄h. Let PSh

:= In −
ΓSh

Γ+
Sh

. Then, the above selection event is rewritten as a
set of linear inequalities with respect to y

(−s(h)x·(h) − x·j′)>PSh
y ≤ 0,∀ j′ ∈ S̄h, (10a)

(−s(h)x·(h) + x·j′)
>PSh

y ≤ 0,∀ j′ ∈ S̄h, (10b)

−s(h)x
>
·(h)PSh

y ≤ 0, (10c)

where s(h) = sgn(x>·(h)rh). By combining all the linear
selection events in k steps, the entire selection event of
the OMP is characterized by

∑
h∈[k](2(D − h) + 1) lin-

ear inequalities in Rn. In practice, it is computationally in-
tractable to handle these extremely large number of linear
inequalities.

4. Selective inference for interaction models
In this section, we present an efficient selective inference
algorithm for high-order interaction models, which is our
main contribution.

The discussion in §3 suggests that it would be hard to com-
pute critical values for selective inference in Eq.(6) because
the selection event y ∈ Pol(S) is characterized by ex-
tremely large number of inequalities. Our basic idea for ad-
dressing this computational difficulty is to note that most of
the inequalities actually do not affect the results of the se-
lective inference, and a large portion of them can be identi-
fied by exploiting the anti-monotonicity properties defined
in the tree structure among high-order interaction features.

4.1. Marginal screening

We consider k trees for each of the k selected features.
Each tree consists of a set of nodes corresponding to each of
the non-selected features j′ ∈ S̄. For a pair (j, j′) ∈ S× S̄,
the j′-th node in the j-th tree corresponds to the linear in-
equalities Eqs.(9a) and (9b). When we search over these k
trees, we introduce a novel pruning strategy by deriving a
condition such that, if the j′-th node in the j-th tree satisfies
certain conditions, then all the (j, j̃′)-th inequalities for all
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j̃′ ∈ Desj(j′) are guaranteed to be irrelevant to the selec-
tive inference results because they do not affect the optimal
solutions in Eq.(7), where we define Desj(j′) be all the
features corresponding to the descendant node of j′ in the
j-th tree.

Lemma 4. Let η := (X+
S )>ej . The solutions of the opti-

mization problems in (7) are respectively written as

θL = −min{θ(a)
L , θ

(b)
L , θ

(c)
L },

θU = −max{θ(a)
U , θ

(b)
U , θ

(c)
U },

where

θ
(a)
L := min

(j,j′)∈S×S̄,
(sjx·j+x·j′ )

>η>0

(sjx·j + x·j′)>y
(sjx·j + x·j′)>η

, (11a)

θ
(a)
U := max

(j,j′)∈S×S̄,
(sjx·j+x·j′ )

>η<0

(sjx·j + x·j′)>y
(sjx·j + x·j′)>η

, (11b)

θ
(b)
L := min

(j,j′)∈S×S̄,
(sjx·j−x·j′ )>η>0

(sjx·j − x·j′)>y
(sjx·j − x·j′)>η

, (11c)

θ
(b)
U := max

(j,j′)∈S×S̄,
(sjx·j−x·j′ )>η<0

(sjx·j − x·j′)>y
(sjx·j − x·j′)>η

, (11d)

θ
(c)
L := min

j∈S,
sjx
>
·jη>0

sjx
>
·jy

sjx>·jη
, θ

(c)
U := max

j∈S,
sjx
>
·jη<0

sjx
>
·jy

sjx>·jη
.

The proof of Lemma 4 is presented in Appendix A.

Lemma 5. For any triplet (j, j′, j̃′) ∈ S × S̄ ×Desj(j′),

L
(a)
E := sjx

>
·jy +

∑
i:yi<0

xij′yi ≤ (sjx·j + x·j̃′)
>y, (12a)

U
(a)
E := sjx

>
·jy +

∑
i:yi>0

xij′yi ≥ (sjx·j + x·j̃′)
>y, (12b)

L
(a)
D := sjx

>
·jη +

∑
i:ηi<0

xij′ηi ≤ (sjx·j + x·j̃′)
>η, (12c)

U
(a)
D := sjx

>
·jη +

∑
i:ηi>0

xij′ηi ≥ (sjx·j + x·j̃′)
>η, (12d)

L
(b)
E := sjx

>
·jy −

∑
i:yi>0

xij′yi ≤ (sjx·j − x·j̃′)
>y, (12e)

U
(b)
E := sjx

>
·jy −

∑
i:yi<0

xij′yi ≥ (sjx·j − x·j̃′)
>y, (12f)

L
(b)
D := sjx

>
·jη −

∑
i:ηi>0

xij′ηi ≤ (sjx·j − x·j̃′)
>η, (12g)

U
(b)
D := sjx

>
·jη −

∑
i:ηi<0

xij′ηi ≥ (sjx·j − x·j̃′)
>η. (12h)

The proof of Lemma 5 is presented in Appendix A.

Theorem 6. (i) Consider solving the optimization problem
in Eq.(11a), and let θ̂(a)

L be the current optimal solution,
i.e., we know that the optimal θ(a)

L is at least no greater
than θ̂(a)

L . If

{U (a)
D < 0} ∪ {L(a)

D > 0, L
(a)
E < 0, L

(a)
E /L

(a)
D > θ̂

(a)
L }

∪ {L(a)
D > 0, L

(a)
E > 0, L

(a)
E /U

(a)
D > θ̂

(a)
L }

is true, then the (j, j̃′)-th constraint in Eq. (9a) for any
(j, j′, j̃′) ∈ S × S̄ ×Desj(j′) does not affect the optimal
solution in Eq.(11a).

(ii) Next, consider solving the optimization problem in
Eq.(11c), and let θ̂(b)

L be the current optimal solution. If

{U (b)
D < 0} ∪ {L(b)

D > 0, L
(b)
E < 0, L

(b)
E /L

(b)
D > θ̂

(b)
L }

∪ {L(b)
D > 0, L

(b)
E > 0, L

(b)
E /U

(b)
D > θ̂

(b)
L }

is true, then the (j, j̃′)-th constraint in Eq. (9b) for any
(j, j′, j̃′) ∈ S × S̄ ×Desj(j′) does not affect the optimal
solution in Eq.(11c).

(iii) Furthermore, consider solving the optimization prob-
lem in Eq.(11b), and let θ̂(a)

U be the current optimal solu-
tion. If

{L(a)
D > 0} ∪ {U (a)

D < 0, L
(a)
E < 0, L

(a)
E /U

(a)
D < θ̂

(a)
U }

∪ {U (a)
D < 0, L

(a)
E > 0, L

(a)
E /L

(a)
D < θ̂

(a)
U }

is true, then the (j, j̃′)-th constraint in Eq. (9a) for any
(j, j′, j̃′) ∈ S × S̄ ×Desj(j′) does not affect the optimal
solution in Eq.(11b).

(iv) Finally, consider solving the optimization problem in
Eq.(11d), and let θ̂(b)

U be the current optimal solution. If

{L(b)
D > 0} ∪ {U (b)

D > 0, L
(b)
E < 0, L

(b)
E /U

(b)
D < θ̂

(b)
U }

∪ {U (b)
D > 0, L

(b)
E < 0, L

(b)
E /L

(b)
D < θ̂

(b)
U }

is true, then the (j, j̃′)-th constraint in Eq. (9b) for any
(j, j′, j̃′) ∈ S × S̄ ×Desj(j′) does not affect the optimal
solution in Eq.(11d).

The proof of Theorem 6 is presented in Appendix. Note
that all the conditions in Theorem 6 can be checked at the
j′-th node in each tree. If the conditions are satisfied as
the j′-th node, then one can skip searching over its sub-
tree. It allows us to perform selective inference for high-
order interaction models even the number of constraints
that defines the selection event is extremely large. As we
demonstrate in the experiment section, these pruning con-
ditions are quite effective in practice. For example, we can
perform selective inference for an interaction models with
d = 10, 000, r = 5, k = 10 in a few seconds.
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4.2. Orthogonal matching pursuit (OMP)

As we discuss in the previous section, the selection event
at each iteration of OMP has same form as MS. Therefore,
we can derive similar pruning conditions as in Theorem 6
for OMP. Due to the space limitation, we deffer the corre-
sponding lemma and the theorem for OMP in Appendix B.

5. Experiments
We demonstrate the performance of the selective inference
for high-order sparse interaction models by numerical ex-
periments on synthetic datasets and a real dataset.

5.1. Experiments on synthetic datasets

First, we compared selective inference (select) with
naive (naive) and data-splitting (split) on synthetic
datasets. In naive, the critical values of the selected k
features were naively computed without any selection bias
correction mechanisms as in Eq. (4). In split, the dataset
was first divided into two equally sized sets, and one of
them was used for selection stage, and the other was used
for inference stage. Note that the errors controlled by these
methods are individual false positive rate for each of the
selected features (although naive actually cannot control
it), we applied Bonferroni correction within the k selected
features, i.e., we reject the hypothesis in Eq. (2) with the
significance level α/k where α = 0.05, and we refer this
error as family-wise false positive rates (FW-FPRs).

The synthetic dataset was generated as follows. In the ex-
periments for comparing FW-FPRs, we generated the train-
ing instances (zi, yi) ∈ [0, 1]d×R independently at random
for each i ∈ [n]. The original covariates zi were randomly
generated so that it contains d(1− ζ) 1s on average, where
ζ ∈ [0, 1] is an experimental parameter for representing
the sparsity of the dataset, while the response yi was ran-
domly generated from a Normal distribution N(0, σ2). In
the experiments for comparing true positive rates (TPRs)
the response yi was randomly generated from a Normal
distribution N(µ(X), σ2I), where, for each row of µ(X)
is defined as µ(zi) = 2z1z2z3 in the experiments for MS,
µ(zi) = 0.5z1 − 2z2z3 + 3z4z5z6 in the experiments for
OMP. We investigated the performances by changing var-
ious experimental parameters. We set the baseline param-
eters as n = 100, d = 100, k = 5, r = 5, α = 0.05,
σ = 0.5, and ζ = 0.6.

5.1.1. FALSE POSITIVE RATES

Figure 3 shows the FW-FPRs when varying the number of
transactions n ∈ {50, 100, . . . , 250}, the number of orig-
inal covariates d ∈ {50, 100, . . . , 250}. In all cases, the
FW-FPRs of naive were far greater than the desired sig-
nificance level α = 0.05, indicating that the selection bias
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Figure 3. False positive rates (FPRs).
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Figure 4. True positive rates (TPRs).

is harmful. The FW-FPRs of the other two approaches
select and split were successfully controlled.

5.1.2. TRUE POSITIVE RATES

Figure 4 shows the TPRs of select and split (we omit
naive because it cannot control FPRs). Here, TPRs are
defined as the probability of finding truly correlated inter-
action features. In all the setups, the TPRs of select
were much greater than split. Note that the perfor-
mances of split would be worse than select both in
the selection and the inference stages. The risk of failing to
select truly correlated features in split would be higher
than select because only half of the data would be used
in the selection stage. Similarly, the statistical power in the
inference stage in split would be smaller than select
because the sample size is smaller.
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Table 1. Computation times [sec]
MS OMP

with computational trick without computational trick
n ζ = 0.8 ζ = 0.9 ζ = 0.8 ζ = 0.9

100 4.68× 10−2 1.80× 10−2 1.37× 102 1.31× 102

500 1.74× 10−1 9.07× 10−2 1.80× 102 1.36× 102

1000 3.38× 10−1 1.54× 10−1 2.65× 102 1.41× 102

5000 2.33× 100 6.61× 10−1 1.05× 103 2.57× 102

10000 5.04× 100 1.55× 100 2.06× 103 5.12× 102

with computational trick without computational trick
ζ = 0.8 ζ = 0.9 ζ = 0.8 ζ = 0.9

2.33× 10−1 5.85× 10−2 8.83× 102 8.28× 102

1.01× 100 3.74× 10−1 1.33× 103 8.60× 102

3.18× 100 7.27× 10−1 2.15× 103 9.07× 102

6.20× 101 3.48× 100 1.00× 104 2.05× 103

1.24× 102 9.00× 100 1.98× 104 4.63× 103

d ζ = 0.8 ζ = 0.9 ζ = 0.8 ζ = 0.9

100 4.40× 10−2 1.77× 10−2 1.47× 102 1.31× 102

500 5.06× 10−1 1.64× 10−1 ≥ 1 day ≥ 1 day
1000 1.23× 100 3.74× 10−1 ≥ 1 day ≥ 1 day
5000 1.53× 101 2.88× 100 ≥ 1 day ≥ 1 day

10000 3.70× 101 6.16× 100 ≥ 1 day ≥ 1 day

ζ = 0.8 ζ = 0.9 ζ = 0.8 ζ = 0.9

2.41× 10−1 6.02× 10−2 8.86× 102 8.20× 102

3.52× 101 9.83× 100 ≥ 1 day ≥ 1 day
3.01× 102 1.66× 102 ≥ 1 day ≥ 1 day
≥ 1 day 1.92× 103 ≥ 1 day ≥ 1 day
≥ 1 day 5.98× 104 ≥ 1 day ≥ 1 day

Table 2. The numbers of significant high-order interactions of
multiple mutations in HIV datasets.

MS OMP
Data 1st 2nd 3rd 4th Time[s] 1st 2nd 3rd 4th Time[s]

NNRTI (d = 371)
dlv(n = 732) 1 .495 2 18.0
efv(n = 734) .732 5 13.7
nvp(n = 746) 4 1 .774 8 17.4

NRTI (d = 348)
3tc(n = 633) 1 2 .257 4 15.1
abc(n = 628) 5 13 7 2 .238 9 11.7
azt(n = 630) 2 5 3 1 .231 5 17.5
d4t(n = 630) 4 11 6 1 .215 7 1 3 13.7
ddi(n = 632) 2 1 .234 6 12.1
tdf(n = 353) .230 3 1 26.4

PI (d = 225)
apv(n = 768) 3 6 1 .188 9 6.5
atv(n = 329) 1 3 2 .150 3 1 5.0
idv(n = 827) 1 6 3 .437 9 6.2
lpv(n = 517) 4 4 1 .275 11 6.1
nfv(n = 844) 5 7 1 .455 15 5.8
rtv(n = 795) 5 7 2 .183 10 1 5.6

sqv(n = 826) 1 3 2 .623 7 1 7.8

5.1.3. COMPUTATIONAL EFFICIENCY

Table 1 shows the computation times in seconds for the se-
lective inference approach with and without the computa-
tional tricks described in §4 for various values of the num-
ber of transactions n ∈ {100, . . . , 10, 000}, the number of
original covariates d ∈ {100, . . . , 10, 000}, and the spar-
sity rates ζ ∈ {0.8, 0.9} (we terminated the search if the
time exceeds 1 day). It can be observed from the table that,
if we use the computational trick, the selective inferences
can be conducted with reasonable computational costs ex-
cept for d ≥ 5, 000 and ζ = 0.8 cases with OMP. When the
computational trick was not used, the cost was extremely
large. Especially when the number of original covariates d
is larger than 100, we could not complete the search within
1 day. From the results, we conclude that computational
trick described in §4 is indispensable for selective infer-
ences for sparse high-order interaction models.

5.2. Application to HIV drug resistance data

We applied the selective inference approach to HIV-1 se-
quence data obtained from Stanford HIV Drug Resistance

Database (Rhee et al., 2003). The goal here is to find statis-
tically significant high-order interactions of multiple muta-
tions (up to r = 5 order interactions) that are highly as-
sociated with the drug resistances. We selected k = 30
features, and evaluated the statistical significances of these
features by the selective inference framework. Table 2
shows the numbers of 1st, 2nd, 3rd and 4th order inter-
actions that were statistically significant after Bonferroni
correction, i.e., significance level is set to be α/k with
α = 0.05. (there were no statistically significant 5th or-
der interactions).

Figure 5 shows the degree of significances in the form of
adjusted p-values after Bonferroni correction in increasing
order on idv and d4t datasets by MS and OMP scenario,
respectively. These results indicate that the selective infer-
ence approach could successfully identify statistically sig-
nificant high-order interactions of multiple mutations.
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Figure 5. The list of Bonferroni-adjusted selective p-values of
k = 30 selected high-order interactions of multiple mutations
on two HIV datasets.
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