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1. Supplementary materials
1.1. the proof for Theorem 1

Proof. At first we denote the underlying cost function of
GPIS as ft(x):

for t = 0, we have the cost function of the classical sketch
(CS):

ft(x) :=
1

2
‖Sy − SAx‖22, (1)

for t = 1, 2, ..., N we have the the cost function of Iterative
Hessian Sketch (IHS):

ft(x) =
1

2
‖St+1A(x− xt)‖22 −mxTAT (y −Axt), (2)

and then we denote the optimal solution of ft constrained
to set K as xt? and ‖rti+1‖2 = ‖xti+1 − xt?‖2 have:

‖rti+1‖2 = ‖xti+1 − xt?‖2 = ‖PK(xti − η∇f(xi))− xt?‖2
(3)

then we denote cone Ct to be the smallest close cone at xt?
containing the set K − xt?, again because of the distance
preservation of translation by Lemma 6.3 of (Oymak et al.,
2015), we have:

‖rti+1‖2 = ‖PK−xt?(xti − η∇f(xi)− xt?)‖2
= sup
v∈Ct∩Bd

{
vT (xi − xt? − µ∇f(xi))

}
, (4)

then because of the optimality condition on the constrained
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LS solution xt?, we have:

‖rti+1‖2 = sup
v∈Ct∩Bd

{
vT (xi − xt? − η∇f(xi))

}
≤ sup
v∈Ct∩Bd

{
vT (xi − xt? − η∇f(xi)) + ηvT∇f(xt?)

}
= sup
v∈Ct∩Bd

{
vT (xi − xt?)− ηvT (∇f(xi)−∇f(xt?))

}
= sup
v∈Ct∩Bd

{
vT (I − ηATSTSA)rti

}
≤ sup
u,v∈Ct∩Bd

{
vT (I − ηATSTSA)u

}
‖rti‖2

≤ sup
u,v∈Bd

{
vT (I − ηATSTSA)u

}
‖rti‖2,

(5)
We denote:

αt = sup
u,v∈Bd

vT (I − ηATSTSA)u, (6)

then by recursive subsitution we have:

‖rti+1‖2 ≤ αit‖rt0‖2, (7)

and suppose we run GPIHS inner loop kt time, we have:

‖rtkt+1‖2 ≤ {αt}
kt ‖rt0‖2, (8)

and we transfer it in terms of A-norm:

‖rtkt+1‖A ≤ {αt}
kt

√
L

µ
‖rt0‖A. (9)

From the main theorems of the Classical sketch (Pilanci &
Wainwright, 2015) and Iterative Hessian Sketch (Pilanci &
Wainwright, 2016) we have following relationships:

‖x0
? − x?‖A ≤ 2ρ0‖Ax? − y‖2 = 2ρ0‖e‖2, (10)

and,
‖xt? − x?‖A ≤ ρt‖xt0 − x?‖A. (11)

Then by triangle inequality we have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2, (12)

and,

‖xt+1
0 − x?‖A ≤ ‖xt+1

0 − xt?‖A + ρt‖xt0 − x?‖A. (13)
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Then for t = 0 we can have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2

≤ {αt}kt
√
L

µ
‖x0

0 − x0
?‖A + 2ρ0‖e‖2,

(14)
for t = 1, 2, ..., N we have:

‖xt0 − x?‖A
≤ ‖xt0 − xt−1

? ‖A + ρt‖xt−1
0 − x?‖A

≤ {αt}kt
√
L

µ
‖xt−1

0 − xt−1
? ‖A

+ ρt‖xt−1
0 − x?‖A

≤

{
{αt}kt

(
(1 + ρt)

√
L

µ

)
+ ρt

}
‖xt−1

0 − x?‖A,

(15)
The last inequality holds because:

‖xt−1
0 − x?fN−1

‖A ≤ ‖xt−1
0 − x?‖A + ‖xt−1

? − x?‖A
≤ {1 + ρt} ‖xt−1

0 − x?‖A,
(16)

Then we denote:

ρ?t = {αt}kt
(

(1 + ρt)

√
L

µ

)
+ ρt (17)

and do recursive substitution we can have:

‖xt0 − x?‖A ≤

{
N∏
t=1

ρ?t

}
‖x1

0 − x?‖A. (18)

hence we finish the proof of Theorem 1.

1.2. The proofs for Theorem 2 and 3

Proof. From the theory of the Classical sketch and Iterative
Hessian Sketch we have following relationships:

‖x0
? − x?‖A ≤ 2ρ0‖Ax? − y‖2 = 2ρ0‖e‖2, (19)

and,
‖xt? − x?‖A ≤ ρt‖xt0 − x?‖A. (20)

Then by triangle inequality we have:

‖x1
0 − x?‖A ≤ ‖x1

0 − x0
?‖A + 2ρ0‖e‖2, (21)

and,

‖xt+1
0 − x?‖A ≤ ‖xt+1

0 − xt?‖A + ρt‖xt0 − x?‖A. (22)

The remaining task of this proof is just bound the term
‖xt+1

0 − xt?‖A for both GPIS and Acc-GPIS algorithm and

then chain it. For all the sketched objective function ft(x) ,
t = 0, 1, ..., N , and any pair of vectors x, x′ ∈ K we have:

ft(x)− ft(x′)− < Oft(x
′), x− x′ >= ‖StA(x− x′)‖22

(23)
If we set x′ = xt?, by first order optimality condition we
immediately have:

ft(x)− ft(xt?) ≥ ‖StA(x− xt?)‖22

= ‖St A(x− xt?)
‖A(x− xt?)‖2

‖A(x− xt?)‖2‖22

≥
{

inf
v∈range(A)∩Sn−1

‖Stv‖22
}
‖x− xt?‖2A,

(24)

so we have:

‖x− xt?‖A ≤
√
ft(x)− ft(xt?)

infv∈range(A)∩Sn−1 ‖Stv‖2
, (25)

From the convergence theory in (Beck & Teboulle, 2009)
which the authors in their Remark 2.1 have stated to hold
for convex constrained sets, for GPIS inner iterates we
have:

ft(xk)− ft(xt?) ≤
βLR supv∈range(A)∩Sn−1 ‖Stv‖22

2k
,

(26)
and for Acc-GPIS inner loop we have:

ft(xk)− ft(xt?) ≤
2βLR supv∈range(A)∩Sn−1 ‖Stv‖22

(k + 1)2
,

(27)
hence for GPIS:

‖xt+1
0 − xt?‖A ≤

√
βLσtR

2k
, (28)

for Acc-GPIS,

‖xt+1
0 − xt?‖A ≤

√
2βLσtR

(k + 1)2
, (29)

Then by simply towering the inequalities we shall obtain
the desired results in Theorem 2 and 3.

1.3. The proofs for quantitative bounds of αt, ρt and σt
for Gaussian sketches

To prove the results in Proposition 1, 2 and 3 we need the
following concentration lemmas as pillars:

Lemma 1. For any g ∈ Rd, we have:

sup
v∈C∩Bd

vT g = max

{
0, sup
u∈C∩Sd−1

uT g

}
(30)
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Proof. By the definition of cone projection operator we
have:

sup
v∈C∩Bd

vT g = ‖PC(g)‖2 ≥ 0 (31)

if supv∈C∩Bd v
T g > 0:

sup
v∈C∩Bd

vT g = sup
v∈C∩Bd

‖v‖2
vT g

‖v‖2
≤ sup
u∈C∩Sd−1

uT g, (32)

and meanwhile since C ∩ Sd−1 ∈ C ∩ Bd we have:

sup
v∈C∩Bd

vT g ≥ sup
u∈C∩Sd−1

uT g, (33)

hence we have:

sup
v∈C∩Bd

vT g = sup
u∈C∩Sd−1

uT g, (34)

Lemma 2. If supu,v∈C∩Bd v
TMu > 0, we have:

sup
u,v∈C∩Bd

vTMu = sup
u,v∈C∩Sd−1

vTMu (35)

Proof. Since u, v ∈ C ∩ Bd, ‖u‖2 and ‖v‖2 are both less
than or equal to 1, we can have the following upper bound:

sup
u,v∈C∩Bd

vTMu = sup
u,v∈C∩Bd

(
vTMu

‖v‖2‖u‖2
)‖v‖2‖u‖2

≤ sup
u,v∈C∩Sd−1

vTMu,

and meanwhile since C ∩ Sd−1 ∈ C ∩ Bd we have:

sup
u,v∈C∩Bd

vTMu ≥ sup
u,v∈C∩Sd−1

vTMu, (36)

hence we have:

sup
u,v∈C∩Bd

vTMu = sup
u,v∈C∩Sd−1

vTMu (37)

Lemma 3. If the entries of the sketching matrix S is i.i.d
drawn from Normal distribution and v ∈ C, we have:

‖SAv‖2 ≥
√
µ(bm −W − θ)‖v‖2, (38)

‖SAv‖2 ≤
√
L(bm +W + θ)‖v‖2, (39)

with probability at least 1 − e− θ
2

2 . (bm =
√

2
Γ(m+1

2 )

Γ(m2 ) ≈√
m,W :=W(AC ∩ Sn−1))

Proof. This Lemma follows the result of the simplified
form of the Gordon’s Lemma [Lemma 6.7](Oymak et al.,
2015):

‖SAv‖2 ≥ (bm −W(AC ∩ Sn−1)− θ)‖Av‖2
≥ √

µ(bm −W(AC ∩ Sn−1)− θ)‖v‖2

‖SAv‖2 ≤ (bm +W(AC ∩ Sn−1) + θ)‖Av‖2
≤
√
L(bm +W(AC ∩ Sn−1) + θ)‖v‖2

1.3.1. THE PROOF FOR PROPOSITION 1

Proof. Let’s mark out the feasible region of the step-size η:

α(η, StA)

= sup
u,v∈Bd

vT (I − ηATSTSA)u

≥ sup
v∈Bd

vT (I − ηATSTSA)v

= sup
v∈Bd

(‖v‖22 − η‖SAv‖22)

≥ sup
v∈Bd

((1− ηL(bm +
√
d+ θ − ε)2)‖v‖22),

so if we choose a step size η ≤ 1
L(bm+

√
d+θ)2

we can en-

sure that with probability 1 − e−
(θ−ε)2

2 (ε > 0) we have
α(η, StA) > 0 and the Lemma 2 become applicable:

α(η, StA)

= sup
u,v∈Bd

vT (I − ηATSTSA)u

= sup
u,v∈Sd−1

vT (I − ηATSTSA)u

= sup
u,v∈Sd−1

1

4
[(u+ v)T (I − ηATSTSA)(u+ v)

−(u− v)T (I − ηATSTSA)(u− v)]

= sup
u,v∈Sd−1

1

4
[‖u+ v‖22 − η‖SA(u+ v)‖22

−‖u− v‖22 + η‖SA(u− v)‖22]

≤ sup
u,v∈Sd−1

1

4
[(1− ηµ(bm −

√
d− θ)2)‖u+ v‖22

+(ηL(bm +
√
d+ θ)2 − 1)‖u− v‖22]

The last line of inquality holds with probability at least 1−
2e−

θ2

2 according to Lemma 3. Then since we have set η ≤
1

L(bm+
√
d+θ+ε)2

, and meanwhile notice the fact that ‖u +

v‖22 ≤ 4 we have:

α(η, StA)

≤ sup
u,v∈Sd−1

1

4
(1− ηµ(bm −

√
d− θ)2‖u+ v‖22

≤ (1− ηµ(bm −
√
d− θ)2)
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If we chose η = 1
L(bm+

√
d+θ)2

we have:

α(η, StA) ≤

(
1− µ

L

(bm −
√
d− θ)2

(bm +
√
d+ θ)2

)
, (40)

Then let ε→ 0, we shall get the result shown in Proposition
1.

1.3.2. THE PROOF FOR PROPOSITION 2

Proof. Recall that ρt is defined as:

ρ(St, A) =
supv∈AC∩Sn−1 vT ( 1

mS
tT St − I)z

infv∈AC∩Sn−1
1
m‖Stv‖

2
2

, (41)

we start by lower-bounding the denominator, by simplified
Gordon’s lemma [Lemma 6.7](Oymak et al., 2015) we di-
rectly have:

inf
v∈AC∩Sn−1

1

m
‖Sv‖22 ≥

(bm −W − θ)2

m
, (42)

with probability at least (1 − e− θ
2

2 ).Then we move to the
upper bound for the numerator:

vT

(
St

T

St

m
− I

)
z

=
1

4
{(v + z)T (

St
T

St

m
− I)(v + z)

− (v − z)T (
St

T

St

m
− I)(v − z)}

=
1

4
{ 1

m
‖St(v + z)‖2 − ‖v + z‖2

+ ‖v − z‖2 −
1

m
‖St(v − z)‖2},

(43)

and,

W(AC ∩ Sn−1 − z) = Eg( sup
v∈AC∩Sn−1

gT (v − z))

= Eg(gT z + sup
v∈AC∩Sn−1

vT g)

=W(AC ∩ Sn−1)

(44)

hence we have the following by [Lemma 6.8](Oymak et al.,
2015):

vT

(
St

T

St

m
− I

)
z

≤ 1

4

{
1

m
(bm‖v + z‖2 +W + θ)2 − ‖v + z‖22

}
+

1

4

{
1

m
(bm‖v − z‖2 +W + θ)2 − ‖v − z‖22

}
=

1

4

{
(
b2m
m
− 1)‖v + z‖22 +

2bm(W + θ)

m
‖v + z‖2

}
+

1

4

{
(1− b2m

m
)‖v − z‖22 +

2bm(W + θ)

m
‖v − z‖2

}
,

(45)
with probability at least (1−8e−

θ2

8 ). Note that ‖v+z‖2 +
‖v − z‖2 ≤ 2

√
2 and ‖v + z‖22 + ‖v − z‖22 ≤ 4, we have:

vT

(
St

T

St

m
− I

)
z

≤ 2bm(W + θ)

m

‖v + z‖2 + ‖v − z‖2
4

+ |b
2
m

m
− 1|

≤
√

2bm(W + θ)

m
+ |b

2
m

m
− 1|

(46)

thus finishes the proof.

1.3.3. THE PROOF FOR PROPOSITION 3

Proof. Recall that σt is defined as:

σ(St, A) =
supv∈range(A)∩Sn−1 ‖Stv‖22
infv∈range(A)∩Sn−1 ‖Stv‖22

, (47)

by simply apply again the Gordon’s lemma [Lemma
6.7](Oymak et al., 2015), withW(ASd−1) ≤

√
d, we with

obtain the upper bound on the numerator:

sup
v∈range(A)∩Sn−1

‖Stv‖22 ≤ (bm +
√
d+ θ)2, (48)

and the lower bound:

inf
v∈range(A)∩Sn−1

‖Stv‖22 ≥ (bm −
√
d− θ)2, (49)

both with probability at least 1− e− θ
2

2 .

1.4. Details of the implementation of algorithms and
numerical experiments

For our GPIS and Acc-GPIS algorithms, we have several
key points of implemenations:

• Count sketch
As described in the main text.
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• Line search

We implement the line-search scheme given by (Nes-
terov, 2007) and is described by Algorithm 3 for GPIS
and Acc-GPIS in our experiments with parameters
γu = 2, and γd = 2. Such choice of line-search pa-
rameters simply means: when even we find the con-
dition ft(PK(xi − ηOft(xi))) ≤ mL does not hold,
we shrink the step size by a factor of 2; and then at the
beginning of each iteration, we increase the step size
chosen at previous iteration by a factor of 2, then do
backtracking again. Hence our methods are able to en-
sure we use an aggressive step size safely in each iter-
ation. This is an important advantage of the sketched
gradient method since we observe that for stochas-
tic gradient such as SAGA a heuristic backtracking
method similar to Algorithm 3 may work but it will
demand a very small γd (tends to 1) otherwise SAGA
may go unstable, and an aggressive choice like our
γd = 2 is unacceptable for SAGA. (Hence we suspect
that SAGA is unlikely to be able to benefit computa-
tional gains from line-search as our method does.)

• Gradient restart for Acc-GPIS

(O’Donoghue & Candes, 2015) has proposed two
heuristic adaptive restart schemes - gradient restart
and function restart for the accelerated gradient meth-
ods and have shown significant improvements without
the need of the knowledge of the functional parame-
ters µ and L. Such restart methods are directly appli-
cable for the Acc-GPIS by nature due to its sketched
deterministic iterations. Here we choose the gradient
restart since it achieves comparable performance in
practice as function restart but cost only O(d) opera-
tions.

1.4.1. PROCEDURE TO GENERATE SYNTHETIC DATA
SETS

The procedure we used to generate a constrained least-
square problem sized n by 100 with approximately s-sparse
solution and a condition number κ strictly follows:

1) Generate a random matrix A sized n by 100 with i.i.d
entries drawn from N (0, 1).

2) Calculate A’s SVD: A = UΣV T and replace the singu-
lar values diag(Σ)i by a sequence:

diag(Σ)i =
diag(Σ)i−1

κ
1
d

(50)

3) Generate the ”ground truth” vector xgt sized 100 by
1 randomly with only s non-zero entries in a orthongo-
nal transformed domain Φ, and calculate the l1 norm of it
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Figure 1. Experimental results on the average choices of GPIS’s
step sizes given by line-search scheme (Nesterov, 2013)

Table 1. Synthetic data set for step size experiment

DATA SET SIZE S Φ

SYN4 (20000, 100) - I

(r = ‖Φxgt‖1). Hence the constrained set can be described
as K = {x : ‖Φx‖1 ≤ r}.

4) Generate a random error vector w with i.i.d entries such
that ‖Axgt‖2‖w‖2 = 10.

5) Set y = Axgt + w

1.4.2. EXTRA EXPERIMENT FOR STEP SIZE CHOICE

We explore the step size choices the GPIS algorithm pro-
duce through using the line-search scheme with respect to
different sparsity level of the solution. The result we shown
is the average of 50 random trials.

The result of the step-size simulation demonstrates that the
step sizes chosen on average by the line-search scheme for
the GPIS algorithm is actually related with the sparsity of
the ground truth xgt: at a regime when the xgt is sparse
enough, the step size one can achieve goes up rapidly w.r.t
the sparsity. While in our Proposition 2 we revealed that
the outerloop of GPIS/Acc-GPIS can benefit from the con-
strained set, and here surprisingly we also find out numer-
ically that the inner loop’s can also benefit from the con-
strained set by aggressively choosing the large step sizes.
Such a result echos the analysis of the PGD algorithm on
constrained Least-squares with a Gaussian map A (Oymak
et al., 2015). Further experiments and theoretical analysis
of such greedy step sizes for sketched gradients and full
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gradients on general maps is of great interest and will go
beyond the state of the art analysis for convex optimization.
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