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Appendices

A. Proof of Theorem 1
Proof. Theorem 1 can be proved based on the definitions of monotonicity and submodularity. Note that from Assumption 1,
for any seed set S 2 C, any seed node u 2 S , and any target node v 2 V , we have F ({u}, v)  F (S, v), which implies
that

f(S, v, p⇤) = max

u2S
F ({u}, v)  F (S, v),

hence
f(S, p⇤) =

X

v2V
f(S, v, p⇤) 

X

v2V
F (S, v) = F (S).

This proves the first part of Theorem 1.

We now prove the second part of the theorem. First, note that from the first part, we have

f( eS, p⇤)  F (

eS)  F (S⇤
),

where the first inequality follows from the first part of this theorem, and the second inequality follows from the definition
of S⇤. Thus, we have ⇢  1. To prove that ⇢ � 1/K, we assume that S = {u1, u2, . . . , uK

}, and define S
k

=

{u1, u2, . . . , uk

} for k = 1, 2, . . . ,K. Thus, for any S ✓ V with |S| = K, we have

F (S) =F (S1) +

K�1X

k=1

[F (S
k+1)� F (S

k

)]


KX

k=1

F ({u
k

}) =
KX

k=1

X

v2V
F ({u

k

}, v)


X

v2V
Kmax

u2S
F ({u}, v) = K

X

v2V
f(S, v, p⇤) = Kf(S, p⇤),

where the first inequality follows from the submodularity of F (·). Thus we have

F (S⇤
)  Kf(S⇤, p⇤)  Kf( eS, p⇤),

where the second inequality follows from the definition of eS . This implies that ⇢ � 1/K.

B. Proof of Theorem 2
We start by defining some useful notations. We use H

t

to denote the “history” by the end of time t. For any node pair
(u, v) 2 V ⇥ V and any time t, we define the upper confidence bound (UCB) U

t

(u, v) and the lower confidence bound
(LCB) L

t

(u, v) respectively as

U
t

(u, v) = Proj[0,1]

✓
hb✓

u,t�1,xv

i+ c
q

x

T

v

⌃

�1
u,t�1xv

◆

L
t

(u, v) = Proj[0,1]

✓
hb✓

u,t�1,xv

i � c
q

x

T

v

⌃

�1
u,t�1xv

◆
(8)

Notice that U
t

is the same as the UCB estimate p defined in Algorithm 1. Moreover, we define the “good event” F as

F =

⇢
|xT

v

(

b
✓

u,t�1 � ✓

⇤
u

)|  c
q

xT

v

⌃

�1
u,t�1xv

, 8u, v 2 V, 8t  T

�
, (9)

and the “bad event” F as the complement of F .
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B.1. Regret Decomposition

Recall that the realized scaled regret at time t is R⇢↵

t

= F (S⇤
)� 1

⇢↵

F (S
t

), thus we have

R⇢↵

t

=F (S⇤
)� 1

⇢↵
F (S

t

)

(a)
=

1

⇢
f( eS, p⇤)� 1

⇢↵
F (S

t

)

(b)
 1

⇢
f( eS, p⇤)� 1

⇢↵
f(S

t

, p⇤), (10)

where equality (a) follows from the definition of ⇢ (i.e. ⇢ is defined as ⇢ = f( eS, p⇤)/F (S⇤
)), and inequality (b) follows

from f(S
t

, p⇤)  F (S
t

) (see Theorem 1). Thus, we have

R⇢↵

(T ) =E
"

TX

t=1

R⇢↵

t

#

 1

⇢
E
(

TX

t=1

h
f( eS, p⇤)� f(S

t

, p⇤)/↵
i)

=

P (F)

⇢
E
(

TX

t=1

h
f( eS, p⇤)� f(S

t

, p⇤)/↵
i�����F

)
+

P (F)

⇢
E
(

TX

t=1

h
f( eS, p⇤)� f(S

t

, p⇤)/↵
i�����F

)

 1

⇢
E
(

TX

t=1

h
f( eS, p⇤)� f(S

t

, p⇤)/↵
i�����F

)
+

P (F)

⇢
nT, (11)

where the last inequality follows from the naive bounds P (F)  1 and f( eS, p⇤) � f(S
t

, p⇤)/↵  n. Notice that under
“good” event F , we have

L
t

(u, v)  p⇤
uv

= xT

v

✓⇤
u

 U
t

(u, v) (12)

for all node pair (u, v) and for all time t  T . Thus, we have f(S, L
t

)  f(S, p⇤)  f(S, U
t

) for all S and t  T under
event F . So under event F , we have

f(S
t

, L
t

)

(a)
 f(S

t

, p⇤)
(b)
 f( eS, p⇤)

(c)
 f( eS, U

t

)  max

S2C
f(S, U

t

)

(d)
 1

↵
f(S

t

, U
t

)

for all t  T , where inequalities (a) and (c) follow from (12), inequality (b) follows from eS 2 argmaxS2C f(S, p⇤), and
inequality (d) follows from the fact that ORACLE is an ↵-approximation algorithm. Specifically, the fact that ORACLE is an
↵-approximation algorithm implies that f(S

t

, U
t

) � ↵maxS2C f(S, Ut

).

Consequently, under event F , we have

f( eS, p⇤)� 1

↵
f(S

t

, p⇤)  1

↵
f(S

t

, U
t

)� 1

↵
f(S

t

, L
t

)

=

1

↵

X

v2V


max

u2St

U
t

(u, v)�max

u2St

L
t

(u, v)

�

 1

↵

X

v2V

X

u2St

[U
t

(u, v)� L
t

(u, v)]


X

v2V

X

u2St

2c

↵

q
xT

v

⌃

�1
u,t�1xv

. (13)

So we have

R⇢↵

(T )  2c

⇢↵
E
(

TX

t=1

X

u2St

X

v2V

q
xT

v

⌃

�1
u,t�1xv

�����F
)

+

P (F)

⇢
nT. (14)

In the remainder of this section, we will provide a worst-case bound on
P

T

t=1

P
u2St

P
v2V

q
xT

v

⌃

�1
u,t�1xv

(see Ap-

pendix B.2) and a bound on the probability of “bad event” P (F) (see Appendix B.3).
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B.2. Worst-Case Bound on
P

T

t=1

P
u2St

P
v2V

q
xT

v

⌃

�1
u,t�1xv

Notice that
TX

t=1

X

u2St

X

v2V

q
xT

v

⌃

�1
u,t�1xv

=

X

u2V

TX

t=1

1 [u 2 S
t

]

X

v2V

q
xT

v

⌃

�1
u,t�1xv

For each u 2 V , we define K
u

=

P
T

t=1 1 [u 2 S
t

] as the number of times at which u is chosen as a source node, then we
have the following lemma:

Lemma 1. For all u 2 V , we have

TX

t=1

1 [u 2 S
t

]

X

v2V

q
xT

v

⌃

�1
u,t�1xv


p
nK

u

s
dn log

�
1 +

nKu
d��

2

�

� log

�
1 +

1
��

2

� .

Moreover, when X = I , we have

TX

t=1

1 [u 2 S
t

]

X

v2V

q
xT

v

⌃

�1
u,t�1xv


p
nK

u

s
n log

�
1 +

Ku
��

2

�

� log

�
1 +

1
��

2

� .

Proof. To simplify the exposition, we use ⌃
t

to denote ⌃
u,t

, and define z
t,v

=

q
xT

v

⌃

�1
u,t�1xv

for all t  T and all v 2 V .
Recall that

⌃

t

= ⌃

t�1 +
1 [u 2 S

t

]

�2
XXT

= ⌃

t�1 +
1 [u 2 S

t

]

�2

X

v2V
x
v

xT

v

.

Note that if u /2 S
t

, ⌃
t

= ⌃

t�1. If u 2 S
t

, then for any v 2 V , we have

det [⌃

t

] � det


⌃

t�1 +
1

�2
x
v

xT

v

�

= det


⌃

1
2
t�1

✓
I +

1

�2
⌃

� 1
2

t�1xv

xT

v

⌃

� 1
2

t�1

◆
⌃

1
2
t�1

�

= det [⌃

t�1] det


I +

1

�2
⌃

� 1
2

t�1xv

xT

v

⌃

� 1
2

t�1

�

= det [⌃

t�1]

✓
1 +

1

�2
xT

v

⌃

�1
t�1xv

◆
= det [⌃

t�1]

 
1 +

z2
t�1,v

�2

!
.

Hence, we have

det [⌃

t

]

n � det [⌃

t�1]
n

Y

v2V

 
1 +

z2
t�1,v

�2

!
. (15)

Note that the above inequality holds for any X . However, if X = I , then all ⌃
t

’s are diagonal and we have

det [⌃

t

] = det [⌃

t�1]

Y

v2V

 
1 +

z2
t�1,v

�2

!
. (16)

As we will show later, this leads to a tighter regret bound in the tabular (X = I) case.

Let’s continue our analysis for general X . The above results imply that

n log (det [⌃

t

]) � n log (det [⌃

t�1]) + 1 (u 2 S
t

)

X

v2V
log

 
1 +

z2
t�1,v

�2

!
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and hence

n log (det [⌃

T

]) �n log (det [⌃0]) +

TX

t=1

1 (u 2 S
t

)

X

v2V
log

 
1 +

z2
t�1,v

�2

!

=nd log(�) +

TX

t=1

1 (u 2 S
t

)

X

v2V
log

 
1 +

z2
t�1,v

�2

!
. (17)

On the other hand, we have that

Tr [⌃

T

] = Tr

"
⌃0 +

TX

t=1

1 [u 2 S
t

]

�2

X

v2V
x
v

xT

v

#

= Tr [⌃0] +

TX

t=1

1 [u 2 S
t

]

�2

X

v2V
Tr

⇥
x
v

xT

v

⇤

=�d+

TX

t=1

1 [u 2 S
t

]

�2

X

v2V
kx

v

k2  �d+
nK

u

�2
, (18)

where the last inequality follows from the assumption that kx
v

k  1 and the definition of K
u

. From the trace-determinant
inequality, we have 1

d

Tr [⌃

T

] � det [⌃

T

]

1
d . Thus, we have

dn log

✓
�+

nK
u

d�2

◆
� dn log

✓
1

d
Tr [⌃

T

]

◆
� n log (det [⌃

T

]) � dn log(�) +

TX

t=1

1 (u 2 S
t

)

X

v2V
log

 
1 +

z2
t�1,v

�2

!
.

That is
TX

t=1

1 (u 2 S
t

)

X

v2V
log

 
1 +

z2
t�1,v

�2

!
 dn log

✓
1 +

nK
u

d��2

◆

Notice that z2
t�1,v = xT

v

⌃

�1
t�1xv

 xT

v

⌃

�1
0 x

v

=

kxvk2

�

 1
�

. Moreover, for all y 2 [0, 1/�], we have log

�
1 +

y

�

2

� �
� log

�
1 +

1
��

2

�
y based on the concavity of log(·). Thus, we have

� log

✓
1 +

1

��2

◆
TX

t=1

1 (u 2 S
t

)

X

v2V
z2
t�1,v  dn log

✓
1 +

nK
u

d��2

◆
.

Finally, from Cauchy-Schwarz inequality, we have that

TX

t=1

1 (u 2 S
t

)

X

v2V
z
t�1,v 

p
nK

u

vuut
TX

t=1

1 (u 2 S
t

)

X

v2V
z2
t�1,v.

Combining the above results, we have

TX

t=1

1 (u 2 S
t

)

X

v2V
z
t�1,v 

p
nK

u

s
dn log

�
1 +

nKu
d��

2

�

� log

�
1 +

1
��

2

� . (19)

This concludes the proof for general X . Based on (16), the analysis for the tabular (X = I) case is similar, and we omit
the detailed analysis. In the tabular case, we have

TX

t=1

1 (u 2 S
t

)

X

v2V
z
t�1,v 

p
nK

u

s
n log

�
1 +

Ku
��

2

�

� log

�
1 +

1
��

2

� . (20)
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We now develop a worst-case bound. Notice that for general X , we have

X

u2V

TX

t=1

1 [u 2 S
t

]

X

v2V

q
xT

v

⌃

�1
u,t�1xv


X

u2V

p
nK

u

s
dn log

�
1 +

nKu
d��

2

�

� log

�
1 +

1
��

2

�

(a)
 n

s
d log

�
1 +

nT

d��

2

�

� log

�
1 +

1
��

2

�
X

u2V

p
K

u

(b)
 n

s
d log

�
1 +

nT

d��

2

�

� log

�
1 +

1
��

2

�
p
n

sX

u2V
K

u

(c)
=n

3
2

s
dKT log

�
1 +

nT

d��

2

�

� log

�
1 +

1
��

2

� , (21)

where inequality (a) follows from the naive bound K
u

 T , inequality (b) follows from Cauchy-Schwarz inequality, and
equality (c) follows from

P
u2V K

u

= KT . Similarly, for the special case with X = I , we have

X

u2V

TX

t=1

1 [u 2 S
t

]

X

v2V

q
xT

v

⌃

�1
u,t�1xv


X

u2V

p
nK

u

s
n log

�
1 +

Ku
��

2

�

� log

�
1 +

1
��

2

�  n
3
2

s
KT log

�
1 +

T

��

2

�

� log

�
1 +

1
��

2

� . (22)

This concludes the derivation of a worst-case bound.

B.3. Bound on P
�F�

We now derive a bound on P
�F� based on the “Self-Normalized Bound for Matrix-Valued Martingales” developed in The-

orem 3 (see Theorem 3). Before proceeding, we define F
u

for all u 2 V as

F
u

=

⇢
|xT

v

(

b
✓

u,t�1 � ✓

⇤
u

)|  c
q
xT

v

⌃

�1
u,t�1xv

, 8v 2 V, 8t  T

�
, (23)

and the F
u

as the complement of F
u

. Note that by definition, F =

S
u2V F

u

. Hence, we first develop a bound on P
�F

u

�
,

then we develop a bound on P
�F� based on union bound.

Lemma 2. For all u 2 V , all �,� > 0, all � 2 (0, 1), and all

c � 1

�

s

dn log

✓
1 +

nT

�2�d

◆
+ 2 log

✓
1

�

◆
+

p
�k✓⇤

u

k2

we have P
�F

u

�  �.

Proof. To simplify the expositions, we omit the subscript u in this proof. For instance, we use ✓⇤, ⌃
t

, y
t

and b
t

to
respectively denote ✓⇤

u

, ⌃
u,t

, y
u,t

and b
u,t

. We also use H
t

to denote the “history” by the end of time t, and hence
{H

t

}1
t=0 is a filtration. Notice that U

t

is H
t�1-adaptive, and hence S

t

and 1 [u 2 S
t

] are also H
t�1-adaptive. We define

⌘
t

=

⇢
y
t

�XT ✓⇤ if u 2 S
t

0 otherwise 2 <n and X
t

=

⇢
X if u 2 S

t

0 otherwise 2 <d⇥n (24)

Note that X
t

is H
t�1-adaptive, and ⌘

t

is H
t

-adaptive. Moreover, k⌘
t

k1  1 always holds, and E [⌘
t

|H
t�1] = 0.

To simplify the expositions, we further define y
t

= 0 for all t s.t. u /2 S
t

. Note that with this definition, we have
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⌘
t

= y
t

�XT

t

✓⇤ for all t. We further define

V
t

=n�2
⌃

t

= n�2�I + n

tX

s=1

X
s

XT

s

S
t

=

tX

s=1

X
s

⌘
s

=
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s=1

X
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⇥
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�XT
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⇤
= b

t

� �2
[⌃

t

� �I] ✓⇤ (25)

Thus, we have ⌃

t

b
✓

t

= ��2b
t

= ��2S
t

+ [⌃

t

� �I]✓⇤, which implies

b
✓

t

� ✓

⇤
= ⌃

�1
t

⇥
��2S

t

� �✓⇤⇤ . (26)

Consequently, for any v 2 V , we have
���xT

v

⇣
b
✓

t

� ✓

⇤
⌘��� =

��xT

v

⌃

�1
t

⇥
��2S

t

� �✓⇤⇤�� 
q
xT

v

⌃

�1
t

x
v

k��2S
t

� �✓⇤k⌃�1
t


q
xT

v

⌃

�1
t

x
v

h
k��2S

t

k⌃�1
t

+ k�✓⇤k⌃�1
t

i
, (27)

where the first inequality follows from Cauchy-Schwarz inequality and the second inequality follows from triangular
inequality. Note that k�✓⇤k⌃�1

t
= �k✓⇤k⌃�1

t
 �k✓⇤k⌃�1

0
=

p
�k✓⇤k2. On the other hand, since ⌃

�1
t

= n�2V
�1
t

, we

have k��2S
t

k⌃�1
t

=

p
n

�

kS
t

k
V

�1
t

. Thus, we have

���xT

v

⇣
b
✓

t

� ✓

⇤
⌘��� 

q
xT

v

⌃

�1
t

x
v

p
n

�
kS

t

k
V
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t

+

p
�k✓⇤k2

�
. (28)

From Theorem 3, we know with probability at least 1� �, for all t  T , we have

kS
t

k2
V

�1
t

 2 log
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�
V

t

�1/2
det (V )

�1/2

�

!
 2 log

 
det

�
V

T

�1/2
det (V )

�1/2

�

!
,

where V = n�2�I . Note that from the trace-determinant inequality, we have

det

⇥
V

T

⇤ 1
d  Tr

⇥
V

T

⇤

d
 n�2�d+ n2T

d
,

where the last inequality follows from Tr

⇥
X

t

XT

t

⇤  n for all t. Note that det [V ] =

⇥
n�2�

⇤
d, with a little bit algebra, we

have

kS
t

k
V

�1
t


s

d log

✓
1 +

nT

�2�d

◆
+ 2 log

✓
1

�

◆
8t  T

with probability at least 1� �. Thus, if

c � 1

�

s

dn log

✓
1 +

nT

�2�d

◆
+ 2 log

✓
1

�

◆
+

p
�k✓⇤k2,

then F
u

holds with probability at least 1� �. This concludes the proof of this lemma.

Hence, from the union bound, we have the following lemma:

Lemma 3. For all �,� > 0, all � 2 (0, 1), and all

c � 1

�

s

dn log

✓
1 +

nT

�2�d

◆
+ 2 log

⇣n
�

⌘
+

p
�max

u2V
k✓⇤

u

k2 (29)
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we have P
�F�  �.

Proof. This lemma follows directly from the union bound. Note that for all c satisfying Equation 29, we have P
�F

u

�  �

n

for all u 2 V , which implies P
�F� = P

�S
u2V F

u

�  P
u2V P

�F
u

�  �.

B.4. Conclude the Proof

Note that if we choose

c � 1

�

s

dn log

✓
1 +

nT

�2�d

◆
+ 2 log (n2T ) +

p
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u2V
k✓⇤

u

k2, (30)

we have P
�F�  1
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. Hence for general X , we have

R⇢↵

(T )  2c

⇢↵
E
(

TX

t=1

X

u2St

X

v2V

q
xT

v

⌃

�1
u,t�1xv

�����F
)

+

1

⇢

 2c

⇢↵
n

3
2

s
dKT log

�
1 +

nT

d��

2

�

� log

�
1 +

1
��

2

�
+

1

⇢
. (31)

Note that with c = 1
�

q
dn log
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u

k2, this regret bound is eO
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. Simi-

larly, for the special case X = I , we have
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Note that with c =
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C. Self-Normalized Bound for Matrix-Valued Martingales
In this section, we derive a “self-normalized bound” for matrix-valued Martingales. This result is a natural generalization
of Theorem 1 in Abbasi-Yadkori et al. (2011).

Theorem 3. (Self-Normalized Bound for Matrix-Valued Martingales) Let {H
t

}1
t=0 be a filtration, and {⌘

t

}1
t=1 be a <K-

valued Martingale difference sequence with respect to {H
t

}1
t=0. Specifically, for all t, ⌘

t

is H
t
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t

|H
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k1  1 with probability 1 conditioning on H
t�1. Let {X

t
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t=1 be a <d⇥K-valued stochastic

process such that X
t
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t�1 measurable. Assume that V 2 <d⇥d is a positive-definite matrix. For any t � 0, define
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Then, for any � > 0, with probability at least 1� �, we have

kS
t

k2
V
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t
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We first define some useful notations. Similarly as Abbasi-Yadkori et al. (2011), for any � 2 <d and any t, we define D�

t

as
D�

t
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✓
�TX

t

⌘
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2
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, (35)

and M�

t

=

Q
t

s=1 D
�

s

with convention M�

0 = 1. Note that both D�

t

and M�

t

are H
t

-measurable, and
�
M�

t

 1
t=0

is a
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supermartingale with respect to the filtration {H
t

}1
t=0. To see it, notice that conditioning on H

t�1, we have
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Thus,
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So
�
M�
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 1
t=0

is a supermartingale with respect to the filtration {H
t

}1
t=0. Then, following Lemma 8 of Abbasi-Yadkori

et al. (2011), we have the following lemma:
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is almost surely
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Proof. First, we argue that M�

⌧

is almost surely well-defined. By Doob’s convergence theorem for nonnegative super-
martingales, M�
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t
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The following results follow from Lemma 9 of Abbasi-Yadkori et al. (2011), which uses the “method of mixtures” tech-
nique. Let ⇤ be a Gaussian random vector in <d with mean 0 and covariance matrix V �1, and independent of all the other
random variables. Let H1 be the tail �-algebra of the filtration, i.e. the �-algebra generated by the union of all events
in the filtration. We further define M

t

= E
⇥
M⇤

t

��H1
⇤

for all t = 0, 1, . . . and t = 1. Note that M1 is almost surely
well-defined since M�

1 is almost surely well-defined.

Let ⌧ be a stopping time with respect to the filtration {H
t

}1
t=0. Note that M

⌧

is almost surely well-defined since M1 is
almost surely well-defined. Since E

⇥
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⇤  1 from Lemma 4, we have
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The following lemma follows directly from the proof for Lemma 9 of Abbasi-Yadkori et al. (2011), which can be derived
by algebra. The proof is omitted here.

Lemma 5. For all finite t = 0, 1, . . ., we have
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Note that Lemma 5 implies that for finite t, kS
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. Finally, we prove Theorem 3:

Proof. We define the “bad event” at time t = 0, 1, . . . as:
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We are interested in bounding the probability of the “bad event”
S1

t=1 Bt

(�). Let ⌦ denote the sample space, for any
outcome ! 2 ⌦, we define ⌧(!) = min{t � 0 : ! 2 B

t

(�)}, with the convention that min ; = +1. Thus, ⌧
is a stopping time. Notice that
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(�) = {⌧ < 1}. Moreover, if ⌧ < 1, then by definition of ⌧ , we have
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where equalities (a) and (b) follow from the definition of ⌧ , equality (c) follows from Lemma 5, and inequality (d) follows
from Markov’s inequality. This concludes the proof for Theorem 3.

We conclude this section by briefly discussing a special case. If for any t, the elements of ⌘
t

are statistically independent
conditioning on H

t�1, then we can prove a variant of Theorem 3: with V
t

= V +

P
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,
Equation 34 holds with probability at least 1� �. To see it, notice that in this case
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where (k) denote the k-th element of the vector. Note that the equality (a) follows from the conditional indepen-
dence of the elements in ⌘

t

, and inequality (b) follows from |⌘
t

(k)|  1 for all t and k. Thus, if we redefine
D�
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= exp
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�TX
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, and M�
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=

Q
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s

, we can prove that {M�

t

}
t

is a supermartingale. Consequently,
using similar analysis techniques, we can prove the variant of Theorem 3 discussed in this paragraph.

D. Laplacian Regularization
As explained in section 7, enforcing Laplacian regularization leads to the following optimization problem:
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u2 ||22]

Here, the first term is the data fitting term, whereas the second term is the Laplacian regularization terms which enforces
smoothness in the source node estimates. This can optimization problem can be re-written as follows:
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Here, ✓ 2 <dn is the concatenation of the n d-dimensional ✓
u

vectors and A ⌦ B refers to the Kronecker product of
matrices A and B. Setting the gradient of equation 38 to zero results in solving the following linear system:

[XXT ⌦ I
n

+ �2L⌦ I
d

]

b
✓

t

= b
t

(38)

Here b
t

corresponds to the concatenation of the n d-dimensional vectors b
u,t

. This is the Sylvester equation and there exist
sophisticated methods of solving it. For simplicity, we focus on the special case when the features are derived from the
Laplacian eigenvectors (Section 7).

Let �
t

be a diagonal matrix such that �
t

u, u refers to the number of times node u has been selected as the source. Since the
Laplacian eigenvectors are orthogonal, when using Laplacian features, XXT ⌦ I

n

= �⌦ I
d

. We thus obtain the following
system:

[(� + �2L)⌦ I
d

]

b
✓

t

= b
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(39)

Note that the matrix (� + �2L) and thus (� + �2L) ⌦ I
d

is positive semi-definite and can be solved using conjugate
gradient (Hestenes & Stiefel, 1952).

For conjugate gradient, the most expensive operation is the matrix-vector multiplication (� + �2L)⌦ I
d

]v for an arbitrary
vector v. Let vec be an operation that takes a d⇥ n matrix and stacks it column-wise converting it into a dn-dimensional
vector. Let V refer to the d ⇥ n matrix obtained by partitioning the vector v into columns of V . Given this notation, we
use the property that (BT ⌦ A)v = vec(AV B). This implies that the matrix-vector multiplication can then be rewritten
as follows:

(� + �2L)⌦ I
d

v = vec(V
�
� + �2L

T

�
) (40)

Since � is a diagonal matrix, V � is an O(dn) operation, whereas V LT is an O(dm) operation since there are only m

non-zeros (corresponding to edges) in the Laplacian matrix. Hence the complexity of computing the mean b
✓

t

is an order
O((d(m + n))) where  is the number of conjugate gradient iterations. In our experiments, similar to (Vaswani et al.,
2017), we warm-start with the solution at the previous round and find that  = 5 is enough for convergence.

Unlike independent estimation where we update the UCB estimates for only the selected nodes, when using Laplacian
regularization, the upper confidence values for each reachability probability need to be recomputed in each round. Once
we have an estimate of ✓, calculating the mean estimates for the reachabilities for all u, v requires O(dn2

) computation.
This is the most expensive step when using Laplacian regularization.

We now describe how to compute the confidence intervals. For this, let D denote the diagonal of (� + �2L)
�1. The UCB

value z
u,v,t

can then be computed as:

z
u,v,t

=

p
D

u

||x
v

||2 (41)

The `2 norms for all the target nodes v can be pre-computed. If we maintain the D vector, the confidence intervals for all
pairs can be computed in O(n2

) time.

Note that D
t

requires O(n) storage and can be updated across rounds in O(K) time using the Sherman Morrison formula.
Specifically, if D

u,t

refers to the uth element in the vector D
t

, then

D

u,t+1 =

8
<

:

D

u,t

(1 +D

u,t

)

, ifu 2 S
t

D

u,t

, otherwise

Hence, the total complexity of implementing Laplacian regularization is O(dn2
). We need to store the ✓ vector, the

Laplacian and the diagonal vectors � and D. Hence, the total memory requirement is O(dn+m).


