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The supplementary materials contain this document and
several videos of our FuN agent playing. The first section
elaborates on how value functions are computed for policy
gradients. The rest of the document presents additional ex-
perimental results that could not fit into the main text, but
we feel are helpful in understanding FuN.

1. Learning value functions
We use value function estimators to stabilise policy gra-
dients using advantage actor critic method (Mnih et al.,
2016). There are 3 value functions to estimate: 1) for return
on intrinsic reward for worker 2) for return on environment
reward for worker 3) for return on environment reward for
manager. Functions 2 and 3 can be the same, but we use
different discount for the manager (we discount less). We
compute 2 and 3 via a linear layer from Manager’s dLSTM
state. We compute 1 using a two-layer MLP which takes
the pooled goal vector gt and state representation zt.

2. Qualitative analysis on Seaquest
To qualitatively inspect sub-policies learnt by the Worker
we use the following procedure: first, we record goals emit-
ted by Manager during the play; we then sample one of
them and provide it as a constant input to the Worker for
the duration of an episode and record its behaviour. This
allows us to qualitatively inspect what kind of sub-policies
emerge. Figure 4 plots sub-policies learnt on the seaquest
game. Notice how different options correspond to rough
spatial positions or manoeuvres for the agent’s submarine
– for instance sub-policy 3 corresponds to swimming up for
air.

3. Intrinsic motivation weight α
This section look at the impact of the weight α, which reg-
ulates the relative weight of intrinsic reward (if α = 0 then
intrinsic reward is not used). We train agents with learning
rate and entropy penalty fixed to 10−3.5 and only vary α
between [0, 1]. Figure 6 shows scatter plots of agents final
score vs α hyper-parameter. Notice a clear correlation be-

tween the score and high value of α on gravitar and amidar;
however on other games the optimal value of α can be less
than to 1.

4. Temporal resolution ablations
An important feature of FuN is the ability of the Manager
to operate at a low temporal resolution. This is achieved
through dilation in the LSTM and through the prediction
horizon c. To investigate their influence we use two base-
lines: i) the Manager uses a vanilla LSTM with no dila-
tion; ii) FuN with Manager’s prediction horizon c = 1.
Figure 5 presents the results. The non-dilated LSTM fails
catastrophically, most likely overwhelmed by the recurrent
gradient. Reducing the horizon c to 1 did hurt the perfor-
mance, although interestingly less so than other ablations.
It seems that even at high temporal resolution Manager cap-
tures certain properties of the underlying MDP and com-
municate them down to Worker in a helpful way. This con-
firms that by learning in two separate formulations FuN is
able to capture richer structural properties of the environ-
ment and thus train faster.

5. Dilate LSTM agent baseline
One of innovations this paper presents is dLSTM design
for a Recurrent network. In principle, it could alone be
used in an agent on top of a CNN, without the rest of
FuN structures. We evaluate such an agent as an additional
baseline. We use the same hyper-parameters as for FuN
– BPTT=400, discount = 0.99, learning rate sampled in
the interval LogUniform(10−4.5, 10−3.5), entropy penalty
LogUniform(10−4, 10−3). Figure 7 plots the learning
curves for FuN, LSTM and dLSTM agents. dLSTM gen-
erally underperforms both LSTM and FuN. The power of
dLSTM is in the ability to operate at lower temporal reso-
lution, which is useful in the Manager, but not so much on
it’s own. Notice that plots here stop 100 epochs, unlike in
the main text. The only reason for this is the finite nature of
computational resources before the submission deadline.
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6. DeepLab environments illustration
Figure 1 presents an illustration of the non-match and T-
maze domains.
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Figure 1. Schematic illustration of t-maze and non-match do-
mains

7. Comparison to Option-Critic
Here we present plots for FuN on 2 ATARI games that
Option-Critic (Bacon et al., 2017) was evaluated on, but
which are not included in the experiments in the main text:
Zaxxon and Asterix. Figure 2 presents our results. We
took the approximate performance of Option-Critic from
the original paper – 8000 for Asterix and 6000 for Zaxxon.
Plots in the original paper also suggest that score stagnates
around these levels, notice that our score keeps going up.
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Figure 2. Comparison to Option-Critic on Zaxxon and Asterix.
Score for Option-Critic is taken from the original paper

8. Videos
This supplementary material contains videos of FuN agent
playing several ATARI games and DeeMind Lab games.
All ATARI videos are in original resolution. Videos from
Lab environment are from agent’s perspective in the reso-
lution at which the agent perceives. There is an additional
video for water maze game, which is made from a top-
down camera to allow a better view of agent’s policy. The
agent was not trained with this as input, but had an ego-
centric view as in other videos. We have also in-painted a

visualisation of w

Figure 3. Embedded goal vectors w is in-painted into the videos
(not part of agents observation). Each pixel corresponds to an el-
ement of the vector with intensity being proportional to the value.
Dark pixels correspond to high negative values, white to high pos-
itive and grey is zero. Notice how the embedded goals are diverse,
yet smoothly varying.

visualisation of embedded goal vectors w into the videos in
the top left corner (figure 3).
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Full FuNExample frame sub-policy 1 sub-policy 2 sub-policy 3 sub-policy 4LSTM

Figure 4. Visualisation of sub-policies learnt on sea quest game. We sample a random goal and feed it as a constant conditioning for the
Worker and record its behaviour. We filter out only the image of the ship and average the frames, acquiring the heat-map of agents spatial
location. From left to right: i) an example frame of the game ii) policy learnt by LSTM baseline iii) full policy learnt by FuN followed
by set of different sub-policies. Notice how sub-policies are concentrated around different areas of the playable space. Sub-policy 3 is
used to swim up for oxygen.
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Figure 5. Learning curves for ablations of FuN that investigate influence of dLSTM in the Manager and Managers prediction horizon c.
No dilation – FuN trained with a regular LSTM in the Manager; Manager horizon =1 – FuN trained with c = 1.
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Figure 6. Scatter plot of agents reward after 200 epochs vs intrinsic reward weight α.
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Figure 7. Learning curves for dLSTM based agent with LSTM and FuN for comparison.


