
Variational Policy for Guiding Point Processes

A. Derivations of the Optimal Measure
The problem of finding the optimal measure is as follows:

min

Q
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KL
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, s.t.

Z
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The minimum in (18) is attained at optimal measure Q⇤ given by:
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Next, we show the derivations of (19), which contain two parts. First, we will show the following inequality:
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The second part is to show the minimum of the above inequality is reached at (19).

To prove the first part, we first express EP in the left-hand-side of (20) as a function of the expectation EQ. More specifically,
we have:
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where (23) is due to the Jensen’s inequality that puts the log operator inside the integral. The measure P is absolute
continuous with respect to Q, hence the derivative dP

dQ exists.

Moreover, using the property that log(ab) = log a + log b and log(1/a) = � log a, the right-hand-side of the above
inequality can be written as:
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Hence, combining (23) and (24), we have:
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Finally, since � > 0, multiply both sides of (25) by �� yields:
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This finishes the proof of (20), the first part of the theorem. Next, we will show the minimum is reached at Q⇤ given by (19).
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To prove the second part, we will substitute (19) to the right-hand-side of (25) to show that the infimum is reached with this
Q⇤. More specifically,
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where (27) is due to the property log(a/b) = log a� log b and (28) is because Q⇤ is a probability measure hence
R
dQ⇤

= 1.
Hence the infimum is reached and this finishes the proof of the second part.
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B. Proof of Theorem 3
Theorem 3. For the intensity control problem in (4), we have: dP

dQ(u)

= exp

�D(u)

�
, where D(u) is expressed as
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Proof. Intuitively, the derivative dP/dQ(u) means the relative density of probability distribution P with respect to Q. The
change of probability measure happens because the intensity of the point process that drives the SDE in (2) is changed
from �(t) to �(u, t) in (4). Hence dP/dQ(u) describes the change of probability measure for point processes and is the
likelihood ratio between the uncontrolled and controlled point process (Brémaud, 1981):
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where L is the log-likelihood for the multi-dimension point process with L(�) = P
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where the operation
R
f(t)dN(t) is defined as the summation of the value of function f at each event time:
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Hence, D(u) denotes the difference of the log-likelihood between these two point processes:
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where M is the dimension of point process. (30) comes from the form of control in (4). �
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C. Derivations of the Optimal Control Policy in (14)
We will formulate our objective function based on the form of optimal measure Q⇤ in (10). More specifically, we find a
control u which pushes the controlled measure Q(u), as close to the optimal measure as possible. This leads to minimizing
the Kullback-Leibler (KL) distance:

u

⇤
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This objective function is in sharp contrast to traditional methods that solve the optimal control problem by computing the
solution the HJB PDE, which have severe limitations in scalability and feasibility to nonlinear jump diffusion SDEs.

Next we simplify the objective function. According to the definition of KL divergence and chain rule of derivatives, we have:
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The derivative dQ⇤
/dP is given in (19) and dP/dQ(u) is given in Theorem 3. Hence, we then substitute dQ⇤

/dP and
dP/dQ(u) to (32). After removing terms which are independent of u, the objective function (31) is simplified as:
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where u
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We can then show f(u
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However, uk⇤
i

is still not computable since the expectation is taken under the optimal probability measure Q⇤. Since we
only known the SDE of the uncontrolled dynamics and can only compute the expectation under P, we need to change the
expectation from EQ⇤ to EP to compute u

k⇤
i

.

To do this, we will use the following lemma.
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Lemma 4. Let the probability measure Q⇤ be defined as dQ⇤
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Finally, applying Lemma 4 to (35) yields the following expression for the optimal policy:
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The derivation of the optimal policy is now complete.
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D. Derivations of the Control Cost
We will derive the control cost in (9), which comes naturally from the dynamics. According to the definition of the KL
divergence, we have:
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Hence, the next step is to compute the derivative dQ
dP . This derivative means the relative density of probability distribution Q
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Note that (40) to (41) follows from the Campbell theorem (Daley & Vere-Jones, 2007). Therefore, the control cost is:
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