
Learned Optimizers that Scale and Generalize

Appendix
A. Additional details of RNN architecture
A.1. Shortcut connection

Since we expect mn
ts to be the primary driver of update

step direction, and in order to further reduce the informa-
tion which must be stored in the Parameter RNN hidden
state, we included a meta-trainable linear projection from
the average rescaled gradients mn

ts and the update direc-
tions ∆θnt and ∆φnt .

B. Additional details of meta-training process
B.1. Heavy-tailed distribution over training steps

Figure App.1. A histogram of the total number of training itera-
tions run on target problems during meta-training. The total num-
ber of unrolls is drawn from an exponential distribution with scale
50 plus a constant offset of 1. The number of training iterations
within each unroll is drawn from an exponential distribution with
scale 200 and a constant offset of 50.

C. Architecture updates
The Inception V3 experiment in Figure 4b used a slightly
newer version of the learned optimizer codebase. The
changes were:

C.1. Parameter noise during training

Due to the use of small meta-training problems in Section
4.1, during meta-training the learned optimizer is often able
to optimize the problem almost exactly early in the un-
rolled optimization, after which the meta-loss s becomes
relatively uninformative. In order to better simulate tasks
which take many steps to optimize, small Gaussian noise
is added to the parameters during each optimization step.
This effectively moves the loss landscape underneath the
optimizer, providing a more informative learning signal af-
ter many unrolls, and forcing the learned optimizer to be
robust to a new type of noise. Specifically, the parameter

update becomes

θn+1
t = θnt + ∆θnt + αñt (15)
ñ ∼ N (0, I) (16)

where the noise scale α is drawn from a log uniform distri-
bution between 10−10 and 10−2 for each problem.

C.2. Momentum from previous timescale

In Equation 3 we scale the average gradients ḡnts by a run-
ning estimate

√
λnts of the root-mean-square magnitude of

ḡnts. This is a mismatch with Adam, where the average
gradient is scaled by a running estimate of the root-mean-
square magnitude of the non-averaged gradients. In order
to be consistent with this, and in order to encourage bet-
ter use of the dynamic range of mn

ts (as defined in the text
body, it spends much of its time with values near 1 or −1),
we modify Equation 3 to normalize the average gradient
ḡnts by

√
λnts from the immediately faster timescale,

mn
ts =

ḡnts√
λnt(s−1)

, (17)

and where we define the average gradient at the fastest time
scale to be the raw gradient, ḡnt(−1) = gnt

C.3. No normalization of step length

In order to simplify interactions between parameters, we no
longer force a normalization of the parameter and attention
update directions dnθt and dnφt. We do still decompose the
update into the product of a learning rate and a step. Since
the attended update direction is now able to take on a differ-
ent magnitude, the separate attention log learning rate ηnφ is
no longer required, and is eliminated. Equations 5 and 6
thus become

∆θnt = exp (ηnθt)d
n
θt, (18)

∆φnt = exp (ηnθt)d
n
φt. (19)

C.4. More stable meta-training hyper-parameters

The distribution over meta-loss gradients is observed to
be assymmetrical and heavy tailed. This combination is
known to cause biased parameter updates in RMSProp and
Adam, since both optimizers underweight the contribution
from extremely rare extremely large gradients. In order to
reduce this tendency, we updated the mean-quare-gradient
momentum term γ to be 0.999, rather than 0.9 in the meta-
optimizer RMSProp (Section 4.4).


