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Abstract

Learning to learn has emerged as an important di-
rection for achieving artibcial intelligence. Two
of the primary barriers to its adoption are an in-
ability to scale to larger problems and a limited
ability to generalize to new tasks. We intro-
duce a learned gradient descent optimizer that
generalizes well to new tasks, and which has
signibcantly reduced memory and computation
overhead. We achieve this by introducing a
novel hierarchical RNN architecture, with min-
imal per-parameter overhead, augmented with
additional architectural features that mirror the
known structure of optimization tasks. We
also develop a meta-training ensemble of small,
diverse, optimization tasks capturing common
properties of loss landscapes. The optimizer
learns to outperform RMSProp/ADAM on prob-
lems in this corpus. More importantly, it per-
forms comparably or better when applied to
small convolutional neural networks, despite see-
ing no neural networks in its meta-training set.
Finally, it generalizes to train Inception V3 and
ResNet V2 architectures on the ImageNet dataset
for thousands of steps, optimization problems
that are of a vastly different scale than those it
was trained on.

1. Introduction

Optimization is a bottleneck for almost all tasks in ma-

chine learning, as well as in many other belds, includ-
ing engineering, design, operations research, and statis-

tics. Advances in optimization therefore have broad im-
pact. Historically, optimization has been performed us-
ing hand-designed algorithms. Recent results in machin
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learning show that, given sufbcient data, well-trained neu-
ral networks often outperform hand-tuned approaches on
supervised tasks. This raises the tantalizing possibility that
neural networks may be able to outperform hand-designed
optimizers.

Despite the promise in this approach, previous work on

learned RNN optimizers for gradient descent has failed to
produce neural network optimizers that generalize to new
problems, or that continue to make progress on the prob-
lems for which they were meta-trained when run for large

numbers of steps (see Figure 2). Current neural network
optimizers are additionally too costly in both memory and

computation to scale to larger problems.

We address both of these issues. Specibcally, we improve
upon existing learned optimizers by:

1. Developing a meta-training set that consists of an en-

semble of small tasks with diverse loss landscapes

. Introducing a hierarchical RNN architecture with
lower memory and compute overhead, and which is
capable of capturing inter-parameter dependencies.

. Incorporating features motivated by successful hand-
designed optimizers into the RNN, so that it can build
on existing techniques. These include dynamically
adapted input and output scaling, momentum at mul-
tiple time scales, and a cross between Nesterov mo-
mentum and RNN attention mechanisms.

. Improving the meta-optimization pipeline, for in-
stance by introducing a meta-objective that better
encourages exact convergence of the optimizer, and
by drawing the number of optimization steps during
training from a heavy tailed distribution.

2. Related work

Learning to learn has a long history in psychology (Ward,
1937; Harlow, 1949; Kehoe, 1988; Lake et al., 2016). In-
spired by it, machine learning researchers have proposed
meta-learning techniques for optimizing the process of
learning itself. Schmidhuber (1987), for example, consid-
ers networks that are able to modify their own weights.
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This leads to end-to-end differentiable systems which altion tasks, such as Gaussian process bandits, simple low-
low, in principle, for extremely general update strategies todimensional controllers, and hyper-parameter tuning.

be learned. There are many works related to this idea, in-

cluding (Sutton, 1992; Naik & Mammone, 1992; Thrun & 3. Architecture

Pratt, 1998; Hochreiter et al., 2001; Santoro et al., 2016).
At a high level, a hierarchical RNN is constructed to act as

A series of papers from Bengio et al. (1990; 1992; 1995) T L .

. : learned optimizer, with its architecture matched to the pa-

presents methods for learning parameterized local neura : : ; ~

) : rameters in the target problem. The hierarchical RNNOs pa-

network update rules that avoid back-propagation. Runars-
rameters (called meta-parameters) are shared across all tar-

son & Jonsson (2000) extend this to more complex updateet problems, so despite having an architecture that adapts

mOde_'S- T_he result of meta learning in these cases is aﬁo the target problem, it can be applied to new problems. At
algorithm, i.e. a local update rule.

each optimization step, the learned optimizer receives the
Andrychowicz et al. (2016) learn to learn by gradient de-gradients for every parameter along with some additional
scent by gradient descent. Rather than trying to distillquantities derived from the gradients, and outputs an up-
a global objective into a local rule, their work focuses date to the parameters. Figure 1 gives an overview.

on learning how to integrate gradient observations over

time in order to achieve fast learning of the model. The Global RNN
component-wise structure of the algorithm allows a single | \
learned algorithm to be applied to new problems of differ- l GE}

ent dimensionality. While Andrychowicz et al. (2016) con- l T l

sider the issue of transfer to different datasets and model[ tensor RNN J { e J [ e }
structures, they focus on transferring to problems of the ‘ | ‘
ey

same class. In fact, they report negative results when trans- ‘
ferring optimizers, meta-trained to optimize neural net- (¥ 4

works with logistic functions, to networks with ReLU func- |['1]a||['1]2||['1]s (02, | |[' 2]
tions. ,

AN
Parameter RNNs / \
/ \
/ \
\

Li & Malik (2017) proposed an approach similar to
Andrychowicz et al. (2016), around the same time, butthey 5 Outputs
rely on policy search to compute the meta-parameters of thescated gragiens, parameterRi Update direction,

1] i itude, E
optimizer. That is, they learn to learn by gradient descent . L) ehanqe I magniuce, &

by reinforcement learning.
. Figure 1.Hierarchical RNN architecture. At the lowest level, a
Zoph & Le (2017) also meta-train a controller RNN, but small Parameter RNN processes the inputs and outputs (Section

this time to produce a string in a custom domain speC|D%_3) for every parametet { ) in the target problem. At the in-
language (DSL) for describing neural network architec-termediate level, a medium-sized Tensor RNN exists for every
tures. An arphitecture matching the produced conbguratioparameter tensor (denoted by in the target problem. It takes as
(the OchildO network) is instantiated and trained in the oimput the average latent state across all Parameter RNNs belong-
dinary way. In this case the meta-learning happens only atg to the same tensor. Its output enters those same Parameter
the network architecture level. RNNs as a hias term. At the top level, a single Global RNN re-

ceives as input the average hidden state of all Parameter RNNSs,
Ravi & Larochelle (2017) modify the optimizer of and its output enters the Tensor RNNs as a bias term and is added
Andrychowicz et al. (2016) for 1 and 5-shot learning tasks.to the Parameter RNN bias term. This architecture has low per-
They use test error to optimize the meta learner. Thesparameter overhead, while the Tensor RNNs are able to capture
tasks have the nice property that the recurrent neural netrter-parameter dependencies, and the Global RNN is able to cap-
works only need to be unrolled for a small number of stepsture inter-tensor dependencies.

Wang et al. (2016) show that it is possible to learn to _ _ _
solve reinforcement learning tasks by reinforcement learn3.1. Hierarchical architecture

ing. They demonstrate their approach on several examplag o qer to effectively scale to large problems, the optimizer
from the bandits and cognitive science literature. A related; must stay quite small while maintaining enough Rex-
approach was proposed by Duan et al. (2016). ibility to capture inter-parameter dependencies that shape
Finally, Chen et al. (2016) also learn reinforcement learnthe geometry of the loss surface. Optimizers that account
ing, but by supervised meta-training of the meta-learnerfor this second order information are often particularly

They apply their methods to black-box function optimiza- effective (e.g. quasi-Newton approaches). We propose
a novel hierarchical architecture to enable both low per-
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parameter computational cost, and aggregation of gradierib new problems, as is illustrated by the ablation study in
information and coordination of update steps across paSection 5.5 and Figure 6.
rameters (Figure 1). At the lowest Ievel_of thg hlerarc:hy,l_et L (1) be the loss of the target problem, where=
we have a smalParameter RNNhat receives direct per- -, | .
o '1,...,I'n; } is the set of all parameter tensdks(e.g. all
parameter (scalar) gradient inputs. One level up, we havg : . : :
. ; . . . Weight matrices and bias vectors in a neural network). At
an intermediatdensor RNNhat incorporates information S ) .
ach training iteration, each parameter tensois updated
from a subset of the Parameter RNNs (where the subsefs N+l _ 1na In N
: . e = 1"+ 11 where the update steép! ' is set by
are problem specibc). For example, consider a feedforwar ¢ learned optimizer (Equation 5 below)
fully-connected neural network. There would be a Tensor P q '
RNN for each Iaygr of the network, where each layer CON3 5 1 AFTENTION AND NESTEROVMOMENTUM
tainsan! m) weight matrix and therefonem Parameter

RNNs. Nesterov momentum (Nesterov, 1983a) is a powerful opti-

Authe ighestlevel of e errcy o RANwhicn 08 ST it et ot e boced o
receives output from every Tensor RNN. This allows the 9

o :
Parameter RNN to have very few hidden units with Iargerat a 'Iocat|on : V.Vh'Ch IS ext'rapolated ahead of the cur
Tensor and Global RNNs keeping track of problem-levelrent iterate. Slmllar[y, attention mechamsms have proven
information. The Tensor and Global RNNs can also serveeXtremer powertul in recurr_ent trarjslan(_)n models (Bah-
as communication channels between Parameter and Tens%?nau etal., 2015), decoupling _the |teratm_nf RNN dy-
RNNs respectively. The Tensor RNN outputs are fed a amics from the observed portion of the input sequence.

biases to the Parameter RNN, and the new parameter Stamggxztrigrgyt;gfsslg\?vchhses%& t}’r\ﬁzlgrc%pgiatliraenna;\t;r;g?n
is averaged and fed as input to the Tensor RNN. Similarly, . P P

the Global RNN state is fed as a bias to each Tensor RNNZ'°NS of the loss surface by computing gradients away (or

and the output of the Tensor RNNs is averaged and fed a%head) from the current parameter position. At each train-

. : ing stepn the attended location is set'g™ = 17 +1 "1
input to the Global RNN (Figure 1). where the offset " is further described by Equation 6

The architecture used in the experimental results has a Paelow. Note that the attended location is an offset from
rameter RNN hidden state size of 10, and a Tensor anthe previous parameter locatibh rather than the previous
Global RNN state size of 20 (the architecture used byattended locatioh".

Andrychowicz et al. (2016) had a two layer RNN for eachghe gradieng” of the lossL (1) with respect to the at-

parameter, with 20 units per layer). These sizes showe nded parameter valui8 will orovide the onlv input to
the best generalization to ConvNets and other complex te E P o pro ynp
e learned optimizer, though it will be further transformed

roblems. Experimentally, we found that we could make i . .
?he Parametef RNN as zmall as 5. and the Tensor RN[Qefore being passed to the hierarchical RNN. For every pa-

1
as small as 10 and still see good performance on mosrfalmetertensdr, 9t "
problems. We also found that the performance decreased
slightly even on simple test problems if we removed theS

Global RNN entirely. We used a GRU architecture (ChOMomentum with an exponentiaj moving average is typi_

2.2. MOMENTUM ON MULTIPLE TIMESCALES

etal., 2014) for all three of the RNN levels. cally motivated in terms of averaging away minibatch noise
or high frequency oscillations, and is often a very effective
3.2. Features inspired by optimization literature feature (Nesterov, 1983b; Tseng, 1998). We provide the

: learned optimizer with exponential moving averaggsof
The best performing neural networks often have knowl- X . .
: . . the gradients on several timescales, wheliedexes the
edge about task structure baked into their design. Examples .
- . . .~ timescale of the average. The update equation for the mov-
of this include convolutional models for image processing.

(Krizhevsky et al., 2012; He et al., 2016), causal modelg"d 3Verage s

(RNNs) for modeling causal ime series data, and the merg-  gn+1 _ gn #!$n EN " #1., #!$n "y s® )
ing of neural value functions with Monte Carlo tree search ' R ot ’
in AlphaGo (Silver et al., 2016). where the# indicates the sigmoid function, and where the

We similarly incorporate knowledge of effective strategies™omentum logitsg, for the shortess = 0 timescale is

for optimization into our network architecture. We empha-CUtPut by the RNN, and the remaining timescales each in-
size that these are not arbitrary design choices. The fedéase by a factor of two from that baseline.

tures below are motivated by results in optimization andgy comparing the moving averages at multiple timescales,
recurrent network literature. They are also individually im- the learned optimizer has access to information about how
portant to the ability of the learned optimizer to generalizerapidly the gradient is changing with training time (a mea-
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sure of loss surface curvature), and about the degree dlelative learning rate We want the performance of the

noise in the gradient. optimizer to be invariant to parameter scale. This requires
that the optimizer judge the correct step length from the his-
3.2.3. DrNAMIC INPUT SCALING tory of gradients, rather than memorizing the range of step

We would like our optimizer to be invariant to arameterlengths that were useful in its meta-training ensemble. The
P P RNN therefore controls step length by outputing a multi-

fﬁglre.'n A?g';fenalzl (I:?o’\rlllc\ilic?rzz dmgﬁfj iiSILy;r:’I:flng;zzr licative (additive after taking a logarithm) change, rather
Irinpu W ' ' v Ml han by outputing the step length directly,

as their latent state. In order to aid each of these goals, we

rescale the average gradients in a fashion similar to what ' g*l =1 g+ zg*l , @)
is Fione in RMSProp (Tieleman & Hinton, 2012), ADAM .qu &g +(1" &) §+l ' o)
(Kingma & Ba, 2015), and SMORMS3 (Funk, 2015),
. # .8 where for stability reasons, the log step lengghis spec-
ot = B #($H)F +(gl)® 1" #($h)? (2)  ibed relative to an exponential running averagewith
meta-learned momentu& The attended parameter log
mp = 9!5:)& (3) steplength § is related to § by a meta-learned constant
& offsetc,
where%}, is a running average of the squareeragegra- =4 (9)

dient,m{, is the scaled averaged gradient, and the momen-

tum logit$, for the shortess = 0 timescale will be output - To further force the optimizer to dynamically adapt the

by the RNN, similar to how the timescales for momentumiearning rate rather than memorizing a learning rate trajec-

are computed in the previous section. tory, the learning rate is initialized from a log uniform dis-
- it 6 2 .

It may be useful for the learned optimizer to have access tgiPution from 10 °t0 10 2. We emphasize that the RNN

how gradient magnitudes are changing with training time 1as no direct access to the learning rate, so it must adjust

We therefore provide as further input a measureettive it based purely on its observations of the statistics of the

gradient magnitudes at each averaging ssa@pecibcally, 9gradients.

we provide the relative log gradient magnitudes, In order to aid in coordination across parameters, we do
no_ of n 0 provide the RNN as an input threlative log learning rate
& =log A " Es[log%]. “) of each parameter, compared to the remaining parameters,

"N — N n .rn
rel = $ Es [ $ti ]
3.2.4. DECOMPOSITION OF OUTPUT INTO DIRECTION

AND STEP LENGTH 3.3. Optimizer inputs and outputs

Another aspect of RMSProp and ADAM is that the learning os gescribed in the preceding sections, the full set of

rate corresponds directly to the characteristic step lengthogrameter RNN inputs for each tensorare x! =

This is true because the gradient is scaled by a runnin mP,&",' N}, corresponding to the scaled averaged gradi-

estimate of its standard deviation, and after scaling has gns; the relative log gradient magnitudes, and the relative
characteristic magnitude of 1. The length of update step%g learning rate.

therefore scales linearly with the learning rate, but is invari-
ant to any scaling of the gradients. The full set of Parameter RNI\(l outputs for each tensoe

n — n III1 | 'n n n i -
We enforce a similar decomposition of the parameter upyt dg,d7 ! _$t’$9t’$#‘ ,.corrfaspondlng to the pa
dates into update directions} and d? for parameters rameter and attention update directions, the change in step
and attended pagamgters, with corresponding step |engﬂl,§ngth, and the_ momentum logits. Each of tr_\e outputs in

n - y{ is read out via a learned afpne transformation of the Pa-
exp('¢)andexp '" ,

rameter RNN hidden state. The readout biases are clamped

n to 0 fordg andd”. The RNN update equations are then:
LI =exp (' 8) ot — (5)
t $t [}
”dgt ” N t hg;rlam: ParamRme” ' hgaram q’enson global) (10)
P n _
| "p o E %’ (6) hfllgr}sor_ TensorRNNx” ’ hg;rlam 'T'ensov global) (11)
'r']t N t hgro%:)al = GIObaIRNI\(Xn ’ hg;rlam h?(;rilsor' global) (12)

. . "= Wh?3 + b, 13
whereN; is the number of elements in the parameter tensor y Param (13)

't. The directionslg, andd’; are read directly out of the whereh" is the hidden state for each level of the RNN, as
RNN (though see A.1 for subtleties). described in Section 3.1, aid andb are learned weights
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of the afpne transformation from the lowest level hiddenBingham, 2013) as toy examples of various loss land-

state to output. scape pathologies. These consisted of Rosenbrock,
Ackley, Beale, Booth, Styblinski-Tang, Matyas, Branin,
3.4. Compute and memory cost Michalewicz, and log-sum-exp functions.

The computational cost of the. learned op'gimizer IS4 1 2 WELL BEHAVED PROBLEMS

O NpB + NpK3 + NtK2+ K2 , where B is the

minibatch sizeNp is the total number of parametefés We included a number of well-behaved convex loss func-
is the number of parameter tensors, afd, K+, and  tions, consisting of quadratic bowls of varying dimension
K ¢ are the latent sizes for Parameter, Tensor, and Globatith randomly generated coupling matrices, and logistic
RNNs respectively. Typically, we are in the regime whereregression on randomly generated, generally linearly sep-
NpK2Z # NtK2 > K &, in which case the computa- arable data. For the logistic regression problem, when the
tional cost simplibes t® NpB + Np K2 . Note thatas data is not fully linearly separable, the global minimum is
the minibatch sizé8 is increased, the computational cost greater than 0.

of the learned optimizer approaches that of vanilla SGD,

as the cost of computing the gradient dominates the cost ¢#.1.3. NOISY GRADIENTS AND MINIBATCH PROBLEMS

computing the parameter update. For problems with randomly generated data, such as logis-

The memory cost of the learned optimizer is tic regression, we fed in minibatches of various sizes, from
O(Np + NpKp + NTKt + Kg), which similarly to 10 to 200. We also used a minibatch quadratic task, where
computational cost typically reduces@(Np + NpKp). the minibatch loss consisted of the square inner product of
So long as the latent si2ep of the Parameter RNN can be the parameters with random input vectors.

kept small, the memory overhead will also remain small. For full-batch problems, we sometimes added normally

We show experimental results for computation time in Secdistributed noise with standard deviations from 0.1 to 2.0
tion 5.6. in order to simulate noisy minibatch loss.

4. Meta-training 4.1.4. $OW CONVERGENCE PROBLEMS

L . ... We included several tasks where optimization could pro-
The RNN optimizer is meta-trained by a standard optimizer P P

L “ceed only very slowly, despite the small problem size.
g?oigsinriz:gl?tl;icr’w firzzrgaertl dofﬁgn;,?gﬁ:e::f:z} t\r/1v§ ;i: INtT)';[his incIL.Jd.ed a m.any-di_men_sional oscillating vallgy whose
timizer the meta-parar,neters globa_tl minimum lies at inbnity, gnd a problem with a loss

: consisting of a very strong coupling terms between param-
eters in a sequence. We additionally included a task where

the loss only depends on the minimum and maximum val-

Previous learned optimizers have failed to generalize beued parameter, so that gradients are extremely sparse and
yond the problem on which they were meta-trained. In or-the loss has discontinuous gradients.

der to address this, we meta-train the optimizer on an en-

semble of small problems, which have been chosen to cagt-1.5- TRANSFORMED PROBLEMS

ture many commonly encountered properties of 10ss landye 4150 included a set of problems which transform the

scapes and stochastic gradients. By meta-training on Smaﬂ'reviously debned target problems in ways which map to
toy problems, we also avoid memory issues we would en¢mmon situations in optimization.

counter by meta-training on very large, real-world prob-
lems. To simulate problems with sparse gradients, one transfor-

o mation sets a large fraction of the gradient entries to 0
Except where otherwise indicated, all target problems werg;; o5ch training step. To simulate problems with differ-

designed to have a global minimum of zero (in some cases @yt scaling across parameters, we added a transformation
constant offset was added to make the minimum zero). Th@ ich performs a linear change of variables so as to change

code depning each of these problems will be open sourcegle re|ative scale of parameters. To simulate problems with

shortly. different steepness-probles over the course of learning, we
added a transformation which applied monotonic transfor-
mations (such as raising to a power) to the bnal loss. Fi-
We included a set of 2-dimensional problems whichnally, to simulate complex tasks with diverse parts, we
have appeared in Optimization literature (Surjanovic &added a multi-task transformation, which summed the loss
and concatenated the parameters from a diverse set of prob-

4.1. Meta-training set

4,1.1. XEMPLAR PROBLEMS FROM LITERATURE
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lems. (a) Multilayer perceptron (MLP) on MNIST w/ ReLU
104 —— RMSProp
4.2. Meta-objective g T —— ADAM
D 102 Previous (L2L)

For the meta-training loss, used to train the meta- & i 0.1 &‘ —— Ours (Learned)
parameters of the optimizer, we used the average log los © 10° 4= 3 20K
across all training problems, — T T T 1

0 20k 40k 60k 80k 100k

N I
L(( ): l) |Og ()(In (( ))+ *) " Iog)(|0)+ * (b) ConvNet on MNIST w/ ReLU
N 1
n=1
1012 -
s S 1
3 1071 01 g\\-—w—

where the second term is a constant, and wheeethe full & 102 ‘
set of meta-parameters for the learned optimizer, consisi - 20k
ing of ( = {( p-rRans ( TRNNS ( G-RNN, &, G, Where( y.rn 0 o0k A0k 6ok 80k 100k
indicates the GRU weights and biases for the Paramete lteration
Tensor, or Global RNN& is the learning rate momentum
andcis the attended step offset (Section 3.2.4). Figure 2.Training loss versus number of optimization steps on

L . MNIST for the Learned optimizer in this paper compared to the
Minimizing the average log function value, rather than theLZL optimizer from Andrychowicz et al. (2016), ADAM (learn-

average func?tlon value, l?e“er encourages exact Convefﬁg rate 2e-3), and RMSProp (learning rate 1e-2). The L2L op-
gence to minima and premseI dynaml_c adjustment of Ieamﬁmizer from previous work was meta-trained on a 2-layer, fully-

ing rate based on gradient history (Figure 6). The averaggonnected network with sigmoidal nonlinearities. The test prob-
logarithm also more closely resembles minimizingitimal  |ems were a 2-layer fully-connected network and a 2-layer con-
function value, while still providing a meta-learning sig- volutional network. In both cases, ReLU activations and mini-
nal at every training step, since very small value$(of') batches of size 64 was used.

make an outsized contribution to the average after taking
the logarithm.

4.3. Partial unrolling

o N B~ O

Meta-learning gradients were computed via backpropaga
tion through partial unrolling of optimization of the target
problem, similarly to Andrychowicz et al. (2016). Note £ _¢
that Andrychowicz et al. (2016) dropped second deriva-"~ _g
tive terms from their backpropagation, due to limitations ~ ° 1000 2000 3000
of Torch. We compute the full gradient in TensorFlow, in- o mmed ;"a"ts;t’p RS
cluding second derivatives.

| |
BN

raining Loss (Log Scale)

Figure 3.Three sample problems from the meta-training cor-
pus on which the learned optimizer outperforms RMSProp and
In order to encourage the learned optimizer to generaliz&DAM. The learning rates for RMSProp (1e-2) and ADAM (2e-
to long training runs, both the number of partial unrollings, 3) were chosen for good average performance across all problem
and the number of optimization steps within each partialtypes in the tralnlng gnd test set. The Iegrned op.tlrlnlzer generally
unroll, was drawn from a heavy tailed exponential distribu-2ats the other optimizers on problems in the training set.

tion. The resulting distribution is shown in Appendix B.1

4.4. Heavy-tailed distribution over training steps

o 5. Experiments
4.5. Meta-optimization

- . 5.1. Failures of existing learned optimizers
The optimizers were meta-trained for at least 40M meta- 9 P

iterations (each meta-iteration consists of loading a randorPrevious learned optimizer architectures like Andrychow-
problem from the meta-training set, running the learnedcz et al. (2016) perform well on the problems on which

optimizer on that target problem, computing the meta-they are meta-trained. However, they do not generalize
gradient, and then updating the meta-parameters). Theell to new architectures or scale well to longer timescales.
meta-objective was minimized with asynchronous RM-Figure 2 shows the performance of an optimizer meta-
SProp across 1000 workers, with a learning rat&gbf®. trained on a 2-layer perceptron with sigmoid activations on
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Inception V3 Resnet V2

N

o

Learned

Training Loss
©

8e-2 2e-3 o le-2 -~ le-3
- 2e-2 -~ Te-4 le-3 -~ 2e-3
2e-3 - 5e-2 2e-3 Te-4

=)

[
o
°

4O 4M M 12M 16M 40 ™M 2M 3M 4aM

Training Examples Training Examples

[— Learned — RMSProp — ADAM — SGD+Momentum]

Training Loss

(b) Training loss on ImageNet data in early training as a func-
tion of number of training examples seen (accounting for varying
minibatch sizes). While other optimizer performance is highly
dependent on hyperparameters, learned optimizer performance is
similar to the best tuned optimizers (though in late training, the
learned optimizer loss increases again). In both cases the learned
optimizer was used for distributed, synchronized learning with
an effective minibatch size of 800. The Inception V3 plot was

enerated from a newer version of the codebase, with small im-
provements described in Appendix C. On Inception V3, other

timizers used a learning rate of 0.045 and an effective mini-

atch size of 1600 (the optimal hyperparameters for the RMSProp
optimizer from the original paper). On Resnet, other optimiz-
ers used a learning rate of 0.1 and an effective minibatch size of
256 (the optimal hyperparameters for the SGD + momentum op-
timizer from the original paper).

-
5]
-

— ConvNet Relu —— MLP Relu — Learned RMSProp
— ConvNet Sigmoid MLP Sigmoid --- ADAM ---- SGD + Momentum

(@) Learned optimizer matches performance of ADAM, RM-
SProp, and SGD with momentum on four problems never see
in the meta-training set. For the non-learned optimizer, the opti
mal learning rate for each problem was chosen from a sweep ov
learning rates fromi0' ° to 0.1. Actual learning rates used are

shown in the inset legend.

Figure 4.The learned optimizer generalizes to new problem types unlike any in the meta-training set, and with many more parameters.

the same problem type with ReLU activations and a newcibc problem. Unfortunately, we Pnd that later in training
problem type (a 2-layer convolutional network). In both the learned optimizer stops making effective progress, and
cases, the same dataset (MNIST) and minibatch size (64he loss approaches a constant (approximately 6.5 for In-
was used. In contrast, our optimizer, which has not beemreption V3). Addressing this issue would be a goal of fu-
meta-trained on this dataset any neural network prob- ture work.

lems, shows performance comparable with ADAM and

RMSProp, even for numbers of iterations not seen during.4. Performance is robust to choice of learning rate
meta-training (Section 4.4).

“““““ le2 -~ lel — lel]

5.2. Performance on training set problems

RMSProp
The learned optimizer matches or outperforms ADAM and 5
RMSProp on problem types from the meta-training sel§
(Figure 3). The exact setup for each problem type can b g
seen in the python code in the supplementary materials.
o
5.3. Generalization to new problem types £ P
= et e s

The meta-training problem set did not include any convolu- -3
tional or fully-connected layers. Despite this, we see com-
parable performance to ADAM, RMSProp, and SGD with _. - . .

. . . Figure 5.Learned optimizer performance is robust to learning
momentum on simple convolutional multi-layer networks rate hyperparameter. Training curves on a randomly generated

and multi-layer fully connected networks both in terms of g agratic loss problem with different learning rate initializations.
Pnal loss and number of iterations to convergence (Figure

4a and Figure 2).

1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K

One time-consuming aspect of training neural networks
We also tested the learned optimizer on Inception V3with current optimizers is choosing the right learning rate
(Szegedy et al., 2016) and on ResNet V2 (He et al., 2016)or the problem. While the learned optimizer is also sensi-
Figure 4b shows the learned optimizer is able to stably trainive to initial learning rate, it is much more robust. Figure
these networks for the brst 10K to 20K steps, with perfor-5 shows the learned optimizerOs training loss curve on a
mance similar to traditional optimizers tuned for the spe-quadratic problem with different initial learning rates com-
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pared to those same learning rates on other optimizers.

o
© —0.5
@
5.5. Ablation experiments 2
=-15 /4 — Learned
C tant Inp D No Attenti J:-; " " ADAM
— onstant Inp Decay o ention
—— No Trainable Weight Init — Constant Scl Decay E 250 RMSPFOp 1
No Log Obj — 1 Gradient Scl 0 2‘K 4‘K 6‘K 8‘K
—— No Relative LR (Input) —— DEFAULT Batch size

0.50
0.45
0.40

Figure 7.Wall clock time in seconds to run a single gradient and

8035 update step for a 6-layer ConvNet architecture on an HPz440
EC»'0-30 workstation with an NVIDIA Titan X GPU. As batch size in-
< g'iz creases, the total computation time for the Learned optimizer ap-
= 015 proaches ADAM.
0.10
0'050 500 1000 1500 2000 2500 3000 . . .
Number of training steps ing on large problems like ResNet and Inception on the Im-

ageNet dataset. To achieve these results, we introduced a
Figure 6.Ablation study demonstrating importance of design NOVel hierarchical architecture that reduces memory over-
choices on a small ConvNet on MNIST data. DEFAULT is the head and allows communication across parameters, and
optimizer with all features included. augmented it with additional features shown to be useful in

previous optimization and recurrent neural network litera-
The design choices described in Section 3 matter for théure. We also developed an ensemble of small optimization
performance of the optimizer. We ran experiments in whichProblems that capture common and diverse properties of
we removed different features and re-meta-trained the opl0ss landscapes. Although the wall clock time for optimiz-
timizer from scratch. We kept the features which, on av-ing new problems lags behind simpler optimizers, we see
erage, made performance better on a Variety of test proﬂhe difference decrease with increasing batch size. Having
lems. Specibcally, we kept all of the features describeghown the ability of RNN-based optimizers to generalize to
in 3.2 such as attention (3.2.1), momentum on multiplenew problems, we look forward to future work on optimiz-
timescales (gradient scl) (3.2.2), dynamic input scalingnd the optimizers.
(variable scl decay) (3.2.3), and a relative learning rate (rel-
ative Ir) (3.2.4). We found it was important to take the loga-
rithm of the meta-objective (log obj) as described in 4.2. In
addition, we found it helpful to let the RNN learn its own
initial weights (trainable weight init) and an accumulation
decay for multiple gradient timescales (inp decay). Though
all features had an effect, some features were more crucial
than others in terms of consistently improved performance.
Figure 6 shows one test problem (a 2-layer convolutional
network) on which all bnal features of the learned opti-
mizer matter.

5.6. Wall clock comparison

In experiments, for small minibatches, we signibcantly un-
derperform ADAM and RMSProp in terms of wall clock
time. However, consistent with the prediction in 3.4, since
our overhead is constant in terms of minibatch we see that
the overhead can be made small by increasing the mini-
batch size.

6. Conclusion

We have shown that RNN-based optimizers meta-trained
on small problems can scale and generalize to early train-
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