
Adaptive Consensus ADMM for Distributed Optimization

Zheng Xu 1 Gavin Taylor 2 Hao Li 1 Mário A. T. Figueiredo 3 Xiaoming Yuan 4 Tom Goldstein 1

Abstract

The alternating direction method of multi-
pliers (ADMM) is commonly used for dis-
tributed model fitting problems, but its perfor-
mance and reliability depend strongly on user-
defined penalty parameters. We study distributed
ADMM methods that boost performance by us-
ing different fine-tuned algorithm parameters on
each worker node. We present a O(1/k) con-
vergence rate for adaptive ADMM methods with
node-specific parameters, and propose adaptive
consensus ADMM (ACADMM), which automati-
cally tunes parameters without user oversight.

1. Introduction
The alternating direction method of multipliers (ADMM)
is a popular tool for solving problems of the form,

min
u∈Rn,v∈Rm

f(u) + g(v), subject to Au+Bv = b, (1)

where f : Rn → R and g : Rm → R are convex functions,
A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp. ADMM was first
introduced in (Glowinski & Marroco, 1975) and (Gabay &
Mercier, 1976), and has found applications in many opti-
mization problems in machine learning, distributed com-
puting and many other areas (Boyd et al., 2011).

Consensus ADMM (Boyd et al., 2011) solves minimiza-
tion problems involving a composite objective f(v) =∑
i fi(v), where worker i stores the data needed to com-

pute fi, and so is well suited for distributed model fitting
problems (Boyd et al., 2011; Zhang & Kwok, 2014; Song
et al., 2016; Chang et al., 2016; Goldstein et al., 2016;
Taylor et al., 2016). To distribute this problem, consen-
sus methods assign a separate copy of the unknowns, ui, to
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each worker, and then apply ADMM to solve

min
ui∈Rd,v∈Rd

N∑
i=1

fi(ui) + g(v), subject to ui = v, (2)

where v is the “central” copy of the unknowns, and g(v)
is a regularizer. The consensus problem (2) coincides with
(1) by defining u = (u1; . . . ; uN ) ∈ RdN , A = IdN ∈
RdN×dN , and B = −(Id; . . . ; Id) ∈ RdN×d, where Id
represents the d× d identity matrix.

ADMM methods rely on a penalty parameter (stepsize) that
is chosen by the user. In theory, ADMM converges for any
constant penalty parameter (Eckstein & Bertsekas, 1992;
He & Yuan, 2012; Ouyang et al., 2013). In practice, how-
ever, the efficiency of ADMM is highly sensitive to this
parameter choice (Nishihara et al., 2015; Ghadimi et al.,
2015), and can be improved via adaptive penalty selec-
tion methods (He et al., 2000; Song et al., 2016; Xu et al.,
2017a).

One such approach, residual balancing (RB) (He et al.,
2000), adapts the penalty parameter so that the residu-
als (derivatives of the Lagrangian with respect to primal
and dual variables) have similar magnitudes. When the
same penalty parameter is used across nodes, RB is known
to converge, although without a known rate guarantee.
A more recent approach, AADMM (Xu et al., 2017a),
achieves impressive practical convergence speed on many
applications, including consensus problems, with adaptive
penalty parameters by estimating the local curvature of the
dual functions. However, the dimension of the unknown
variables in consensus problems grows with the number of
distributed nodes, causing the curvature estimation to be
inaccurate and unstable. AADMM uses the same conver-
gence analysis as RB. Consensus residual balancing (CRB)
(Song et al., 2016) extends residual balancing to consensus-
based ADMM for distributed optimization by balancing the
local primal and dual residuals on each node. However,
convergence guarantees for this method are fairly weak,
and adaptive penalties need to be reset after several iter-
ations to guarantee convergence.

We study the use of adaptive ADMM in the distributed set-
ting, where different workers use different local algorithm
parameters to accelerate convergence. We begin by study-
ing the theory and provide convergence guarantees when
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node-specific penalty parameters are used. We demon-
strate a O(1/k) convergence rate under mild conditions
that is applicable for many forms of adaptive ADMM in-
cluding all the above methods. Our theory is more gen-
eral than the convergence guarantee in (He et al., 2000; Xu
et al., 2017a) that only shows convergence when the scalar
penalty parameter is adapted. Next, we propose an adap-
tive consensus ADMM (ACADMM) method to automate
local algorithm parameters selection. Instead of estimating
one global penalty parameter for all workers, different local
penalty parameters are estimated using the local curvature
of subproblems on each node.

2. Related work
ADMM is known to have aO(1/k) convergence rate under
mild conditions for convex problems (He & Yuan, 2012;
2015), while a O(1/k2) rate is possible when at least one
of the functions is strongly convex or smooth (Goldfarb
et al., 2013; Goldstein et al., 2014; Kadkhodaie et al., 2015;
Tian & Yuan, 2016). Linear convergence can be achieved
with strong convexity assumptions (Davis & Yin, 2014;
Nishihara et al., 2015; Giselsson & Boyd, 2016). All of
these results assume constant parameters; to the best of
our knowledge, no convergence rate has been proven for
ADMM with an adaptive penalty: (He et al., 2000; Xu
et al., 2017b) proves convergence without providing a rate,
and (Lin et al., 2011; Banert et al., 2016; Goldstein et al.,
2015) prove convergence for some particular variants of
ADMM (“linearized” or “preconditioned”).

To improve practical convergence of ADMM, fixed optimal
parameters are discussed in (Raghunathan & Di Cairano,
2014; Ghadimi et al., 2015; Nishihara et al., 2015; França
& Bento, 2016). These methods make strong assumptions
about the objective and require information about the spec-
trum of A and/or B. Additionally, adaptive methods have
been proposed; the most closely related work to our own
is (Song et al., 2016), which extends the results of (He
et al., 2000) to consensus problems, where communication
is controlled by predefined network structure and the reg-
ularizer g(v) is absent. In contrast to these methods, the
proposed ACADMM extends the spectral penalty in (Xu
et al., 2017a) to consensus problems and provides conver-
gence theory that can be applied to a broad range of adap-
tive ADMM variants.

3. Consensus ADMM
In the following, we use the subscript i to denote iter-
ates computed on the ith node, superscript k is the itera-
tion number, λki is the dual vector of Lagrange multipliers,
and {τki } are iteration/worker-specific penalty parameters
(contrasted with the single constant penalty parameter τ of

“vanilla” ADMM). Consensus methods apply ADMM to
(2), resulting in the steps

uk+1
i = arg min

ui

fi(ui) +
τki
2
‖vk − ui +

λki
τki
‖2 (3)

vk+1 = arg min
v
g(v) +

N∑
i=1

τki
2
‖v − uk+1

i +
λki
τki
‖2 (4)

λk+1
i = λki + τki (vk+1 − uk+1

i ). (5)

The primal and dual residuals, rk and dk, are used to mon-
itor convergence.

rk =

rk1
...
rkN

 , dk =

dk1
...
dkN

 ,

{
rki = vk − uki
dki = τki (vk−1 − vk).

(6)

The primal residual rk approaches zero when the iterates
accurately satisfy the linear constraints in (2), and the dual
residual dk approaches zero as the iterates near a minimizer
of the objective. Iteration can be terminated when

‖rk‖2 ≤ εtol max{
∑N

i=1
‖uki ‖2, N‖vk‖2}

and ‖dk‖2 ≤ εtol
∑N

i=1
‖λki ‖2,

(7)

where εtol is the stopping tolerance. The residuals in (6)
and stopping criterion in (7) are adopted from the general
problem (Boyd et al., 2011) to the consensus problem. The
observation that residuals rk, dk can be decomposed into
“local residuals” rki , d

k
i has been exploited to generalize the

residual balancing method (He et al., 2000) for distributed
consensus problems (Song et al., 2016).

4. Convergence analysis
We now study the convergence of ADMM with node-
specific adaptive penalty parameters. We provide condi-
tions on penalty parameters that guarantee convergence,
and also a convergence rate. The issue of how to automati-
cally tune penalty parameters effectively will be discussed
in Section 5.

4.1. Diagonal penalty parameters for ADMM

Let T k = diag(τk1 Id, . . . , τ
k
NId) be a diagonal matrix con-

taining non-negative penalty parameters on iteration k. De-
fine the norm ‖u‖2T = uTTu. Using the notation defined
above with u = (u1; . . . ; uN ) ∈ RdN , we can rewrite the
consensus ADMM steps (3)–(5) as

uk+1 = arg min
u
f(u) + 〈−Au, λk〉

+ 1/2‖b−Au−Bvk‖2Tk

(8)
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vk+1 = arg min
v
g(v) + 〈−Bv, λk〉

+ 1/2‖b−Auk+1 −Bv‖2Tk

(9)

λk+1 = λk + T k(b−Auk+1 −Bvk+1). (10)

When using a diagonal penalty matrix, the generalized
residuals become{

rk = b−Auk −Buk

dk = ATT kB(vk − vk−1).
(11)

The sequel contains a convergence proof for generalized
ADMM with adaptive penalty matrix T k. Our proof is in-
spired by the variational inequality (VI) approach in (He
et al., 2000; He & Yuan, 2012; 2015).

4.2. Preliminaries

Notation. We use the following notation to simplify the
discussions. Define the combined variables y = (u; v) ∈
Rn+m and z = (u; v;λ) ∈ Rn+m+p, and denote iter-
ates as yk = (uk; vk) and zk = (uk; vk;λk). Let y∗ and
z∗ denote optimal primal/dual solutions. Further define
∆z+

k = (∆u+
k ; ∆v+

k ; ∆λ+
k ) := zk+1 − zk and ∆z∗k =

(∆u∗k; ∆v∗k; ∆λ∗k) := z∗ − zk. Set

φ(y) = f(u) + g(v), F (z) =

 −ATλ
−BTλ

Au+Bv − b

 ,

Hk=

0 0 0
0 BTT kB 0
0 0 (T k)−1

, Mk=

In 0 0
0 Im 0
0 −T kB Ip

.
Note that F (z) is a monotone operator satisfying
∀z, z′, (z − z′)T (F (z) − F (z′)) ≥ 0. We introduce in-
termediate variable z̃k+1 = (uk+1; vk+1; λ̂k+1), where
λ̂k+1 = λk + T k(b−Auk+1 −Bvk). We thus have

∆z+
k = Mk(z̃k+1 − zk). (12)

Variational inequality formulation. The optimal solution
z∗ of problem (1) satisfies the variational inequality (VI),

∀z, φ(y)− φ(y∗) + (z − z∗)TF (z∗) ≥ 0. (13)

From the optimality conditions for the sub-steps (8, 9), we
see that yk+1 satisfies the variational inequalities

∀u, f(u)− f(uk+1) + (u− uk+1)T

(ATT k(Auk+1 +Bvk − b)−ATλk) ≥ 0
(14)

∀v, g(v)− g(vk+1) + (v − vk+1)T

(BTT k(Auk+1 +Bvk+1 − b)−BTλk) ≥ 0,
(15)

which can be combined as

φ(y)− φ(yk+1)

+ (z − z̃k+1)T
(
F (z̃k+1) +Hk∆z+

k

)
≥ 0. (16)

Lemmas. We present several lemmas to facilitate the
proof of our main convergence theory, which extend pre-
vious results regarding ADMM (He & Yuan, 2012; 2015)
to ADMM with a diagonal penalty matrix. Lemma 1 shows
the difference between iterates decreases as the iterates ap-
proach the true solution, while Lemma 2 implies a contrac-
tion in the VI sense. Full proofs are provided in supple-
mentary material; Eq. (17) and Eq. (18) are supported us-
ing equations (13, 15, 16) and standard techniques, while
Eq. (19) is proven from Eq. (18). Lemma 2 is supported by
the relationship in Eq. (12).
Lemma 1. The optimal solution z∗ = (u∗; v∗;λ∗) and
sequence zk = (uk; vk;λk) of generalized ADMM satisfy

(B∆v+
k )T∆λ+

k ≥ 0, (17)

∆z∗k+1H
k∆z+

k ≥ 0, (18)

‖∆z+
k ‖

2
Hk ≤ ‖∆z∗k‖2Hk − ‖∆z∗k+1‖2Hk . (19)

Lemma 2. The sequence z̃k = (uk; vk; λ̂k) and zk =
(uk; vk;λk)T from generalized ADMM satisfy, ∀z,

(z̃k+1−z)THk∆z+k ≥
1

2
(‖zk+1−z‖2Hk−‖zk−z‖2Hk ). (20)

4.3. Convergence criteria

We provide a convergence analysis of ADMM with an
adaptive diagonal penalty matrix by showing (i) the norm
of the residuals converges to zero; (ii) the method attains
a worst-case ergodic O(1/k) convergence rate in the VI
sense. The key idea of the proof is to bound the adaptivity
of T k so that ADMM is stable enough to converge, which
is presented as the following assumption.
Assumption 1. The adaptivity of the diagonal penalty ma-
trix T k = diag(τki , . . . , τ

k
p ) is bounded by

∞∑
k=1

(ηk)2 <∞, where (ηk)2 = max
i∈{1,...,p}

{(ηki )2},

(ηki )2 = max{τki /τk−1
i − 1, τk−1

i /τki − 1}.
(21)

We can apply Assumption 1 to verify that

1

1 + (ηk)2
≤ τki
τk−1
i

≤ 1 + (ηk)2. (22)

which is needed to prove Lemma 3.
Lemma 3. Suppose Assumption 1 holds. Then z =
(u; v; λ) and z′ = (u′; v′; λ′) satisfy, ∀z, z′

‖z − z′‖2Hk ≤ (1 + (ηk)2)‖z − z′‖2Hk−1 . (23)
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Now we are ready to prove the convergence of generalized
ADMM with adaptive penalty under Assumption 1. We
prove the following quantity, which is a norm of the resid-
uals, converges to zero.

‖∆z+
k ‖

2
Hk =‖B∆v+

k ‖
2
Tk + ‖∆λ+

k ‖
2
(Tk)−1

=‖(ATT k)†dk‖2Tk + ‖rk‖2Tk ,
(24)

where A† denotes generalized inverse of a matrix A. Note
that ‖∆z+

k ‖2Hk converges to zero only if ‖rk‖ and ‖dk‖
converge to zero, provided A and T k are bounded.

Theorem 1. Suppose Assumption 1 holds. Then the iter-
ates zk = (uk; vk;λk) of generalized ADMM satisfy

lim
k→∞

‖∆z+
k ‖

2
Hk = 0. (25)

Proof. Let z = zk, z′ = z∗ in Lemma 3 to achieve

‖∆z∗k‖2Hk ≤ (1 + (ηk)2)‖∆z∗k‖2Hk−1 . (26)

Combine (26) with Lemma 1 (19) to get

‖∆z+
k ‖

2
Hk ≤ (1+(ηk)2)‖∆z∗k‖2Hk−1−‖∆z∗k+1‖2Hk . (27)

Accumulate (27) for k = 1 to l,

l∑
k=1

l∏
t=k+1

(1 + (ηt)2)‖∆z+
k ‖

2
Hk ≤

l∏
t=1

(1 + (ηt)2)‖∆z∗1‖2H0 − ‖∆z∗l+1‖2Hl .

(28)

Then we have

l∑
k=1

‖∆z+
k ‖

2
Hk ≤

l∏
t=1

(1 + (ηt)2)‖∆z∗1‖2H0 . (29)

When l → ∞, Assumption 1 suggests
∏∞
t=1(1 +

(ηt)2) < ∞, which means
∑∞
k=1 ‖∆z

+
k ‖2Hk < ∞. Hence

limk→∞ ‖∆z+
k ‖2Hk = 0.

We further exploit Assumption 1 and Lemma 3 to prove
Lemma 4, and combine VI (16), Lemma 2, and Lemma 4
to prove the O(1/k) convergence rate in Theorem 2.

Lemma 4. Suppose Assumption 1 holds. Then z =
(u; v;λ) ∈ Rm+n+p and the iterates zk = (uk; vk;λk)
of generalized ADMM satisfy, ∀z

l∑
k=1

(‖z − zk‖2Hk − ‖z − zk‖2Hk−1) ≤

CΣ
η C

Π
η (‖z − z∗‖2H0 + ‖∆z∗1‖2H0) <∞,

(30)

where CΣ
η =

∑∞
k=1(ηk)2, CΠ

η =
∏∞
t=1(1 + (ηt)2).

Theorem 2. Suppose Assumption 1 holds. Consider the
sequence z̃k = (uk; vk; λ̂k) of generalized ADMM and de-
fine z̄l = 1

l

∑l
k=1 z̃

k.Then sequence z̄l satisfies the con-
vergence bound

φ(y)− φ(ȳl) + (z − z̄l)TF (z̄l) ≥ − 1

2 l
(‖z − z0‖2H0

+ CΣ
η C

Π
η ‖z − z∗‖2H0 + CΣ

η C
Π
η ‖∆z∗1‖2H0). (31)

Proof. We can verify with simple algebra that

(z − z′)TF (z) = (z − z′)TF (z′). (32)

Apply (32) with z′ = z̃k+1, and combine VI (16) and
Lemma 2 to get

φ(y)− φ(yk+1) + (z − z̃k+1)TF (z) (33)

=φ(y)− φ(yk+1) + (z − z̃k+1)TF (z̃k+1) (34)

≥(z̃k+1 − z)THk∆z+
k (35)

≥1

2
(‖zk+1 − z‖2Hk − ‖zk − z‖2Hk). (36)

Summing for k = 0 to l − 1 gives us∑l

k=1
φ(y)− φ(yk) + (z − z̃k)TF (z)

≥1

2

∑l

k=1
(‖z − zk‖2Hk−1 − ‖z − zk−1‖2Hk−1).

(37)

Since φ(y) is convex, the left hand side of (37) satisfies,

LHS = l φ(y)−
l∑

k=1

φ(yk) + (l z −
l∑

k=1

z̃k)TF (z)

≤ l φ(y)− l φ(ȳl) + (l z − l z̄l)TF (z). (38)

Applying Lemma 4, we see the right hand side satisfies,

RHS =
1

2

l∑
k=1

(‖z − zk‖2Hk − ‖z − zk−1‖2Hk−1)+

1

2

l∑
k=1

(‖z − zk‖2Hk−1 − ‖z − zk‖2Hk)

(39)

≥1

2
(‖z − zl‖2Hl − ‖z − z0‖2H0)+

− 1

2
CΣ
η C

Π
η (‖z − z∗‖2H0 + ‖∆z∗1‖2H0)

(40)

≥− 1

2
(‖z − z0‖2H0 + CΣ

η C
Π
η ‖z − z∗‖2H0+

CΣ
η C

Π
η ‖∆z∗1‖2H0).

(41)

Combining inequalities (37), (38) and (41), and letting z′ =
z̄k in (32) yields the O(1/k) convergence rate in (31)
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5. Adaptive Consensus ADMM (ACADMM)
To address the issue of how to automatically tune pa-
rameters on each node for optimal performance, we pro-
pose adaptive consensus ADMM (ACADMM), which sets
worker-specific penalty parameters by exploiting curvature
information. We derive our method from the dual interpre-
tation of ADMM – Douglas-Rachford splitting (DRS) – us-
ing a diagonal penalty matrix. We then derive the spectral
stepsizes for consensus problems by assuming the curva-
tures of the objectives are diagonal matrices with diverse
parameters on different nodes. At last, we discuss the prac-
tical computation of the spectral stepsizes from consensus
ADMM iterates and apply our theory in Section 4 to guar-
antee convergence.

5.1. Dual interpretation of generalized ADMM

The dual form of problem (1) can be written

min
λ∈Rp

f∗(ATλ)− 〈λ, b〉︸ ︷︷ ︸
f̂(λ)

+ g∗(BTλ)︸ ︷︷ ︸
ĝ(λ)

, (42)

where λ denotes the dual variable, while f∗, g∗ denote the
Fenchel conjugate of f, g (Rockafellar, 1970). It is known
that ADMM steps for the primal problem (1) are equiv-
alent to performing Douglas-Rachford splitting (DRS) on
the dual problem (42) (Eckstein & Bertsekas, 1992; Xu
et al., 2017a). In particular, the generalized ADMM iter-
ates satisfy the DRS update formulas

0 ∈ (T k)−1(λ̂k+1 − λk) + ∂f̂(λ̂k+1) + ∂ĝ(λk) (43)

0 ∈ (T k)−1(λk+1 − λk) + ∂f̂(λ̂k+1) + ∂ĝ(λk+1), (44)

where λ̂ denotes the intermediate variable defined in Sec-
tion 4.2. We prove the equivalence of generalized ADMM
and DRS in the supplementary material.

5.2. Generalized spectral stepsize rule

Xu et al. (2017a) first derived spectral penalty parameters
for ADMM using the DRS. Proposition 1 in (Xu et al.,
2017a) proved that the minimum residual of DRS can be
obtained by setting the scalar penalty to τk = 1/

√
αβ,

where we assume the subgradients are locally linear as

∂f̂(λ̂) = α λ̂+ Ψ and ∂ĝ(λ) = β λ+ Φ, (45)

α, β ∈ R represent scalar curvatures, and Ψ,Φ ⊂ Rp.

We now present generalized spectral stepsize rules that can
accomodate consensus problems.

Proposition 1 (Generalized spectral DRS). Suppose the
generalized DRS steps (43, 44) are used, and assume the
subgradients are locally linear,

∂f̂(λ̂) = Mα λ̂+ Ψ and ∂ĝ(λ) = Mβ λ+ Φ. (46)

for matrices Mα = diag(α1Id, . . . , αNId) and Mβ =
diag(β1Id, . . . , βNId), and some Ψ,Φ ⊂ Rp. Then the
minimal residual of f̂(λk+1) + ĝ(λk+1) is obtained by set-
ting τki = 1/

√
αi βi, ∀i = 1, . . . , N .

Proof. Substituting subgradients ∂f̂(λ̂), ∂ĝ(λ) into the
generalized DRS steps (43, 44), and using our linear as-
sumption (46) yields

0 ∈ (T k)−1(λ̂k+1 − λk) + (Mα λ̂
k+1 + Ψ) + (Mβ λ

k + Φ)

0 ∈ (T k)−1(λk+1 − λk) + (Mα λ̂
k+1 + Ψ) + (Mβ λ

k+1 + Φ).

Since T k,Mα,Mβ are diagonal matrices, we can split the
equations into independent blocks, ∀i = 1, . . . , N,

0 ∈ (λ̂k+1
i − λki )/τki + (αi λ̂

k+1 + Ψi) + (βi λ
k + Φi)

0 ∈ (λk+1
i − λki )/τki + (αi λ̂

k+1 + Ψi) + (βi λ
k+1 + Φi).

Applying Proposition 1 in (Xu et al., 2017a) to each block,
τki = 1/

√
αi βi minimizes the block residual represented

by rk+1
DR,i = ‖(αi + βi)λ

k+1 + (ai + bi)‖, where ai ∈
Ψi, bi ∈ Φi. Hence the residual norm at step k + 1, which

is ‖(Mα + Mβ)λk+1 + (a + b)‖ =
√∑N

i=1(rk+1
DR,i)

2 is

minimized by setting τki = 1/
√
αi βi, ∀i = 1, . . . , N .

5.3. Stepsize estimation for consensus problems

Thanks to the equivalence of ADMM and DRS, Proposi-
tion 1 can also be used to guide the selection of the “opti-
mal” penalty parameter. We now show that the generalized
spectral stepsizes can be estimated from the ADMM iter-
ates for the primal consensus problem (2), without explic-
itly supplying the dual functions.

The subgradients of dual functions ∂f̂ , ∂ĝ can be com-
puted from the ADMM iterates using the identities derived
from (8, 9),

Auk+1 − b ∈ ∂f̂(λ̂k+1) and Bvk+1 ∈ ∂ĝ(λk+1). (47)

For the consensus problem we have A = IdN , B =
−(Id; . . . ; Id), and b = 0, and so

(uk+1
1 ; . . . ; uk+1

N ) ∈ ∂f̂(λ̂k+1) (48)

−(vk+1; . . . ; vk+1︸ ︷︷ ︸
N duplicates of vk+1

) ∈ ∂ĝ(λk+1). (49)

If we approximate the behavior of these sub-gradients
using the linear approximation (46), and break the sub-
gradients into blocks (one for each worker node), we get
(omitting iteration index k for clarity)

ui = αi λ̂i + ai and − v = βi λi + bi, ∀i (50)

where αi and βi represent the curvature of local functions
f̂i and ĝi on the ith node.
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We select stepsizes with a two step procedure, which fol-
lows the spectral stepsize literature. First, we estimate the
local curvature parameters, αi and βi, by finding least-
squares solutions to (50). Second, we plug these curvature
estimates into the formula τki = 1/

√
αi βi. This formula

produces the optimal stepsize when f̂ and ĝ are well ap-
proximated by a linear function, as shown in Proposition 1.

For notational convenience, we work with the quantities
α̂ki = 1/αi, β̂

k
i = 1/βi, which are estimated on each

node using the current iterates uki , v
k, λki , λ̂

k
i and also an

older iterate uk0i , v
k0 , λk0i , λ̂

k0
i , k0 < k. Defining ∆uki =

uki − u
k0
i , ∆λ̂ki = λ̂ki − λ̂

k0
i and following the literature

for Barzilai-Borwein/spectral stepsize estimation, there are
two least squares estimators that can be obtained from (50):

α̂kSD,i =
〈∆λ̂ki ,∆λ̂ki 〉
〈∆uki ,∆λ̂ki 〉

and α̂kMG,i =
〈∆uki ,∆λ̂k〉
〈∆uki ,∆uki 〉

(51)

where SD stands for steepest descent, and MG stands for
minimum gradient. (Zhou et al., 2006) recommend using a
hybrid of these two estimators, and choosing

α̂ki =

{
α̂kMG,i if 2 α̂kMG,i > α̂kSD,i

α̂kSD,i − α̂kMG,i/2 otherwise.
(52)

It was observed that this choice worked well for non-
distributed ADMM in (Xu et al., 2017a). We can similarly
estimate β̂ki from ∆vk = −vk + vk0 and ∆λki = λki −λ

k0
i .

ACADMM estimates the curvatures in the original d-
dimensional feature space, and avoids estimating the cur-
vature in the higher Nd-dimensional feature space (which
grows with the number of nodes N in AADMM (Xu et al.,
2017a)), which is especially useful for heterogeneous data
with different distributions allocated to different nodes.
The overhead of our adaptive scheme is only a few inner
products, and the computation is naturally distributed on
different workers.

5.4. Safeguarding and convergence

Spectral stepsizes for gradient descent methods are
equipped with safeguarding strategies like backtracking
line search to handle inaccurate curvature estimation and to
guarantee convergence. To safeguard the proposed spectral
penalty parameters, we check whether our linear subgradi-
ent assumption is reasonable before updating the stepsizes.
We do this by testing that the correlations

αkcor,i =
〈∆uki ,∆λ̂ki 〉
‖∆uki ‖ ‖∆λ̂ki ‖

and βkcor,i =
〈∆vk,∆λki 〉
‖∆vk‖ ‖∆λki ‖

, (53)

are bounded away from zero by a fixed threshold. We also
bound changes in the penalty parameter by (1 +Ccg/k2) ac-
cording to Assumption 1, which was shown in Theorem 1

Algorithm 1 Adaptive consensus ADMM (ACADMM)

Input: initialize v0, λ0
i , τ0

i , k0 =0,
1: while not converge by (7) and k < maxiter do
2: Locally update uki on each node by (3)
3: Globally update vk on central server by (4)
4: Locally update dual variable λki on each node by (5)
5: if mod(k, Tf ) = 1 then
6: Locally update λ̂ki = λk−1

i + τki (vk−1 − uki )

7: Locally compute spectral stepsizes α̂ki , β̂
k
i

8: Locally estimate correlations αkcor,i , β
k
cor,i

9: Locally update τk+1
i using (54)

10: k0 ← k
11: else
12: τk+1

i ← τki
13: end if
14: k ← k + 1
15: end while

and Theorem 2 to guarantee convergence. The final safe-
guarded ACADMM rule is

τ̂k+1
i =


√
α̂ki β̂

k
i if αkcor,i > εcor and βkcor,i > εcor

α̂ki if αkcor,i > εcor and βkcor,i ≤ εcor

β̂ki if αkcor,i ≤ εcor and βkcor,i > εcor

τki otherwise,

τk+1
i = max{min{τ̂k+1

i , (1 +
Ccg

k2
)τki } ,

τki
1 + Ccg/k2

}.

(54)

The complete adaptive consensus ADMM is shown in Al-
gorithm 1. We suggest updating the stepsize every Tf = 2
iterations, fixing the safeguarding threshold εcor = 0.2, and
choosing a large convergence constant Ccg = 1010.

6. Experiments & Applications
We now study the performance of ACADMM on bench-
mark problems, and compare to other methods.

6.1. Applications

Our experiments use the following test problems that are
commonly solved using consensus methods.

Linear regression with elastic net regularizer. We con-
sider consensus formulations of the elastic net (Zou &
Hastie, 2005) with fi and g defined as,

fi(ui) =
1

2
‖Diui − ci‖2, g(v) = ρ1|v|+

ρ2

2
‖v‖2, (55)

where Di ∈ Rni×m is the data matrix on node i, and ci is
a vector of measurements.

Sparse logistic regression with `1 regularizer can be
written in the consensus form for distributed computing,
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Table 1: Iterations (and runtime in seconds);128 cores are used; absence of convergence after n iterations is indicated as n+.

Application Dataset
#samples ×
#features 1

CADMM
(Boyd et al., 2011)

RB-ADMM
(He et al., 2000)

AADMM
(Xu et al., 2017a)

CRB-ADMM
(Song et al., 2016)

Proposed
ACADMM

Elastic net
regression

Synthetic1 64000 × 100 1000+(1.27e4) 94(1.22e3) 43(563) 106(1.36e3) 48(623)
Synthetic2 64000 × 100 1000+(1.27e4) 130(1.69e3) 341(4.38e3) 140(1.79e3) 57(738)

MNIST 60000 × 784 100+(1.49e4) 88(1.29e3) 40(5.99e3) 87(1.27e4) 14(2.18e3)
CIFAR10 2 10000 × 3072 100+(1.04e3) 100+(1.06e3) 100+(1.05e3) 100+(1.05e3) 35(376)

News20 19996 × 1355191 100+(4.61e3) 100+(4.60e3) 100+(5.17e3) 100+(4.60e3) 78(3.54e3)
RCV1 20242 × 47236 33(1.06e3) 31(1.00e3) 20(666) 31(1.00e3) 8(284)

Realsim 72309 × 20958 32(5.91e3) 30(5.59e3) 14(2.70e3) 30(5.57e3) 9(1.80e3)

Sparse
logistic

regression

Synthetic1 64000 × 100 138(137) 78(114) 80(101) 48(51.9) 24(29.9)
Synthetic2 64000 × 100 317(314) 247(356) 1000+(1.25e3) 1000+(1.00e3) 114(119)

MNIST 60000 × 784 325(444) 212(387) 325(516) 203(286) 149(218)
CIFAR10 10000 × 3072 310(700) 152(402) 310(727) 149(368) 44(118)
News20 19996 × 1355191 316(4.96e3) 211(3.84e3) 316(6.36e3) 207(3.73e3) 137(2.71e3)
RCV1 20242 × 47236 155(115) 155(116) 155(137) 155(115) 150(114)

Realsim 72309 × 20958 184(77) 184(77) 184(85) 183(77) 159(68)

Support
Vector

Machine

Synthetic1 64000 × 100 33(35.0) 33(49.8) 19(27) 26(28.4) 21(25.3)
Synthetic2 64000 × 100 283(276) 69(112) 1000+(1.59e3) 81(97.4) 25(39.0)

MNIST 60000 × 784 1000+(930) 172(287) 73(127) 285(340) 41(88.0)
CIFAR10 10000 × 3072 1000+(774) 227(253) 231(249) 1000+(1.00e3) 62(60.2)
News20 19996 × 1355191 259(2.63e3) 262(2.74e3) 259(3.83e3) 267(2.78e3) 217(2.37e3)
RCV1 20242 × 47236 47(21.7) 47(21.6) 47(31.1) 40(19.0) 27(15.4)

Realsim 72309 × 20958 1000+(76.8) 1000+(77.6) 442(74.4) 1000+(79.3) 347(41.6)
SDP Ham-9-5-6 512 × 53760 100+(2.01e3) 100+(2.14e3) 35(860) 100+(2.14e3) 30(703)

1 #vertices × #edges for SDP; 2We only use the first training batch of CIFAR10.

fi(ui) =

ni∑
j=1

log(1 + exp(−ci,jDT
i,jui)), g(v) = ρ|v| (56)

where Di,j ∈ Rm is the jth sample, and ci,j ∈ {−1, 1} is
the corresponding label. The minimization sub-step (3) in
this case is solved by L-BFGS (Liu & Nocedal, 1989).

Support Vector Machines (SVMs) minimize the dis-
tributed objective function (Goldstein et al., 2016)

fi(ui) = C

ni∑
j=1

max{1− ci,jDT
i,jui, 0}, g(v) =

1

2
‖v‖22 (57)

where Di,j ∈ Rm is the jth sample on the ith node, and
ci,j ∈ {−1, 1} is its label. The minimization (3) is solved
by dual coordinate ascent (Chang & Lin, 2011).

Semidefinite programming (SDP) can be distributed as,

fi(Ui) = ι{Di(Ui) = ci}, g(v) = 〈F, V 〉+ ι{V � 0} (58)

where ι{S} is a characteristic function that is 0 if condition
S is satisfied and infinity otherwise. V�0 indicates that V
is positive semidefinite. V, F, Di,j ∈ Rn×n are symmetric
matrices, 〈X,Y 〉 = trace(XTY ) denotes the inner product
of X and Y , and Di(X) = (〈Di,1, X〉; . . . ; 〈Di,mi , X〉).

6.2. Experimental Setup

We test the problems in Section 6.1 with synthetic and real
datasets. The number of samples and features are speci-
fied in Table 1. Synthetic1 contains samples from a nor-
mal distribution, and Synthetic2 contains samples from a

mixture of 10 random Gaussians. Synthetic2 is heteroge-
neous because the data block on each individual node is
sampled from only 1 of the 10 Gaussians. We also ac-
quire large empirical datasets from the LIBSVM webpage
(Liu et al., 2009), as well as MNIST digital images (LeCun
et al., 1998), and CIFAR10 object images (Krizhevsky &
Hinton, 2009). For binary classification tasks (SVM and
logreg), we equally split the 10 category labels of MNIST
and CIFAR into “positive” and “negative” groups. We use
a graph from the Seventh DIMACS Implementation Chal-
lenge on Semidefinite and Related Optimization Problems
following (Burer & Monteiro, 2003) for Semidefinite Pro-
gramming (SDP). The regularization parameter is fixed at
ρ = 10 in all experiments.

Consensus ADMM (CADMM) (Boyd et al., 2011), resid-
ual balancing (RB-ADMM) (He et al., 2000), adaptive
ADMM (AADMM) (Xu et al., 2017a), and consensus
residual balancing (CRB-ADMM) (Song et al., 2016)
are implemented and reported for comparison. Hyper-
parameters of these methods are set as suggested by their
creators. The initial penalty is fixed at τ0 = 1 for all meth-
ods unless otherwise specified.

6.3. Convergence results

Table 1 reports the convergence speed in iterations and
wall-clock time (secs) for various test cases. These exper-
iments are performed with 128 cores on a Cray XC-30 su-
percomputer. CADMM with default penalty τ = 1 (Boyd
et al., 2011) is often slow to converge. ACADMM out-
performs the other ADMM variants on all the real-world
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(a) Sensitivity of iteration count to initial
penalty τ0. Synthetic problems of EN re-
gression are studied with 128 cores.
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(c) Sensitivity of iteration count (top) and
wall time (bottom) to number of cores.

Figure 1: ACADMM is robust to the initial penalty τ , number of cores N , and number of training samples.

datasets, and is competitive with AADMM on two ho-
mogeneous synthetic datasets where the curvature may be
globally estimated with a scalar.

ACADMM is more reliable than AADMM since the cur-
vature estimation becomes difficult for high dimensional
variables. RB is relatively stable but sometimes has diffi-
culty finding the exact optimal penalty, as the adaptation
can stop because the difference of residuals are not signif-
icant enough to trigger changes. RB does not change the
initial penalty in several experiments such as logistic re-
gression on RCV1. CRB achieves comparable results with
RB, which suggests that the relative sizes of local residuals
may not always be very informative. ACADMM signifi-
cantly boosts AADMM and the local curvature estimations
are helpful in practice.

6.4. Robustness and sensitivity

Fig. 1a shows that the practical convergence of ADMM is
sensitive to the choice of penalty parameter. ACADMM is
robust to the selection of the initial penalty parameter and
achieves promising results for both homogeneous and het-
erogeneous data, comparable to ADMM with a fine-tuned
penalty parameter.

We study scalability of the method by varying the num-
ber of workers and training samples (Fig. 1b). ACADMM
is fairly robust to the scaling factor. AADMM occasion-

ally performs well when small numbers of nodes are used,
while ACADMM is much more stable. RB and CRB
are more stable than AADMM, but cannot compete with
ACADMM. Fig. 1c (bottom) presents the acceleration in
(wall-clock secs) achieved by increasing the number of
workers.

Finally, ACADMM is insensitive to the safeguarding
hyper-parameters, correlation threshold εcor and conver-
gence constant Ccg. Though tuning these parameters may
further improve the performance, the fixed default val-
ues generally perform well in our experiments and enable
ACADMM to run without user oversight. In further ex-
periments in the supplementary material, we also show that
ACADMM is fairly insensitive to the regularization param-
eter ρ in our classification/regression models.

7. Conclusion
We propose ACADMM, a fully automated algorithm for
distributed optimization. Numerical experiments on var-
ious applications and real-world datasets demonstrate the
efficiency and robustness of ACADMM. We also prove a
O(1/k) convergence rate for ADMM with adaptive penal-
ties under mild conditions. By automating the selection of
algorithm parameters, adaptive methods make distributed
systems more reliable, and more accessible to users that
lack expertise in optimization.
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