
Non-Gaussian Single Index Models via Thresholded Score Function Estimation

A. Proofs of the Main Results
In this section, we lay out the proofs of the two theorems in §4, which establish the statistical rates of convergence of our
estimators.

A.1. Proof of Theorem 4.2

Proof. Since β̂ is the solution of the optimization problem in (3.4), the first-order optimality condition states that

∇L(β̂) + λξ = 0, where ξ ∈ ∂‖β̂‖1. (A.1)

Then the entries of ξ ∈ Rd are given by

ξj = sign(β̂j), ∀j ∈ supp(β̂); ξj ∈ [−1, 1], ∀j /∈ supp(β̂).

For any index set A ⊆ [d] and z ∈ Rd, we define the restriction of z to A, zA ∈ Rd, by letting

[zA]j = zj if j ∈ A, [zA]j = 0 otherwise.

Here [zA]j is the j-th entry of zA. Let S = supp(β∗), then we can write ξ = ξS + ξSc . For notational simplicity, in the
sequel, we define θ = β̂ − µ · β∗. Thus by (A.1) it holds that

〈∇L(β̂)−∇L(µβ∗), θ〉 = 〈−λ · ξ −∇L(µβ∗), θ〉
≤ 〈−λ · ξS − λ · ξSc , θ〉+ ‖∇L(µβ∗)‖∞ · ‖θ‖1. (A.2)

By the definition of ξ, we have

〈−λ · ξSc , β̂ − µβ∗〉 = −λ · ‖β̂S‖1. (A.3)

Moreover, since ‖ξ‖∞ ≤ 1, Hölder’s inequality implies that

〈−λ · ξS , θ〉 ≤ ‖θS‖1. (A.4)

Note that∇2L(β) = 2Id. Combining (A.9), (A.3), and (A.4), we obtain

2‖θ‖22 = 〈∇L(β̂)−∇L(µβ∗), θ〉 ≤ −λ‖θSc‖1 + λ‖θS‖1 + ‖∇L(µβ∗)‖∞ · ‖θ‖1. (A.5)

For an upper bound of the right-hand side of (A.5), we apply the following lemma to obtain an upper bound on
‖∇L(µβ∗)‖∞.

Lemma A.1 (Bound on ‖∇L(µβ∗)‖∞). We set the truncation level in (4.1) as τ = 2(M · n/ log d)1/4. Then we have

P
[
‖∇L(µβ∗)‖∞ > 7

√
M · log d/n

]
≤ d−2.

Proof. See §B.1 for a detailed proof.

Thus by Lemma A.1 and the choice of λ, we have λ > 2‖∇L(µβ∗)‖∞ with probability at least 1− d−2. This implies that

2‖θ‖22 ≤ −λ/2 · ‖θSc‖1 + 3λ/2 · ‖θS‖1 ≤ 2λ · ‖θS‖1. (A.6)

Since the leftmost term in (A.6) is nonnegative, we obtain ‖θSc‖1 ≤ 3 · ‖θS‖1. In addition, since S| = s∗, ‖θS‖1 ≤√
s∗ · ‖θS‖2. Thus by (A.6) we have ‖θ‖2 ≤

√
s∗ · λ. Moreover, we also have ‖θS‖1 ≤ s∗λ, which further implies that

‖θ‖1 = ‖θS‖1 + ‖θSc‖1 ≤ 4 · ‖θS‖1 ≤ 4s∗λ.

Therefore, we conclude the proof.
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A.2. Proof of Theorem 4.3

Proof. The proof of Theorem 4.3 is parallel to that of Theorem 4.2. Here the difference is to handle the nuclear norm
regularization, instead of the `1-penalty. Since β̂ is the solution of the optimization problem in (3.4), the first order
optimality condition states that

L(β̂) + λ‖β̂‖? ≤ L(µβ∗) + λ‖µβ∗‖?. (A.7)

To simplify the notation, we define Θ = β̂ − µ · β∗. Since L is quadratic,

L(β̂)− L(µβ∗) = 〈∇L(µβ∗),Θ〉+ 2‖Θ‖2fro, (A.8)

where∇L takes values in Rd1×d2 . Then combining (A.7), (A.8), and Hölder’s inequality, we have

‖Θ‖2fro ≤ −〈∇L(µβ∗),Θ〉+ λ‖µβ∗‖? − λ‖β̂‖? ≤
∥∥∇L(µβ∗)

∥∥
op · ‖Θ‖? + λ‖µβ∗‖? − λ‖β̂‖?. (A.9)

In the following, we focus on the term ‖µβ∗‖? − ‖β̂‖? in (A.9). Let UΛ∗V > be the singular value decomposition of µβ∗,
where U ∈ Rd1×d1 and V ∈ Rd2×d2 are orthogonal matrices, and Λ∗ ∈ Rd1×d2 be formed by the singular values of µβ∗.
Moreover, since rank(β∗) = r∗, Λ∗ can be written in block form as

Λ∗ =

[
Λ∗11 0
0 0

]
, (A.10)

where Λ∗11 ∈ Rr∗×r∗ is a diagonal matrix whose diagonal elements are the nonzero singular values of µβ∗. We define
Γ = U>ΘV , which can be written in block form as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
,

where Γ11 ∈ Rr∗×r∗ . In addition, we define matrices

Γ(1) =

[
0 0
0 Γ22

]
and Γ(2) =

[
Γ11 Γ12

Γ21 0

]
.

Then by (A.10) and triangle inequality of the nuclear norm, we have

‖β̂‖? = ‖µβ∗ + Θ‖? = ‖U(Λ∗ + Γ)V >‖? = ‖Λ∗ + Γ‖?
≥ ‖Λ∗ + Γ(1)‖? − ‖Γ(2)‖? = ‖Λ∗‖? + ‖Γ(1)‖? − ‖Γ(2)‖?, (A.11)

where the last equality follows from the fact that Λ∗+Γ(1) is block diagonal. Since ‖µβ∗‖? = ‖Λ∗‖?, by (A.11) we obtain

‖µβ∗‖? − ‖β̂‖? ≤ ‖Γ(2)‖? − ‖Γ(1)‖?. (A.12)

In addition, triangle inequality implies that

‖Θ‖? = ‖UΓV >‖? ≤ ‖Γ(1)‖? + ‖Γ(2)‖?. (A.13)

Thus combining (A.11), (A.12), (A.13), we have

‖Θ‖2fro ≤
(∥∥∇L(µβ∗)

∥∥
op + λ

)
· ‖Γ(2)‖? +

(∥∥∇L(µβ∗)
∥∥

op − λ
)
· ‖Γ(1)‖?, (A.14)

We utilize the following lemma to obtain an upper bound of ‖∇L(µβ∗)‖op.

Lemma A.2 (Upper bound of ‖∇L(µβ∗)‖op). Let loss function L : Rd1×d2 → R be defined in (3.4) for the matrix setting.
Setting κ = 2

√
n · log(d1 + d2)/

√
(d1 + d2)M , then it holds that

P
[
‖∇L(µβ∗)‖op > 6

√
(d1 + d2)/n

]
≤ (d1 + d2)−2.
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Proof. See B.2 for a detailed proof.

By Lemma A.2 and the choice of λ, we conclude that λ > 2 · ‖∇L(µβ∗)‖op with probability at least 1 − (d1 + d2)−3.
Thus by (A.14) we have

‖Θ‖2fro ≤ 3λ/2 · ‖Γ(2)‖? − λ/2 · ‖Γ(1)‖? (A.15)

which implies that ‖Γ(1)‖? ≤ 3 · ‖Γ(2)‖?. Moreover, by the subadditivity of rank, we obtain

rank(Γ(2)) ≤ rank

([
Γ11/2 Γ12

0 0

])
+ rank

([
Γ11/2 0
Γ21 0

])
= 2r∗,

which implies that ‖Γ(2)‖? ≤
√

2r∗ · ‖Γ(2)‖fro Then by (A.15) we obtain that ‖Θ‖fro ≤ 3/
√

2 ·
√
r∗ ·λ. Finally, by triangle

inequality for the nuclear norm,

‖Θ‖? = ‖Γ‖? ≤ ‖Γ(1)‖? + ‖Γ(2)‖? ≤ 4 · ‖Γ(2)‖? ≤ 4
√

2r∗‖Γ(2)‖fro = 12r∗λ.

Thus we conclude the proof of Theorem 4.3.

B. Proof of Auxiliary Results
B.1. Proof of Lemma A.1

Proof. By definition of the loss function L in (3.4), we have

∇L(µβ∗) = 2µβ∗ − 2

n

n∑
i=1

Ỹi · S̃(Xi) = E
[
2Yi · S(Xi)

]
− 2

n

n∑
i=1

Ỹi · S̃(Xi).

By triangle inequality,

‖∇L(µβ∗)‖∞ ≤
∥∥∥E[2Y · S(X)

]
− E

[
2Ỹ · S̃(X)

]∥∥∥
∞

+

∥∥∥∥E[2Ỹ · S̃(X)
]
− 2

n

n∑
i=1

Ỹi · S̃(Xi)

∥∥∥∥
∞
. (B.1)

For any j ∈ [d], by the definition of the truncated response Ỹ and truncated score S̃, we obtain∣∣E[Ỹ · S̃j(X)
]
− E

[
Y · Sj(X)

]∣∣ ≤ ∣∣∣E{Ỹ · [S̃j(X)− Sj(X)
]}∣∣∣+

∣∣E[(Ỹ − Y ) · Sj(X)
]∣∣

=
∣∣E[Ỹ · Sj(X) · 1{|Sj(X)| > τ}

]∣∣︸ ︷︷ ︸
a1

+
∣∣E[Y · Sj(X) · 1{|Y | > τ}

]∣∣︸ ︷︷ ︸
a2

. (B.2)

By Cauchy-Schwarz inequality, we have

a21 ≤ E
[
Ỹ 2S2

j (X)
]
· P
[
|Sj(X)| ≥ τ

]
≤
√
E(Ỹ 4) · E

[
S4
j (X)

]
· E
[
S4
j (X)

]
· τ−4

= M2 · τ−4, (B.3)

where the second inequality follows from Chebyshev’s inequality. Similarly, for a2 we have

a22 ≤ E
[
Y 2S2

j (X)
]
· P
(
|Y | ≥ τ

)
≤
√

E(Ỹ 4) · E
[
S4
j (X)

]
· E(Y 4) · τ−4

≤M2 · τ−4. (B.4)
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Thus combining (B.2), (B.3), and (B.4), we conclude that∣∣∣E[Ỹ · S̃j(X)
]
− E

[
Y · Sj(X)

]∣∣∣ ≤ a1 + a2 ≤ 2M · τ−2

for all j ∈ [d]. Thus choosing τ = 2(M · n/ log d)1/4, we have∥∥∥E[Ỹ · S̃j(X)
]
− E

[
Y · Sj(X)

]∥∥∥
∞
≤ 1/2 ·

√
M · log d/n. (B.5)

Furthermore, under Assumption 4.1, the variance of Ỹ · ·S̃j(X) is bounded by

Var[Ỹ · S̃j(X)] ≤ E[Ỹ 2 · S̃2
j (X)] ≤ E[Y 2 · S2

j (X)] ≤
√

E(Y 4) · E[S4
j (X)] ≤M.

Thus for the second term in (B.1), since |Ỹ ·S̃j(X)| ≤ τ2, by the Bernstein inequality in (Boucheron et al., 2013) (Theorem
2.10), for any j ∈ [d] and any t > 0, we have

P
{∣∣∣∣ 1n

n∑
i=1

Ỹi · S̃j(Xi)− E
[
Ỹ · S̃j(X)

]∣∣∣∣ ≥
√

2M · t
n

+
τ2 · t
3n

}
≤ exp(−t). (B.6)

Taking union bound over j ∈ [t] in (B.6) yields

P
{∥∥∥∥ 1

n

n∑
i=1

Ỹi · S̃j(Xi)− E
[
Ỹ · S̃j(X)

]∥∥∥∥
∞
≥
√

2M · t
n

+
τ2 · t
3n

}
≤ exp(−t+ log d). (B.7)

Finally, we plug in τ = 2(M · n/ log d)1/4 and set t = 3 log d in (B.7) to obtain that∥∥∥∥ 1

n

n∑
i=1

Ỹi · S̃j(Xi)− E
[
Ỹ · S̃j(X)

]∥∥∥∥
∞
≤ (4 +

√
6)

√
M · log d

n
(B.8)

with probability at least 1− d−2. Finally, combining (B.1), (B.5), and (B.8), we conclude the proof.

B.2. Proof of Lemma A.2

Proof. For loss function L defined in (3.4) in the matrix setting, we have

∇L(µβ∗) = 2µβ∗ − 2

κ · n

n∑
i=1

ψ
[
κ · Yi · S(Xi)

]
= 2E[Y · S(X)]− 2

κ · n

n∑
i=1

ψ
[
κ · Yi · S(Xi)

]
. (B.9)

Here the last equality follows from the generalized Stein’s identity. In the sequel, we apply results in (Minsker, 2016)
to bound ‖∇L(µβ∗)‖op. To begin with, we first consider the operator norm of E[Y 2 · S(X)S(X)>] ∈ Rd!×d2 and
E[Y 2 · S(X)>S(X)] ∈ Rd2×d2 . For notational simplicity, we denote by Sj,·(·) ∈ Rd2 S·,k(·) ∈ Rd1 the j-th row and
k-the column of the score function S(·), respectively. For any u ∈ Sd1−1, by Cauchy-Schwarz inequality we have

E[Y 2 · u>S(X)S(X)>u] =

d2∑
k=1

E
{

[Y 2 · S·,k(X)>u]2
}
≤ d2 ·

√
E(Y 4) · E

{
[S·,1(X)>u]4

}
, (B.10)

where we use the fact that the entries of S(X) are i.i.d. Since E[Sij(X)] = 0 and E[S4
ij(X)] ≤ M , by Cauchy-Schwarz

inequality we obtain that

E
{

[S·,1(X)>u]4
}

=

d∑
j1=1

d∑
j2=1

E[Sj1,1(X)2 · S2
j2,1(X)] · u2jiu

2
j2

≤
d∑

j1=1

d∑
j2=1

√
E[S4

j1,1
(X)] · E[S4

j2,1
(X)] · u2jiu

2
j2 ≤M

d∑
j1=1

d∑
j2=1

u2jiu
2
j2 = M. (B.11)
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Thus combining (B.10) and (B.11) we obtain that

E[Y 2 · u>S(X)S(X)>u] ≤ d2 ·M,

which implies that ‖E[Y 2 ·S(X)S(X)>]‖op ≤ d2 ·M . Similarly, we obtain ‖E[Y 2 ·S(X)>S(X)]‖op ≤ d1 ·M . Thus by
Corollary 3.1 in (Minsker, 2016), we have

P
{∥∥∥∥ 1

κ · n

n∑
i=1

ψ
[
κ · Yi · S(Xi)

]
− E[Y · S(X)]

∥∥∥∥
op
≥ t√

n

}
≤ 2(d1 + d2) exp

[
−κt
√
n+ κ2(d1 + d2)M/2

]
(B.12)

for any t > 0 and κ > 0. We set κ = 2
√
n · log(d1 + d2)/

√
(d1 + d2)M and t =

√
(d1 + d2)M · s in (B.12), which

implies that

P
{∥∥∥∥ 1

κ · n

n∑
i=1

ψ
[
κ · Yi · S(Xi)

]
− E[Y · S(X)]

∥∥∥∥
op
≥
√

(d1 + d2)M

n
· s
}

≤ 2(d1 + d2) exp
[
−2
√

log(d1 + d2) · s+ 2 · log(d1 + d2)
]
. (B.13)

Now we set s = 3 ·
√

log(d1 + d2), which implies that the right-hand side of (B.13) is less than

2(d1 + d2) exp
[
−6 log(d1 + d2) + 2 · log(d1 + d2)

]
≤ (d1 + d2)2 · exp

[
−4 · log(d1 + d2)

]
= (d1 + d2)−2.

Therefore, combining (B.9) and (B.13) we conclude that

‖∇L(µβ∗)‖op ≤ 6
√

(d1 + d2) ·M/n ·
√

log(d1 + d2)

with probability at least 1− (d1 + d2)−2, which concludes the proof.


