
Supplementary material of “Towards K-means-friendly Spaces: Simultaneous
Deep Learning and Clustering”

Bo Yang 1 Xiao Fu 1 Nicholas D. Sidiropoulos 1 Mingyi Hong 2

1. Additional Synthetic-Data Experiments
1.1. Additional Generative Models

In this section, we provide two more examples to illustrate
the ability of DCN in recovering K-means-friendly spaces
under different generative models. We first consider the
transformation as follows:

xi = (σ(Whi))
2
, (1)

where σ(·) is the sigmoid function as before and W ∈
R100×2 is similarly generated as in the paper. We perform
elementwise squaring on the result features to further com-
plicate the generating process. The corresponding results
can be seen in Fig. 1 of this supplementary document. One
can see that a similar pattern as we have observed in the
main text is also presented here: The proposed DCN recov-
ers a 2-D K-means-friendly space very well and the other
methods all fail.

In Fig. 2, we test the algorithms under the generative model

xi = tanh (σ(Whi)) , (2)

where W ∈ R100×2. Same as before, the proposed DCN
gives very clear clusters in the recovered 2-D space.

The results in this section and the synthetic-data experi-
ment presented in main text are encouraging: Under a vari-
ety of complicated nonlinear generative models, DCN can
output clustering-friendly latent representations.

1Department of Electrical and Computer Engineering, Univer-
sity of Minnesota, Minneapolis MN 55455, USA. 2Department
of Industrial and Manufacturing Systems Engineering, Iowa
State University, Ames, IA 50011, USA. Correspondence to:
Bo Yang <yang4173@umn.edu>, Xiao Fu <xfu@umn.edu>,
Nicholas D. Sidiropoulos <nikos@ece.um.edu>, Mingyi Hong
<mingyi@iastate.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Figure 1. The generated latent representations {hi} in the 2-D
space and the recovered 2-D representations from xi ∈ R100,
where xi = (σ(Whi))

2.

2. Additional Real-Data Experiments
2.1. Pendigits

Beside the real datasets in the paper, we also conduct ex-
periment on the Pendigits dataset. The Pendigits dataset
consists of 10,992 data samples. Each sample records 8
coordinates on a tablet, on which a subject is instructed to
write the digits from 0 to 9. So each sample corresponds to
a vector of length 16, and represents one of the digits. Note
that this dataset is quite different from MNIST – each digit
in MNIST is represented by an image (pixel values) while
digits in Pendigits are represented by 8 coordinates of the
stylus when a person was writing a certain digit. Since each
digit is represented by a very small-size vector of length 16,
we use a small network who has three forward layers which
are with 16, 16, and 10 neurons. Table 1 shows the results:
The proposed methods give the best clustering performance
compared to the competing methods, and the methods us-
ing DNNs outperform the ‘shallow’ ones that do not use



Supplementary material of “Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering”

Figure 2. The generated latent representations {hi} in the 2-D
space of the recovered 2-D representations from xi ∈ R100,
where xi = tanh (σ(Whi)).

Table 1. Evaluation on the Pendigits dataset
Methods DCN SAE+KM SC KM

NMI 0.69 0.65 0.67 0.67
ARI 0.56 0.53 0.55 0.55
ACC 0.72 0.70 0.71 0.69

neural networks for DR.

2.2. DCN as Feature Learner

We motivate and develop DCN as a clustering method that
directly works on unlabeled data. In practice, DCN can also
be utilized as a feature-learning method when training sam-
ples are available – i.e., one can feed labeled training data
to DCN, tune the parameters of the network to learn well
clustered latent representations of the training samples, and
then use the trained DCN (to be specific, the forward net-
work) to reduce dimension of unseen testing data.

Here, we provide some additional results to showcase the
feature-learning ability of DCN. We perform a 5-fold cross-
validation experiment on the raw MNIST dataset, where
each fold is a 80/20 training/testing random split. The per-
formance of SAE+KM on the training sets is presented as
a baseline.

The obtained NMI, ARI, and ACC (mean and standard de-
viation) are listed in Table. 2. One can see that the training
and testing stages of DCN output similar results, which is
rather encouraging. This experiment suggests that DCN is
very promising as a representation learner.

Table 2. The mean (stand deviation) of the evaluation results of
the 5-fold cross-validation on MNIST.

NMI ARI ACC
DCN-Training 0.80 (0.001) 0.74 (0.002) 0.83 (0.002)
DCN-Testing 0.81 (0.003) 0.75 (0.005) 0.83 (0.004)
SAE+KM 0.73 (0.001) 0.67 (0.002) 0.80 (0.002)

3. Detailed Settings of Real-Data Experiments
3.1. Algorithm Parameters

There is a set of parameters in the proposed algorithm
which need to be pre-defined. Specifically, the learning rate
α, the number of epochs T (recall that one epoch responds
to a pass of all the data samples through the network), and
the balancing regularization parameter λ. These parame-
ters vary from case to case since they are related to a num-
ber of factors, e.g., dimension of the data samples, total
number of samples, scale (or energy) of the samples, etc.
In practice, a reasonable way to tune these parameters is
through observing the performance of the algorithm under
various parameters on a small validation subset whose la-
bels are known.

Note that the proposed algorithm has two stages, i.e., pre-
training and the main algorithm and they usually use two
different sets of parameters since the algorithmic structure
of the two stages are quite different (to be more precise, the
pre-training state does not work with the whole network but
only deals with a pair of encoding-decoding layers greed-
ily). Therefore, we distinguish the parameters of the two
stages as listed in Table 3, to better describe the settings.

We implement SGD for solving the subproblem w.r.t. X
using the Nesterov-type acceleration (Nesterov, 2013), the
mini-batch version, and the momentum method. Batch nor-
malization (Ioffe & Szegedy, 2015) that is recently proven
to be very effective for training supervised deep networks
is also employed. Through out the experiments, the mo-
mentum parameter is set to be 0.9, the mini-batch size is
selected to be ≈ 0.01 × N , and the other parameters are
adjusted accordingly in each experiments – which will be
described in detail in the next section.

3.2. Network Parameters

The considered network has two parts, namely, the forward
encoding network that reduces the dimensionality of the
data and the decoding network that reconstructs the data.
We let two networks to have a mirrored structure of each
other. There are also two parameters of a forward network,
i.e., the width of each layer (number of neurons) and the
depth of the network (number of layers). There is no strict
rule for setting up these two parameters, but the rule of
thumb is to adjust them according the amounts of data sam-



Supplementary material of “Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering”

Table 3. List of parameters used in DCN.
Notations Meaning

λ regularization parameter
αp base pre-training stepsize
αl base learning stepsize
Tp pre-traing epochs
Tl learning epochs

ples of the datasets and the dimension of each sample. Us-
ing a deeper and wider network may be able to better cap-
ture the underlying nonlinear transformation of the data, as
the network has more degrees of freedom. However, find-
ing a large number of parameters accurately requires a large
amount of data since the procedure can be essentially con-
sidered as solving a large system of nonlinear equations –
and finding more unknowns needs more equalities in the
system, or, data samples in this case. Therefore, there is a
clear trade-off between network depth/width and the over-
all performance.

3.3. Detailed Parameter Settings

The detailed parameter settings for experiments on RCV1-
v2 are shown in Tables 4. Parameter settings for 20News-
group, raw MNIST, pre-processed MNIST, and Pendigits
are shown in Tables 5, 6, 7, and 8, respectively.

4. More Discussions
We have the following several more points as further dis-
cussion:

1. We have observed that runing SAE for epochs may
even worsen the clustering performance in the two-
stage approach. In Fig. 3, we show how the cluster-
ing performance indexes change with the epochs when
we run SAE without K-means regularization.One can
see that the performance in fact becomes worse com-
pared to merely using pre-training (i.e., initialization).
This means that using the SAE does not necessarily
help clustering – and this supports our motivation for
adding a K-means-friendly structure-enhancing regu-
larization.

2. To alleviate the effect brought by the intrinsic random-
ness of the algorithms, e.g., random initialization of
pre-training, the reported results are all obtained via
running the experiments several times and taking aver-
age (specifically, we run the experiments with smaller
size, i.e., 20Newsgroup, raw and processed MNIST,
and Pendigits for ten times and the results of the much
larger dataset RCV-v2 are average of five runs; the re-
sults for DEC in Table 1 is from a single run.). There-

Figure 3. Clustering performance degrades when training with
only reconstruction error term. This is in sharp contrast with
Figure 5(a) in the paper, where clustering performance improves
when training the proposed DCN model.

Table 4. Parameter settings for RCV1-v2
parameters description

f(xi;W): RM → RR M = 2, 000 and R = 50
Sample size N 178,603 or 267,466

forward net. depth 5 layers
layer width 2000/1000/1000/1000/50

λ 0.1
αp 0.01
αl 0.05
Tp 50
Tl 50

fore, the presented results reflect the performance of
the algorithms in an average sense.

3. We treat this work as a proof-of-concept: Joint DNN
learning and clustering is a highly viable task accord-
ing to our design and experiments. In the future, many
practical issues will be investigated – e.g., designing
theory-backed ways of setting up network and algo-
rithm parameters. Another very intriguing direction
is of course to design convergence-guaranteed algo-
rithms for optimizing the proposed criterion and its
variants. We leave these interesting considerations for
future work.



Supplementary material of “Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering”

Table 7. Parameter settings for Pre-Processed MNIST
parameters description

f(xi;W): RM → RR M = 10 and R = 5
Sample size N 70,000

forward net. depth 3 layers
layer width 50/ 20/ 5

λ 0.1
αp 0.01
αl 0.01
Tp 10
Tl 50

Table 8. Parameter settings for Pendigits
parameters description

f(xi;W): RM → RR M = 16 and R = 10
Sample size N 10,992

forward net. depth 3 layers
layer width 50/ 16/ 10

λ 0.5
αp 0.01
αl 0.01
Tp 50
Tl 50

Table 5. Parameter settings for 20Newsgroup
parameters description

f(xi;W): RM → RR M = 2, 000 and R = 20
Sample size N 18,846

forward net. depth 3 layers
layer width 250/100/20

λ 10
αp 0.01
αl 0.001
Tp 10
Tl 50

Table 6. Parameter settings for raw MNIST
parameters description

f(xi;W): RM → RR M = 784 and R = 50
Sample size N 70,000

forward net. depth 4 layers
layer width 500/ 500/ 2000/10

λ 0.05
αp 0.01
αl 0.05
Tp 50
Tl 50

References
Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-

ing deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Confer-
ence on Machine Learning, pp. 448–456, 2015.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.


