
Appendix A. Some Important Lemmas

In this section, we give several important lemmas which will be used in the proof of the
theorems of this paper.

Lemma 9 If A and B are d×d symmetric positive matrices, and (1−�0)B � A � (1+�0)B
where 0 < �0 < 1, then we have

�A1/2B−1A1/2 − I� ≤ �0,

where I is the identity matrix.

Proof Because A � (1 + �0)B, we have zT [A − (1 + �0)B]z ≤ 0 for any nonzero z ∈ Rd.

This implies zTAz
zTBz

≤ 1 + �0 for any z �= 0. Subsequently,

λmax(B
−1A) =λmax(B

−1/2AB−1/2)

=max
u�=0

uTB−1/2AB−1/2u

uTu

=max
z �=0

zTAz

zTBz

≤1 + �0,

where the last equality is obtained by setting z = B−1/2u. Similarly, we have λmin(B
−1A) ≥

1 − �0. Since B−1A and A1/2B−1A1/2 are similar, the eigenvalues of A1/2B−1A1/2 are all
between 1− �0 and 1 + �0. Therefore, we have

�A1/2B−1A1/2 − I� ≤ �0.

Lemma 10 ([3]) Let X1, X2, . . . , Xk be independent, random, symmetric, real matrices of
size d × d with 0 � Xi � LI, where I is the d × d identity matrix. Let Y =

�k
i=1Xi,

µmin = λmin(E[Y ]) and µmax = λmax(E[Y ]). Then,

P (λmin(Y ) ≤ (1− �)µmin) ≤ d · e−�2µmin/L

Lemma 11 ([3]) Given a matrix A ∈ Rm×n, construct an m × n random matrix R such
that

E[R] = A and �R� ≤ L.

Compute the per-sample second moment:

M = max{�E[RRT ]�,E[RTR]�}.

Form the matrix sampling estimator

R̄ =
1

s

s�

i=1

Ri,where each Ri is an independent copy of R.
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Then, for all t ≥ 0

P
�
�R̄−A� ≥ t

�
≤ (m+ n) exp

� −st2/2

M + 2Lt/3

�
.

Lemma 12 Assume (9) and (10) hold. Let 0 < δ < 1, 0 < � < 1 and 0 < c be given. If we
sample fi’s uniformly with the sample size |S| and construct H(t) = 1

|S|
�

j∈S ∇2fj(x
(t)),

then we have the following results:

(a) If |S| ≥ 16K2 log(2d/δ)
c2�2

, it holds that

�H(t) −∇2F (x(t))� ≤ �c.

(b) If |S| ≥ K log(2d/δ)
σ�2

, it holds that

λmin(H
(t)) ≥ (1− �)σ.

Proof Consider |S| i.i.d randommatrcesH
(t)
j , j = 1, . . . , |S| such that P

�
H

(t)
j = ∇2fi(x

(t))
�
=

1/n for all i = 1, . . . , n. Then, we have E(H(t)
j ) = ∇2F (x(t)) for all j = 1, . . . , |S|. By (9)

and the positive semi-definite property ofH
(t)
j , we have λmax(H

(t)
j ) ≤ K and λmin(H

(t)
j ) ≥ 0.

By Lemma 10, we have that if |S| ≥ K log(d/δ)
σ�2

, λmin(H
(t)) ≥ (1− �)σ holds with probability

at least 1− δ.

We define random maxtrices Xj = H
(t)
j − ∇2F (x(t)) for all j = 1, . . . , |S|. We have

E[Xj ] = 0, �Xj� ≤ 2K and �Xj�2 ≤ 4K2. By Lemma 11, we have

P(�H(t) −∇2F (x(t))� ≥ �c) ≤ 2d exp−
c2�2|S|
16K2 .

When |S| ≥ 16K2 log(2d/δ)
c2�2

, �H(t) −∇2F (x(t))� ≤ �c holds with probability at least 1− δ.

Appendix B. Proofs of theorems of Section 3

Proof of Theorem 3 By Assumption 1 and 2, we have that F (x) is µ-strongly convex
and ∇F (x) is L-Lipschitz continuous. Hence, we have

µ ≤ λmin(∇2F (x)) ≤ λmax(∇2F (x)) ≤ L.

Hence, for any x in domain, it holds that

κ =
L

µ
≥ κ(∇2F (x)).
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By Taylor’s theorem, we obtain

∇F (x(t+1))

=∇F (x(t)) +∇2F (x(t))(−p(t)) +

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds

=∇F (x(t))−∇2F (x(t))[H(t)]−1∇F (x(t)) +∇2F (x(t))[H(t)]−1∇F (x(t))−∇2F (x(t))p(t)

+

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds

=
�
∇2F (x(t))

� 1
2
�
I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

� �
∇2F (x(t))

�− 1
2 ∇F (x(t))

+∇2F (x(t))([H(t)]−1∇F (x(t))− p(t)) +

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds.

Hence, we have the following identity

�
∇2F (x(t))

�− 1
2 ∇F (x(t+1)) =

�
I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

� �
∇2F (x(t))

�− 1
2 ∇F (x(t))

+ [∇2F (x(t))]
1
2 ([H(t)]−1∇F (x(t))− p(t))

+ [∇2F (x(t))]−
1
2

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds.

For notational simplicity, we denote M =
�
∇2F (x(t))

�−1
and M∗ =

�
∇2F (x∗)

�−1
. Then we

can obtain

�∇F (x(t+1))�M ≤
���I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

��� �∇F (x(t))�M
+ �[∇2F (x(t))]

1
2 ��[H(t)]−1∇F (x(t))− p(t)�

+ �[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds.

We bound the three terms on the right-hand side of the above equation respectively.

For the first term, using Lemma 9, we have

���I − [∇2F (x(t))]
1
2 [H(t)]−1[∇2F (x(t))]

1
2

��� �∇F (x(t))�M ≤ �0�∇F (x(t))�M .

For the second term, by the fact that �AB� ≥ �A�σmin(B) and condition

�∇F (x(t))−H(t)p(t)� ≤ �1
κ
�∇F (x(t))� ≤ �1

κ(∇2F (x(t)))
�∇F (x(t))�,
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we obtain

�[∇2F (x(t))]
1
2 ��[H(t)]−1∇F (x(t))− p(t)�

=
�[∇2F (x(t))]

1
2 �

λmin([∇2F (x(t))]−
1
2 )
λmin([∇2F (x(t))]−

1
2 )�[H(t)]−1��∇F (x(t))−H(t)p(t)�

≤ �1

κ(∇2F (x(t)))

�[∇2F (x(t))]
1
2 �

λmin([∇2F (x(t))]−
1
2 )
�[H(t)]−1�(λmin([∇2F (x(t))]−

1
2 )�∇F (x(t))�)

≤ �1

κ(∇2F (x(t)))
�∇2F (x(t))��[H(t)]−1��∇F (x(t))�M

≤ �1
1− �0

�∇F (x(t))�M .

For the third term, we bound it for the case that ∇2F (x) is not Lipschitz continuous
and the case ∇2F (x) is Lipschitz continuous respectively.

First, we consider the case that ∇2F (x) is not Lipschitz continuous but is continuous
close to the optimal point x∗. Because ∇2F (x) is continuous near x∗, there exists a sufficient
small value γ such that it holds that

�[∇2F (x∗)]−1 − [∇2F (x(t))]−1� <
ν(t)

L
, (14)

and

�∇2F (x∗)−∇2F (x(t))� <
η(t)µ√

κ
, (15)

when �x(t) − x∗� ≤ γ. Therefore, ν(t) and η(t) will go to 0 as x(t) goes to x∗.

By µ-strong convexity, we have �[∇2F (xt)]−1� ≤ 1
µ for all x(t) sufficiently close to x∗.

Because of Eqn. (2), we have

�[H(t)]−1� ≤ (1 + �0)�[∇2F (xt)]−1� ≤ 1

(1− �0)µ
.

We define r(t) = ∇F (x(t))−H(t)p(t). Then we have that the direction vector satisfies

�p(t)� = �[H(t)]−1�(�r(t)�+ �∇F (x(t))�) ≤ 2

(1− �0)µ
�∇F (x(t))�, (16)

where the second inequality is because

�r(t)� = �∇F (x(t))−H(t)p(t)� ≤ �1
κ
�∇F (x(t))� ≤ �∇F (x(t))�.
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Hence, with �x− x∗� ≤ γ, combining condition (15), we have

�[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds

≤ �[∇2F (x(t))]−
1
2 �

� 1

0

µη(t)√
κ

�p(t)�ds

≤ �[∇2F (x(t))]−
1
2 � 2

(1− �0)µ

µη(t)√
κ

�∇F (x(t))�

≤ 2η(t)

1− �0

�[∇2F (x(t))]−
1
2 �

√
κλmin([∇2F (x(t))]−

1
2 )
λmin([∇2F (x(t))]−

1
2 )�∇F (x(t))�

≤ 2η(t)

1− �0
�∇F (x(t))�M .

Therefore, we have

�∇F (x(t+1))�M ≤�0�∇F (x(t))�M +
�1

1− �0
�∇F (x(t))�M +

2η(t)

1− �0
�∇F (x(t))�M

=

�
�0 +

�1
1− �0

+
2η(t)

1− �0

�
�∇F (x(t))�M .

Now, we show the relationship between � · �M and � · �M∗ . By Eqn. (14), we have

− ν(t)

λmax(∇2F (x∗))
uTu ≤ uT ([∇2F (x∗)]−1 − [∇2F (x(t))]−1)u ≤ ν(t)

λmax(∇2F (x∗))
uTu,

for any nonzero u ∈ Rd, which implies that

(1− ν(t))uT [∇2F (x(t))]−1u ≤ uT [∇2F (x∗)]−1u ≤ (1 + ν(t))uT [∇2F (x(t))]−1u.

That is,

(1− ν(t))�u�M ≤ �u�M∗ ≤ (1 + ν(t))�u�M .

By this relationship between � · �M and � · �M∗ , we get

�∇F (x(t+1))�M∗ ≤
�
�0 +

�1
1− �0

+
2η(t)

1− �0

�
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗

Second, we consider the case that ∇2F (x) is Lipschitz continuous with parameter L̂.
We have that the direction vector satisfies

�p(t)� ≤ 2

(1− �0)λmin(∇2F (x(t)))
�∇F (x(t))�.
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Because ∇2F (x) is Lipschitz continuous with parameter L̂, we have

�[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds

≤ �[∇2F (x(t))]−
1
2 �

� 1

0
sL̂�p(t)�2ds

=
L̂

2
�[∇2F (x(t))]−

1
2 �λ−2

min([∇2F (x(t))]−
1
2 )λ2

min([∇2F (x(t))]−
1
2 )�p(t)�2

≤ L̂

2
�[∇2F (x(t))]−

1
2 �λ−2

min([∇2F (x(t))]−
1
2 )

�
2

(1− �0)λmin(∇2F (x(t)))

�2

�∇F (x(t))�2M

=
2L̂λmax(∇2F (x(t)))

(1− �0)2λ2
min(∇2F (x(t)))

�
λmin(∇2F (x(t)))

�∇F (x(t))�2M

≤ 2

(1− �0)2
· L̂κ

µ
√
µ
�∇F (x(t))�2M .

Thus, we have

�∇F (x(t+1))�M ≤
�
�0 +

�1
1− �0

�
�∇F (x(t))�M +

2

(1− �0)2
· L̂κ

µ
√
µ
�∇F (x(t))�2M .

By the Lipschitz continuity of ∇2F (x) and the condition

�x(t) − x∗� ≤ µ

L̂κ
≤ λmin(∇2F (x∗))

L̂κ(∇2F (x(t)))
,

we obtain

�[∇2F (x∗)]−1 − [∇2F (x(t))]−1� ≤�[∇2F (x∗)]−1��[∇2F (x(t))]−1��∇2F (x∗)−∇2F (x(t))�
≤L̂�[∇2F (x∗)]−1��[∇2F (x(t))]−1��x(t) − x∗�
≤ν(t)λmin([∇2F (x(t))]−1).

Hence, we can obtain that for any u ∈ Rd,

−ν(t)λmin([∇2F (x(t))]−1)uT y ≤ yT ([∇2F (x∗)]−1−[∇2F (x(t))]−1)y ≤ ν(t)λmin([∇2F (x(t))]−1)yT y,

which yields

(1− ν(t))uT [∇2F (x(t))]−1u ≤ uT [∇2F (x∗)]−1u ≤ (1 + ν(t))uT [∇2F (x(t))]−1u.

That is,
(1− ν(t))�u�M ≤ �u�M∗ ≤ (1 + ν(t))�u�M .

Accordingly, we have

�∇F (x(t+1))�M∗ ≤
�
�0 +

�1
1− �0

�
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗ +

2

(1− �0)2
· L̂κ

µ
√
µ

(1 + ν(t))2

1− ν(t)
�∇F (x(t))�2M∗
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Appendix C. Proofs of theorems of Section 4

Proof of Theorem 4 If S is an �0-subspace embedding matrix w.r.t. B(x(t)), then we
have

(1− �0)∇2F (x(t)) � [B(x(t))]TSTSB(x(t)) � (1 + �0)∇2F (x(t)). (17)

By simple transformation and omitting �20, (17) can be transformed into

(1− �0)[B(x(t))]TSTS∇2B(x(t)) � ∇2F (x(t)) � (1 + �0)[B(x(t))]TSTSB(x(t)).

The convergence rate can be derived directly from Theorem 3.

Appendix D. Proofs of theorems of Section 5

Proof of Theorem 5 By Lemma 12, when |S| ≥ 16K2 log(2d/δ)
σ2�20

, H(t) has the following

property:

�H(t) −∇2F (x(t))� ≤ �0σ.

The above property implies the following:

|yT (H(t) −∇2F (x(t)))y| ≤ �0σy
T y,

⇒ − �0σy
T y ≤ yT (H(t) −∇2F (x(t)))y ≤ �0σy

T y

⇒ H(t) − �0σI � ∇2F (x(t)) � H(t) + �0σI

⇒ (1− �0)H
(t) � ∇2F (x(t)) � (1 + �0)H

(t).

The convergence rate can be derived directly from Theorem 3.

Proof of Theorem 6
By Lemma 12, when |S| ≥ 16K2 log(2d/δ)

β2 , we have

�∇2F (x(t))−H
(t)
|S|� ≤ β,

with probability at least 1− δ. Hence, we can derive

|yT (∇2F (x(t))−H
(t)
|S|)y| ≤ βyT y

⇒yTH
(t)
|S|y − βyT y ≤ yT∇2F (x(t))y ≤ yTH

(t)
|S|y + βyT y

⇒yTH(t)y − αyT y − βyT y ≤ yT∇2F (x(t))y ≤ yTH(t)y − αyT y + βyT y

⇒yTH(t)y − (α+ β)yT y
(1)

≤ yT∇2F (x(t))y
(2)

≤ yTH(t)y + (β − α)yT y.
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Now we first consider
(1)

≤ case, we have

yTH(t)y − (α+ β)yT y ≤ yT∇2F (x(t))y

⇒yTH(t)y ≤ yT∇2F (x(t))y + (α+ β)yT y

⇒yTH(t)y ≤ yT∇2F (x(t))y +
α+ β

σ
yT∇2F (x(t))y

⇒yTH(t)y ≤
�
1 +

α+ β

σ

�
yT∇2F (x(t))y

⇒
�
1− α+ β

σ + α+ β

�
yTH(t)y ≤ yT∇2F (x(t))y

⇒
�
1− α+ β

σ + α+ β

�
H(t) � F (x(t)).

For
(2)

≤ case, we consider two cases respectively. The first case is β − σ/2 ≤ α ≤ β, and
we have

yT∇2F (x(t))y ≤ yTH(t)y + (β − α)yT y

⇒yT∇2F (x(t))y − (β − α)yT y ≤ yTH(t)y

⇒yT∇2F (x(t))y − β − α

σ
yT∇2F (x(t))y ≤ yTH(t)y

⇒
�
1− β − α

σ

�
yT∇2F (x(t))y ≤ yTH(t)y

⇒yT∇2F (x(t))y ≤
�
1 +

β − α

σ − (β − α)

�
yTH(t)y

⇒∇2F (x(t)) �
�
1 +

β − α

σ + α− β

�
H(t).

For the case β < α, we can derive

yT∇2F (x(t))y ≤ yTH(t)y + (β − α)yT y ≤ yTH(t)y

⇒∇2F (x(t)) � (1 + 0)H(t).

Hence, for β − σ ≤ α, we have

�
1− α+ β

σ + α+ β

�
H(t) � F (x(t)) �

�
1 +

β − α

σ + α− β

�
H(t).

Therefore, �0 in Theorem 3 can be set as follows:

�0 = max

�
β − α

σ + α− β
,

α+ β

σ + α+ β

�
.

The convergence properties can derived from Theorem 3 directly.
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Proof of Theorem 7
We denote the SVD of H

(t)
S as follows

H
(t)
S = U Λ̂UT = UrΛ̂rU

T
r + U\rΛ̂\rU

T
\r.

By Lemma 12, when |S| ≥ 16K2 log(2d/δ)
β2 , we have

�∇2F (x(t))−H
(t)
|S|� ≤ β,

with probability at least 1− δ. Hence, we can derive

|yT (∇2F (x(t))−H
(t)
|S|)y| ≤ βyT y

⇒yTH
(t)
|S|y − βyT y ≤ yT∇2F (x(t))y ≤ yTH

(t)
|S|y + βyT y

⇒yTH(t)y + yTU\r(Λ̂\r − λ̂
(t)
r+1I)U

T
\ry − βyT y ≤ yT∇2F (x(t))y

≤ yTH(t)y + yTU\r(Λ̂\r − λ̂
(t)
r+1I)U

T
\ry + βyT y

⇒yTH(t)y − yTU

�
βIr

(β + λ̂
(t)
r+1)I\r − Λ̂\r

�
UT y

(1)

≤ yT∇2F (x(t))y

(2)

≤ yTH(t)y + yTU

�
βIr

(β − λ̂
(t)
r+1)I\r + Λ̂\r

�
UT y

Now we first consider
(1)

≤ case, we have

yTH(t)y − yTU

�
βIr

(β + λ̂
(t)
r+1)I\r − Λ̂\r

�
UT y

(1)

≤ yT∇2F (x(t))y

⇒yTH(t)y ≤ yT∇2F (x(t))y + (β + λ̂
(t)
r+1)y

ty

⇒yTH(t)y ≤ yT∇2F (x(t))y +
β + λ̂

(t)
r+1

σ
yT∇2F (x(t))y

⇒yTH(t)y ≤ yT∇2F (x(t))y +
2β + λ̂r+1

σ
yT∇2F (x(t))y

⇒
�
1− 2β + λ

(t)
r+1

σ + 2β + λ
(t)
r+1

�
yTH(t)y ≤ yT∇2F (x(t))y.

Hence we have

�
1 +

β

λ
(t)
r+1 − β

�
H(t) � ∇2F (x).
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Now we first consider
(2)

≤ case, we have

yT∇2F (x(t))y ≤yTH(t)y + yTU

�
βIr

(β − λ̂
(t)
r+1)I\r + Λ̂\r

�
UT y

≤yTH(t)y +
β

λ̂
(t)
r+1

yTH(t)y

≤
�
1 +

β

λ
(t)
r+1 − β

�
yTH(t)y,

where the last inequality is because λ
(t)
r+1 − β ≤ λ̂

(t)
r+1. Hence, we have

∇2F (x) �
�
1 +

β

λ
(t)
r+1 − β

�
H(t).

Hence, we have

�0 = max

�
β

λ
(t)
r+1 − β

,
2β + λ

(t)
r+1

σ + 2β + λ
(t)
r+1

�
< 1,

because β ≤ λ
(t)
r+1

2 .
The convergence properties can be derived directly by Theorem 3.

Appendix E. Subsampled Hessian and Gradient

In fact, we can also subsample gradient to accelerate the subsampled Newton method. The
detailed procedure is presented in Algorithm 5 [1, 2].

Theorem 13 Let F (x) satisfy the properties described in Theorem 3. We also assume
Eqn. (9) and Eqn. (10) hold and let 0 < δ < 1 and 0 < �0 < 1/2 be given. Let |SH | and |Sg|
be set such that Eqn. (2) holds and it holds that

�g(x(t))−∇F (x(t))� ≤ �2
κ
�∇F (x(t))�.

The direction vector p(t) is computed as in Algorithm 5. Then for t = 1, . . . , T , we have the
following convergence properties:

(a) There exists a sufficient small value γ, 0 < ν(t) < 1, and 0 < η(t) < 1 such that when
�x(t) − x∗� ≤ γ, then for each iteration, it holds that

�∇F (x(t+1))�M∗ ≤ (�0 + 2�2 + 4η(t))
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗

with probability at least 1− δ.
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Algorithm 5 Subsampled Hessian and Subsampled Gradient.

1: Input: x(0), 0 < δ < 1, 0 < �0 < 1;
2: Set the sample size |SH | and |Sg|.
3: for t = 0, 1, . . . until termination do
4: Select a sample set SH , of size |S| and construct H(t) = 1

|S|
�

j∈S ∇2fj(x
(t));

5: Select a sample set Sg of size |Sg| and calculate g(x(t)) = 1
|Sg|

�
i∈Sg

∇fi(x
(t)).

6: Calculate p(t) = [H(t)]−1g(x(t));
7: Update x(t+1) = x(t) − p(t);
8: end for

(b) If ∇2F (x(t)) is also Lipschitz continuous and {x(t)} satisfies Eqn. (6), then for each
iteration, it holds that

�∇F (x(t+1))�M∗ ≤(�0 + 2�2)
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗ +

8L̂κ

µ
√
µ

(1 + ν(t))2

1− ν(t)
�∇F (x(t))�2M∗ .

with probability at least 1− δ.

In common cases, subsampled gradient g(x(t)) needs to subsample over 80% of samples
to guarantee convergence of the algorithm. Roosta-Khorasani and Mahoney [2] showed
that it needs |Sg| ≥ G(x(t))2κ2/(ν2(t)�∇F (x(t))�2), where G(x(t)) = maxi �∇fi(x

(t))� for
i = 1, . . . , n. When x(t) is close to x∗, �∇F (x(t))� is close to 0. Hence |Sg| will go to n as
iteration goes. This is the reason why the Newton method and variants of the subsampled
Newton method are very sensitive to the accuracy of subsampled gradient.

The proof of Theorem 13 is almost the same with Theorem 3. For completeness, we
give the detailed proof as follows.
Proof By Taylor’s theorem, we obtain

∇F (x(t+1))

=∇F (x(t)) +∇2F (x(t))(−p(t)) +

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds

=∇F (x(t))−∇2F (x(t))[H(t)]−1∇F (x(t)) +∇2F (x(t))[H(t)]−1∇F (x(t))−∇2F (x(t))p(t)

+

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds

=
�
∇2F (x(t))

� 1
2
�
I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

� �
∇2F (x(t))

�− 1
2 ∇F (x(t))

+∇2F (x(t))([H(t)]−1∇F (x(t))− p(t)) +

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds.

Hence, we have the following identity

�
∇2F (x(t))

�− 1
2 ∇F (x(t+1)) =

�
I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

� �
∇2F (x(t))

�− 1
2 ∇F (x(t))

+ [∇2F (x(t))]
1
2 ([H(t)]−1∇F (x(t))− p(t))

+ [∇2F (x(t))]−
1
2

� 1

0
[∇2F (x(t) + sp(t))−∇2F (x(t))](−p(t))ds.
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Further more, we define M =
�
∇2F (x(t))

�−1
, we can obtain

�∇F (x(t+1))�M ≤
���I − [∇2F (x(t))]

1
2 [H(t)]−1[∇2F (x(t))]

1
2

��� �∇F (x(t))�M
+ �[∇2F (x(t))]

1
2 ��[H(t)]−1(∇F (x(t))− g(x(t)))�

+ �[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds.

We will bound the three terms on the right hand of above equation seperately.
For the first term, using Lemma 9, we have

���I − [∇2F (x(t))]
1
2 [H(t)]−1[∇2F (x(t))]

1
2

��� �∇F (x(t))�M ≤ �0�∇F (x(t))�M .

For the second term, by the fact that �AB� ≥ �A�σmin(B) and condition �g(x(t)) −
∇F (x(t))� ≤ �2�∇F (x(t))�, we obtain

�[∇2F (x(t))]
1
2 ��[H(t)]−1(∇F (x(t))− g(x(t)))�

=
�[∇2F (x(t))]

1
2 �

λmin([∇2F (x(t))]−
1
2 )
λmin([∇2F (x(t))]−

1
2 )��[H(t)]−1��∇F (x(t))− g(x(t))�

≤�2
�[∇2F (x(t))]

1
2 �

λmin([∇2F (x(t))]−
1
2 )
�[H(t)]−1��∇F (x(t))�M

≤ �2
1− �0

�∇F (x(t))�M

≤2�2�∇F (x(t))�M
For the third term, we bound it for the case that ∇2F (x) is not Lipschitz continuous

and the case ∇2F (x) is Lipschitz continuous respectively.
(a) Now we consider the case that ∇2F (x) is not Lipschitz continuous but is continuous

close to the optimal point x∗. Because ∇2F (x) is continuous near x∗, there exists a sufficient
small value δ such that Eqn. (14) and Eqn. (15) hold when �x(t) − x∗� ≤ δ.

By µ-strong convexity, we have �[∇2F (xt)]−1� ≤ 1
µ for all x(t) sufficiently close to x∗.

Then we have

�p(t)� = �[H(t)]−1��g(x(t))� ≤ 1 + �2/κ

(1− �0)µ
�∇F (x(t))� ≤ 2

(1− �0)µ
�∇F (x(t))�.

Hence, with �x− x∗� ≤ δ, combining condition (15), we have

�[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds

≤�[∇2F (x(t))]−
1
2 �

� 1

0

µη(t)√
κ

�p(t)�ds

≤�[∇2F (x(t))]−
1
2 � 2

(1− �0)µ

µη(t)√
κ

�∇F (x(t))�

≤ 2η(t)

1− �0

�[∇2F (x(t))]−
1
2 �

√
κλmin([∇2F (x(t))]−

1
2 )
λmin([∇2F (x(t))]−

1
2 )�∇F (x(t))�

≤4η(t)�∇F (x(t))�M ,
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Therefore, we have

�∇F (x(t+1))�M ≤�0�∇F (x(t))�M + 2�2�∇F (x(t))�M + 4η(t)�∇F (x(t))�M
=(�0 + 2�2 + 4η(t))�∇F (x(t))�M .

By Eqn. (14), we have

− ν(t)

λmax(∇2F (x∗))
yT y ≤ yT ([∇2F (x∗)]−1 − [∇2F (x(t))]−1)y ≤ ν(t)

λmax(∇2F (x∗))
yT y,

⇒(1− ν(t))yT [∇2F (x(t))]−1y ≤ yT [∇2F (x∗)]−1y ≤ (1 + ν(t))yT [∇2F (x(t))]−1y

⇒(1− ν(t))�y�M ≤ �y�M∗ ≤ (1 + ν(t))�y�M .

By this relationship between � · �M and � · �M∗ , we get

�∇F (x(t+1))�M∗ ≤ (�0 + 2�2 + 4η(t))
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗

(b) Now we consider the case that ∇2F (x) is Lipschitz continuous with parameter L̂.
The same to the previous proof, we have

�p(t)� = �[H(t)]−1��g(x(t))� ≤ 1 + �2/κ

(1− �0)µ
�∇F (x(t))� ≤ 2

(1− �0)µ
�∇F (x(t))�.

Because ∇2F (x) is Lipschitz continuous with parameter L̂, we have

�[∇2F (x(t))]−
1
2 �

� 1

0
�∇2F (x(t) + sp(t))−∇2F (x(t))��p(t)�ds

≤�[∇2F (x(t))]−
1
2 �

� 1

0
sL�p(t)�2ds

=
L̂

2
�[∇2F (x(t))]−

1
2 �λ−2

min([∇2F (x(t))]−
1
2 )λ2

min([∇2F (x(t))]−
1
2 )�p(t)�2

≤ L̂

2
�[∇2F (x(t))]−

1
2 �λ−2

min([∇2F (x(t))]−
1
2 )

�
2

(1− �0)λmin(∇2F (x(t)))

�2

�∇F (x(t))�2M

=
2L̂λmax(∇2F (x(t)))

(1− �0)2λ2
min(∇2F (x(t)))

�
λmin(∇2F (x(t)))

�∇F (x(t))�2M

≤ 8L̂κ

µ
√
µ
�∇F (x(t))�2M ,

where the last inequality is because �0 ≤ 1/2. Hence, we have

�∇F (x(t+1))�M ≤(�0 + 2�2)�∇F (x(t))�M +
8L̂κ

µ
√
µ
�∇F (x(t))�2M .

By the Lipschitz continuity of ∇2F (x) and the condition

�x(t) − x∗� ≤ µ

L̂κ
≤ λmin(∇2F (x∗))

L̂κ(∇2F (x(t)))
,
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we obtain

�[∇2F (x∗)]−1 − [∇2F (x(t))]−1� ≤�[∇2F (x∗)]−1��[∇2F (x(t))]−1��∇2F (x∗)−∇2F (x(t))�
≤L̂�[∇2F (x∗)]−1��[∇2F (x(t))]−1��x(t) − x∗�
≤ν(t)λmin([∇2F (x(t))]−1).

Hence, we can derive

− ν(t)λmin([∇2F (x(t))]−1)yT y ≤ yT ([∇2F (x∗)]−1 − [∇2F (x(t))]−1)y ≤ ν(t)λmin([∇2F (x(t))]−1)yT y,

⇒(1− ν(t))yT [∇2F (x(t))]−1y ≤ yT [∇2F (x∗)]−1y ≤ (1 + ν(t))yT [∇2F (x(t))]−1y

⇒(1− ν(t))�y�M ≤ �y�M∗ ≤ (1 + ν(t))�y�M .

Hence, we have

�∇F (x(t+1))�M∗ ≤(�0 + 2�2)
1 + ν(t)

1− ν(t)
�∇F (x(t))�M∗ +

8L̂κ

µ
√
µ

(1 + ν(t))2

1− ν(t)
�∇F (x(t))�2M∗

Table 2: Datasets Description
Dataset n d source

mushrooms 8124 112 UCI

a9a 32561 123 UCI

Covertype 581012 54 UCI

Appendix F. Unnecessity of Lipschitz continuity of Hessian

In this section, we validate our theoretical results about unnecessity of the Lipschitz con-
tinuity condition of ∇2F (x). We conduct experiment on the primal problem for the linear
SVM which can be written as

min
x

F (x) =
1

2
�x�2 + C

2n

n�

i=1

�(bi, �x, ai�)

where (ai, bi) denotes the training data, x defines the separating hyperplane, C > 0, and
�(·) is the loss function. In our experiment, we choose Hinge-2 loss as our loss function
whose definition is

�(b, �x, a�) = max(0, 1− b�x, a�)2.

Let SV (t) denote the set of indices of all the support vectors at iteration t, i.e.,

SV (t) = {i : bi�x(t), ai� < 1}.
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Then the Hessian matrix of F (x(t)) can be written as

∇2F (x(t)) = I +
1

n

�

i∈SV (t)

aia
T
i .

From the above equation, we can see that ∇2F (x) is not Lipschitz continuous.
Without loss of generality, we use the Subsampled Newton method (Algorithm 2) in our

experiment. We sample 5% support vectors in each iteration. Our experiments on three
datasets whose detailed description is in Table 2 and report our results in Figure 3.

From Figure 3, we can see that Subsampled Newton converges linearly and the Newton
method converges superlinearly. This matches our theory that the Lipschitz continuity of
∇2F (x) is not necessary to achieve a linear or superlinear convergence rate.
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Figure 3: Convergence properties on different datasets.
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