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Abstract
Sparse support vector machine (SVM) is a pop-
ular classification technique that can simultane-
ously learn a small set of the most interpretable
features and identify the support vectors. It has
achieved great successes in many real-world ap-
plications. However, for large-scale problems in-
volving a huge number of samples and extremely
high-dimensional features, solving sparse SVM-
s remains challenging. By noting that sparse
SVMs induce sparsities in both feature and sam-
ple spaces, we propose a novel approach, which
is based on accurate estimations of the primal and
dual optima of sparse SVMs, to simultaneously
identify the features and samples that are guaran-
teed to be irrelevant to the outputs. Thus, we can
remove the identified inactive samples and fea-
tures from the training phase, leading to substan-
tial savings in both the memory usage and com-
putational cost without sacrificing accuracy. To
the best of our knowledge, the proposed method
is the first static feature and sample reduction
method for sparse SVM. Experiments on both
synthetic and real datasets (e.g., the kddb dataset
with about 20 million samples and 30 million
features) demonstrate that our approach signifi-
cantly outperforms state-of-the-art methods and
the speedup gained by our approach can be or-
ders of magnitude.

1. Introduction
Sparse support vector machine (SVM) (Bi et al., 2003;
Wang et al., 2006) is a powerful technique that can si-
multaneously perform classification by margin maximiza-
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tion and variable selection by `1-norm penalty. The last
few years have witnessed many successful application-
s of sparse SVMs, such as text mining (Joachims, 1998;
Yoshikawa et al., 2014), bioinformatics (Narasimhan & A-
garwal, 2013) and image processing (Mohr & Obermay-
er, 2004; Kotsia & Pitas, 2007). Many algorithms (Hastie
et al., 2004; Fan et al., 2008; Catanzaro et al., 2008; Hsieh
et al., 2008; Shalev-Shwartz et al., 2011) have been pro-
posed to efficiently solve sparse SVM problems. Howev-
er, the applications of sparse SVMs to large-scale learning
problems, which involve a huge number of samples and ex-
tremely high-dimensional features, remain challenging.

An emerging technique, called screening (El Ghaoui et al.,
2012), has been shown to be promising in accelerating
large-scale sparse learning. The essential idea of screening
is to quickly identify the zero coefficients in the sparse solu-
tions without solving any optimization problems such that
the corresponding features or samples—that are called in-
active features or samples—can be removed from the train-
ing phase. Then, we only need to perform optimization on
the reduced datasets instead of the full datasets, leading to
substantial savings in the computational cost and memory
usage. Here, we need to emphasize that screening differs
greatly from feature selection methods, although they look
similar at the first glance. To be precise, screening is de-
voted to accelerating the training of many sparse models
including Lasso, Sparse SVM, etc., while feature selection
is the goal of these models. In the past few years, many
screening methods are proposed for a large set of sparse
learning techniques, such as Lasso (Tibshirani et al., 2012;
Xiang & Ramadge, 2012; Wang et al., 2013), group Las-
so (Ndiaye et al., 2016), `1-regularized logistic regression
(Wang et al., 2014), and SVM (Ogawa et al., 2013). Em-
pirical studies indicate that screening methods can lead to
orders of magnitude of speedup in computation time.

However, most existing screening methods study either fea-
ture screening or sample screening individually (Shibagaki
et al., 2016) and their applications have very different s-
cenarios. Specifically, to achieve better performance (say,
in terms of speedup), we favor feature screening method-
s when the number of features p is much larger than the
number of samples n, while sample screening methods are
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preferable when n � p. Note that there is another class
of sparse learning techniques, like sparse SVMs, which in-
duce sparsities in both feature and sample spaces. All these
screening methods are helpless in accelerating the training
of these models with large n and p. We also cannot address
this problem by simply combining the existing feature and
sample screening methods. The reason is that they could
mistakenly discard relevant data as they are specifically de-
signed for different sparse models. Recently, Shibagaki et
al. (Shibagaki et al., 2016) consider this problem and pro-
pose a method to simultaneously identify the inactive fea-
tures and samples in a dynamic manner (Bonnefoy et al.,
2014); that is, during the optimization process, they trigger
their testing rule when there is a sufficient decrease in the d-
uality gap. Thus, the method in (Shibagaki et al., 2016) can
discard more inactive features and samples as the optimiza-
tion proceeds and one has small-scale problems to solve in
the late stage of the optimization. Nevertheless, the overall
speedup can be limited as the problems’ size can be large
in the early stage of the optimization. To be specific, the
method in (Shibagaki et al., 2016) depends heavily on the
duality gap during the optimization process. The duality
gap in the early stage can always be large, which makes the
dual and primal estimations inaccurate and finally results in
ineffective screening rules. Hence, it is essentially solving
a large problem in the early stage.

In this paper, to address the limitations in the dynamic
screening method, we propose a novel screening method
that can Simultaneously identify Inactive Features and
Samples (SIFS) for sparse SVMs in a static manner, that
is, we only need to perform SIFS once before (instead of
during) optimization. Thus, we only need to run the op-
timization algorithm on small-scale problems. The major
technical challenge in developing SIFS is that we need to
accurately estimate the primal and dual optima. The more
accurate the estimations are, the more effective SIFS is in
detecting inactive features and samples. Thus, our major
technical contribution is a novel framework, which is based
on the strong convexity of the primal and dual problems of
sparse SVMs [see problems (P∗) and (D∗) in Section 2] for
deriving accurate estimations of the primal and dual optima
(see Section 3). Another appealing feature of SIFS is the
so-called synergy effect (Shibagaki et al., 2016). Specifi-
cally, the proposed SIFS consists of two parts, i.e., Inactive
Feature Screening (IFS) and Inactive Samples Screening
(ISS). We show that discarding inactive features (samples)
identified by IFS (ISS) leads to a more accurate estimation
of the primal (dual) optimum, which in turn dramatically
enhances the capability of ISS (IFS) in detecting inactive
samples (features). Thus, SIFS applies IFS and ISS in an
alternating manner until no more inactive features and sam-
ples can be identified, leading to much better performance
in scaling up large-scale problems than the application of

ISS or IFS individually. Moreover, SIFS (see Section 4) is
safe in the sense that the detected features and samples are
guaranteed to be absent from the sparse representations. To
the best of our knowledge, SIFS is the first static screening
rule for sparse SVM that is able to simultaneously detect
inactive features and samples. Experiments (see Section 5)
on both synthetic and real datasets demonstrate that SIF-
S significantly outperforms the state-of-the-art (Shibagaki
et al., 2016) in improving the efficiency of sparse SVM-
s and the speedup can be orders of magnitude. Detailed
proofs of theoretical results in the main text are in the sup-
plementary supplements.

Notations: Let ‖ · ‖1, ‖ · ‖, and ‖ · ‖∞ be the `1, `2, and
`∞ norms, respectively. We denote the inner product of
vectors x and y by 〈x,y〉, and the i-th component of x by
[x]i. Let [p] = {1, 2..., p} for a positive integer p. Given
a subset J := {j1, ..., jk} of [p], let |J | be the cardinal-
ity of J . For a vector x, let [x]J = ([x]j1 , ..., [x]jk)T .
For a matrix X, let [X]J = (xj1 , ...,xjk) and J [X] =
((xj1)T , ..., (xjk)T )T , where xi and xj are the ith row and
jth column of X, respectively. For a scalar t, we denote
max{0, t} by [t]+.

2. Basics and Motivations
In this section, we briefly review some basics of sparse
SVMs and then motivate SIFS via the KKT conditions.
Specifically, we focus on the `1-regularized SVM with a s-
moothed hinged loss that has strong theoretical guarantees
(Shalev-Shwartz & Zhang, 2016), which takes the form of

min
w∈Rp

P (w;α, β) =
1

n

n∑
i=1

`(1− 〈x̄i,w〉) +
α

2
‖w‖2

+ β||w||1, (P∗)

where w is the parameter vector to be estimated,
{xi, yi}ni=1 is the training set, xi ∈ Rp, yi ∈ {−1,+1},
x̄i = yixi, α and β are positive parameters, and the loss
function `(·) : R→ R is

`(t) =


0, if t < 0,
t2

2γ , if 0 ≤ t ≤ γ,
t− γ

2 , if t > γ,

where γ ∈ (0, 1). We present the Lagrangian dual problem
of problem (P∗) and the KKT conditions in the following
theorem, which plays a fundamentally important role in de-
veloping our screening rule.

Theorem 1. Let X̄ = (x̄1, x̄2, ..., x̄n) and Sβ(·) be
the soft-thresholding operator (Hastie et al., 2015), i.e.,
[Sβ(u)]i = sign([u]i)(|[u]i| − β)+. Then, for problem
(P∗), the followings hold:
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(i) : The dual problem of (P∗) is

min
θ∈[0,1]n

D(θ;α, β) =
1

2α

∥∥∥∥Sβ ( 1

n
X̄θ

)∥∥∥∥2

+
γ

2n
‖θ‖2

− 1

n
〈1, θ〉, (D∗)

where 1 ∈ Rn is a vector with all components equal to 1.
(ii) : Denote the optima of (P∗) and (D∗) by w∗(α, β) and
θ∗(α, β), respectively. Then,

w∗(α, β) =
1

α
Sβ
(

1

n
X̄θ∗(α, β)

)
, (KKT-1)

[θ∗(α, β)]i =


0, if 1− 〈x̄i,w∗(α, β)〉 < 0;

1, if 1− 〈x̄i,w∗(α, β)〉 > γ;
1
γ (1− 〈x̄i,w∗(α, β)〉), otherwise .

(KKT-2)

According to KKT-1 and KKT-2, we define 4 index sets:

F =

{
j ∈ [p] :

1

n
|[X̄θ∗(α, β)]j | ≤ β

}
,

R = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 < 0},
E = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 ∈ [0, γ]},
L = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 > γ},

which imply that

(i): i ∈ F ⇒ [w∗(α, β)]i = 0,

(ii):
{
i ∈ R ⇒ [θ∗(α, β)]i = 0,
i ∈ L ⇒ [θ∗(α, β)]i = 1.

(R)

Thus, we call the jth feature inactive if j ∈ F . The sam-
ples in E are the so-called support vectors and we call the
samples inR and L inactive samples.

Suppose that we are given subsets of F , R, and L, then
by (R), we can see that many coefficients of w∗(α, β) and
θ∗(α, β) are known. Thus, we may have much less un-
knowns to solve and the problem size can be dramatically
reduced. We formalize this idea in Lemma 1.

Lemma 1. Given index sets F̂ ⊆ F , R̂ ⊆ R, and L̂ ⊆ L,
the followings hold
(i) : [w∗(α, β)]F̂ = 0, [θ∗(α, β)]R̂ = 0, [θ∗(α, β)]L̂ = 1.
(ii) : Let D̂ = R̂ ∪ L̂, Ĝ1 = F̂c [X̄]D̂c , and Ĝ2 = F̂c [X̄]L̂,
where F̂c = [p]\F̂ , D̂c = [n]\D̂, and L̂c = [n]\L̂. Then,
[θ∗(α, β)]D̂c solves the following scaled dual problem:

min
θ̂∈[0,1]|D̂c|

{ 1

2α

∥∥∥∥Sβ ( 1

n
Ĝ1θ̂ +

1

n
Ĝ21

)∥∥∥∥2

+
γ

2n
‖θ̂‖2

− 1

n
〈1, θ̂〉

}
. (scaled-D∗)

(iii) : Suppose that θ∗(α, β) is known. Then,

[w∗(α, β)]F̂c =
1

α
Sβ
(

1

n F̂
c [X̄]θ∗(α, β)

)
.

Lemma 1 indicates that, if we can identify index sets F̂ and
D̂ and the cardinalities of F̂c and D̂c are much smaller than
the feature dimension p and the dataset size n, we only need
to solve a problem (scaled-D∗) that may be much smaller
than problem (D∗) to exactly recover the optima w∗(α, β)
and θ∗(α, β) without sacrificing any accuracy.

However, we cannot directly apply the rules in (R) to i-
dentify subsets of F , R, and L, as they require the knowl-
edge of w∗(α, β) and θ∗(α, β) that are usually unavailable.
Inspired by the idea in (El Ghaoui et al., 2012), we can
first estimate regions W and Θ that contain w∗(α, β) and
θ∗(α, β), respectively. Then, by denoting

F̂ :=

{
j ∈ [p] : max

θ∈Θ

{∣∣∣∣ 1n [X̄θ]j

∣∣∣∣} ≤ β} , (1)

R̂ :=

{
i ∈ [n] : max

w∈W
{1− 〈w, x̄i〉} < 0

}
, (2)

L̂ :=

{
i ∈ [n] : min

w∈W
{1− 〈w, x̄i〉} > γ

}
, (3)

since it is easy to know that F̂ ⊂ F , R̂ ⊂ R and L̂ ⊂ L,
the rules in (R) can be relaxed as follows:

(i): j ∈ F̂ ⇒ [w∗(α, β)]j = 0, (R1)

(ii):
{
i ∈ R̂ ⇒ [θ∗(α, β)]i = 0,

i ∈ L̂ ⇒ [θ∗(α, β)]i = 1.
(R2)

In view of R1 and R2, we sketch the development of SIFS
as follows.

Step 1: Derive estimationsW and Θ such that w∗(α, β) ∈ W
and θ∗(α, β) ∈ Θ, respectively.

Step 2: Develop SIFS by deriving the relaxed screening rules
R1 and R2, i.e., by solving the optimization problems
in Eq. (1), Eq. (2) and Eq. (3).

3. Estimate the Primal and Dual Optima
In this section, we first show that the primal and dual op-
tima admit closed form solutions for specific values of α
and β (see Section 3.1). Then, in Sections 3.2 and 3.3, we
present accurate estimations of the primal and dual optima,
respectively.

3.1. Effective Intervals of the Parameters α and β

We first show that, if the value of β is sufficiently large, no
matter what α is, the primal solution is 0.
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Theorem 2. Let βmax = ‖ 1
nX̄1‖∞. Then, for α > 0 and

β ≥ βmax, we have

w∗(α, β) = 0, θ∗(α, β) = 1.

For any β, the next result shows that, if α is large enough,
the primal and dual optima admit closed form solutions.

Theorem 3. If we denote

αmax(β) =
1

1− γ
max
i∈[n]

{
〈x̄i,Sβ(

1

n
X̄1)〉

}
,

then for all α ∈ [max{αmax(β), 0},∞)∩ (0,∞), we have

w∗(α, β) =
1

α
Sβ
(

1

n
X̄1

)
, θ∗(α, β) = 1. (4)

By Theorems 2 and 3, we only need to consider the cases
with β ∈ (0, βmax] and α ∈ (0, αmax(β)].

3.2. Primal Optimum Estimation

In Section 1, we mention that the proposed SIFS consists of
IFS and ISS, and an alternating application of IFS and ISS
can improve the estimation of the primal and dual optima,
which can in turn make ISS and IFS more effective in iden-
tifying inactive samples and features, respectively. Lemma
2 shows that discarding inactive features by IFS leads to a
more accurate estimation of the primal optimum.

Lemma 2. Suppose that the reference solution w∗(α0, β0)
with β0 ∈ (0, βmax] and α0 ∈ (0, αmax(β0)] is known.
Consider problem (P∗) with parameters α > 0 and β0. Let
F̂ be the index set of the inactive features identified by the
previous IFS steps, i.e., [w∗(α, β0)]F̂ = 0. We define

c =
α0 + α

2α
[w∗(α0, β0)]F̂c , (5)

r2 =
(α0 − α)2

4α2
‖w∗(α0, β0)‖2

− (α0 + α)2

4α2
‖[w∗(α0, β0)]F̂‖

2. (6)

Then, the following holds:

[w∗(α, β0)]F̂c ∈ W := {w : ‖w − c‖ ≤ r}. (7)

As F̂ is the index set of identified inactive features, we
have [w∗(α, β0)]F̂ = 0. Hence, we only need to find an
accurate estimation of [w∗(α, β0)]F̂c . Lemma 2 shows that
[w∗(α, β0)]F̂c lies in a ball of radius r centered at c. Note
that, before we perform IFS, the set F̂ is empty and thus the
second term on the right hand side (RHS) of Eq. (6) is 0. If
we apply IFS multiple times (alternating with ISS), the set
F̂ will be monotonically increasing. Thus, Eq. (6) implies
that the radius will be monotonically decreasing, leading to
a more accurate primal optimum estimation.

3.3. Dual Optimum Estimation

Similar to Lemma 2, the next result shows that ISS can
improve the estimation of the dual optimum.

Lemma 3. Suppose that the reference solution θ∗(α0, β0)
with β0 ∈ (0, βmax] and α0 ∈ (0, αmax(β0)] is known.
Consider problem (D∗) with parameters α > 0 and β0.
Let R̂ and L̂ be the index sets of inactive samples iden-
tified by the previous ISS steps, i.e., [θ∗(α, β0)]R̂ = 0,
[θ∗(α, β0)]L̂ = 1, and D̂ = R̂ ∪ L̂. We define

c =
α− α0

2γα
1 +

α0 + α

2α
[θ∗(α0, β0)]D̂c , (8)

r2 =
(α0 − α)2

4α2

∥∥∥∥θ∗(α0, β0)− 1

γ
1

∥∥∥∥2

−
∥∥∥∥ (2γ − 1)α+ α0

2γα
1− α0 + α

2α
[θ∗(α0, β0)]L̂

∥∥∥∥2

−
∥∥∥∥α− α0

2γα
1 +

α0 + α

2α
[θ∗(α0, β0)]R̂

∥∥∥∥2

. (9)

Then, the following holds:

[θ∗(α, β0)]D̂c ∈ Θ := ‖θ : θ − c‖ ≤ r. (10)

Similar to Lemma 2, Lemma 3 also bounds [θ∗(α, β0)]D̂c

by a ball. In view of Eq. (9), a similar discussion of Lemma
2—that is, the index sets L̂ and R̂ monotonically increase
and thus the last two terms on the RHS of Eq. (9) monoton-
ically increase when we perform ISS multiple times (alter-
nating with IFS)—implies that the ISS steps can reduce the
radius and thus improve the dual optimum estimation.

Remark 1. To estimate w∗(α, β0) and θ∗(α, β0) by Lem-
mas 2 and 3, we have a free reference solution pair
w∗(α0, β0) and θ∗(α0, β0) with α0 = αmax(β0). From
Theorems 2 and 3, we know that in this setting, w∗(α0, β0)
and θ∗(α0, β0) admit closed form solutions.

4. The Proposed SIFS Screening Rule
We first present the IFS and ISS rules in Sections 4.1 and
4.2, respectively. Then, in Section 4.3, we develop the SIFS
screening rule by an alternating application of IFS and ISS.

4.1. Inactive Feature Screening (IFS)

Suppose that w∗(α0, β0) and θ∗(α0, β0) are known, we de-
rive IFS to identify inactive features for problem (P∗) at
(α, β0) by solving the optimization problem in Eq. (1) (see
Section E in the supplementary material):

si(α, β0) = max
θ∈Θ

{
1

n
|〈[x̄i]D̂c , θ〉+ 〈[x̄i]L̂, 1〉|

}
, i ∈ F̂c,

(11)
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where Θ is given by Eq. (10) and F̂ and D̂ = R̂∪L̂ are the
index sets of inactive features and samples that have been i-
dentified in previous screening processes, respectively. The
next result shows the closed form solution of problem (11).
Lemma 4. Consider problem (11). Let c and r be given by
Eq. (8) and Eq. (9). Then, for all i ∈ F̂c, we have

si(α, β0) =
1

n
(|〈[x̄i]D̂c , c〉+ 〈[x̄i]L̂, 1〉|+ ‖[x̄

i]D̂c‖r).

We are now ready to present the IFS rule.
Theorem 4. Consider problem (P∗). We suppose that
w∗(α0, β0) and θ∗(α0, β0) are known. Then,

(1): The feature screening rule IFS takes the form of

si(α, β0) ≤ β0 ⇒ [w∗(α, β0)]i = 0,∀i ∈ F̂c (IFS)

(2): We update the index set F̂ by

F̂ ← F̂ ∪ {i : si ≤ β0, i ∈ F̂c}. (12)

Recall that (Lemma 3), previous sample screening results
give us a more tighter dual estimation, i.e., a smaller fea-
sible region Θ for problem (11), which results in a smaller
si(α, β0). It finally leads us to a more powerful feature
screening rule IFS. This is the so called synergy effect.

4.2. Inactive Sample Screening (ISS)

Similar to IFS, we derive ISS to identify inactive samples
by solving the optimization problems in Eq. (2) and Eq. (3)
(see Section G in the supplementary material for details):

ui(α, β0) = max
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c, (13)

li(α, β0) = min
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c, (14)

whereW is given by Eq. (7) and F̂ and D̂ = R̂∪ L̂ are the
index sets of inactive features and samples that have been
identified in previous screening processes. We show that
problems (13) and (14) admit closed form solutions.
Lemma 5. Consider problems (13) and (14). Let c and r
be given by Eq. (5) and Eq. (6). Then,

ui(α, β0) = 1− 〈[x̄i]F̂c , c〉+ ‖[x̄i]F̂c‖r, i ∈ D̂c,
li(α, β0) = 1− 〈[x̄i]F̂c , c〉 − ‖[x̄i]F̂c‖r, i ∈ D̂c.

We are now ready to present the ISS rule.
Theorem 5. Consider problem (D∗). We suppose that
w∗(α0, β0) and θ∗(α0, β0) are known. Then,

(1): The sample screening rule ISS takes the form of

ui(α, β0) < 0⇒ [θ∗(α, β0)]i = 0,
li(α, β0) > γ ⇒ [θ∗(α, β0)]i = 1,

∀i ∈ D̂c (ISS)

(2): We update the the index sets R̂ and L̂ by

R̂ ← R̂ ∪ {i : ui(α, β0) < 0, i ∈ D̂c}, (15)

L̂ ← L̂ ∪ {i : li(α, β0) > γ, i ∈ D̂c}. (16)

The synergy effect also exists here. Recall that (Lemma 2),
previous feature screening results lead a smaller feasible
regionW for the problems (13) and (14), which results in
smaller ui(α, β0) and bigger li(α, β0). It finally leads us to
a more accurate sample screening rule ISS.

4.3. The Proposed SIFS Rule by An Alternating
Application of IFS and ISS

In real applications, the optimal parameter values of α and
β are usually unknown. To determine appropriate param-
eter values, common approaches, like cross validation and
stability selection, need to solve the model over a grid of
parameter values {(αi,j , βj) : i ∈ [M ], j ∈ [N ]} with
βmax > β1 > ... > βN > 0 and αmax(βj) > α1,j > ... >
αM,j > 0. This can be very time-consuming. Inspired by
Strong Rule (Tibshirani et al., 2012) and SAFE (El Ghaoui
et al., 2012), we develop a sequential version of SIFS in
Algorithm 1. Specifically, given the primal and dual opti-

Algorithm 1 SIFS
1: Input: βmax > β1 > ... > βN > 0 and αmax(βj) =
α0,j > α1,j > ... > αM,j > 0.

2: for j = 1 to N do
3: Compute the first reference solution w∗(α0,j , βj)

and θ∗(α0,j , βj) using the close-form formula (4).
4: for i = 1 to M do
5: Initialization: F̂ = R̂ = L̂ = ∅
6: repeat
7: Run sample screening using rule ISS based on

w∗(αi−1,j , βj).
8: Update R̂ and L̂ by Eq. (15) and Eq. (16), re-

spectively.
9: Run feature screening using rule IFS based on

θ∗(αi−1,j , βj).
10: Update F̂ by Eq. (12).
11: until No new inactive features or samples are i-

dentified
12: Compute w∗(αi,j , βj) and θ∗(αi,j , βj) by solv-

ing the scaled problem.
13: end for
14: end for
15: Output:w∗(αi,j , βj) and θ∗(αi,j , βj), i ∈ [M ], j ∈

[N ].

ma w∗(αi−1,j , βj) and θ∗(αi−1,j , βj) at (αi−1,j , βj), we
apply SIFS to identify the inactive features and samples for
problem (P∗) at (αi,j , βj). Then, we perform optimization
on the reduced dataset and solve the primal and dual optima
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at (αi,j , βj). We repeat this process until we solve problem
(P∗) at all pairs of parameter values.

Note that we insert α0,j into every sequence {αi,j : i ∈
[M ]} ( see line 1 in Algorithm 1) to obtain a closed-form
solution as the first reference solution. In this way, we can
avoid solving problem at (α1,j , βj), j ∈ [N ] directly (with-
out screening), which is time consuming. At last, we would
like to point out that the values {(αi,j , βj) : i ∈ [M ], j ∈
[N ]} in SIFS can be specified by users arbitrarily.

SIFS applies ISS and IFS in an alternating manner to re-
inforce their capability in identifying inactive samples and
features. In Algorithm 1, we apply ISS first. Of course, we
can also apply IFS first. The theorem below demonstrates
that the orders have no impact on the performance of SIFS.

Theorem 6. Given the optimal solutions w∗(αi−1,j , βj)
and θ∗(αi−1,j , βj) at (αi−1,j , βj) as the reference solution
pair at (αi,j , βj) for SIFS, we assume SIFS with ISS first
stops after applying IFS and ISS for p times and denote
the identified inactive features and samples as F̂Ap , R̂Ap and
L̂Ap . Similarly, when we apply IFS first, the results are de-
noted as F̂Bq , R̂Bq and L̂Bq . Then, the followings hold:
(1) F̂Ap = F̂Bq , R̂Ap = R̂Bq and L̂Ap = L̂Bq .
(2) With different orders of applying ISS and IFS, the differ-
ence of the times of ISS and IFS we need to apply in SIFS
can never be larger than 1, that is, |p− q| ≤ 1.

Remark 2. From Remark 1, we can see that our SIFS can
also be applied to solve a single problem, due to the exis-
tence of the free reference solution pair.

5. Experiments
We evaluate SIFS on both synthetic and real datasets in
terms of three measurements. The first one is the scaling
ratio: 1− (n−ñ)(p−p̃)

np , where ñ, p̃, n, and p are the numbers
of inactive samples and features identified by SIFS, sample
size, and feature dimension of the datasets. The second
measure is rejection ratios of each triggering of ISS and
IFS in SIFS: ñi

n0
and p̃i

p0
, where ñi and p̃i are the numbers

of inactive samples and features identified in i-th triggering
of ISS and IFS in SIFS. n0 and p0 are the numbers of inac-
tive samples and features in the solution. The third measure
is speedup, i.e., the ratio of the running time of the solver
without screening to that with screening.

Recall that, we can integrate SIFS with any solvers for
problem (P∗). In this experiment, we use Accelerated
Proximal Stochastic Dual Coordinate Ascent (Accelerated-
Prox-SDCA) (Shalev-Shwartz & Zhang, 2016), as it is one
of the state-of-the-arts. As we mentioned in the introduc-
tion section that screening differs greatly from features s-
election methods, it is not appropriate to make compar-
isons with feature selection methods. To this end, we only

choose the state-of-art screening method for Sparse SVMs
in (Shibagaki et al., 2016) as a baseline in the experiments.

For each dataset, we solve problem (P∗) at a grid of turning
parameter values. Specifically, we first compute βmax by
Theorem 2 and then select 10 values of β that are equally
spaced on the logarithmic scale of β/βmax from 1 to 0.05.
Then, for each value of β, we first compute αmax(β) by
Theorem 3 and then select 100 values of α that are equal-
ly spaced on the logarithmic scale of α/αmax(β) from 1
to 0.01. Thus, for each dataset, we solve problem (P∗) at
1000 pairs of parameter values in total. We write the code
in C++ along with Eigen library for some numerical com-
putations. We perform all the computations on a single core
of Intel(R) Core(TM) i7-5930K 3.50GHz, 128GB MEM.

5.1. Simulation Studies

We evaluate SIFS on 3 synthetic datasets named
syn1, syn2 and syn3 with sample and feature size
(n, p) ∈ {(10000, 1000), (10000, 10000), (1000, 10000)}.
We present each data point as x = [x1;x2] with x1 ∈
R0.02p and x2 ∈ R0.98p. We use Gaussian distributions
G1 = N(u, 0.75I),G2 = N(−u, 0.75I) and G3 = N(0, 1)
to generate the data points, where u = 1.51 and I ∈
R0.02p×0.02p is the identity matrix. To be precise, x1 for
positive and negative points are sampled from G1 and G2,
respectively. For each entry in x2, it has chance η = 0.02
to be sampled from G3 and chance 1− η to be 0.
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Figure 1. Scaling ratios of ISS, IFS and SIFS (from left to right).

Fig. 1 shows the scaling ratios by ISS, IFS, and SIFS on
the synthetic datasets at 1000 parameter values. We can
see that IFS is more effective in scaling problem size than
ISS, with scaling ratios roughly 98% against 70 − 90%.
Moreover, SIFS, which is an alternating application of IFS
and ISS, significantly outperforms ISS and IFS, with scal-
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Figure 2. Rejection ratios of SIFS on syn 2 (first row: Feature Screening, second row: Sample Screening).

Table 1. Running time (in seconds) for solving problem (P∗) at 1000 pairs of parameter values on three synthetic datasets.

Data Solver ISS+Solver IFS+Solver SIFS+Solver
ISS Solver Speedup IFS Solver Speedup SIFS Solver Speedup

syn1 499.1 4.9 27.8 15.3 2.3 42.6 11.1 8.6 6.0 34.2
syn2 8749.9 24.9 1496.6 5.8 23.0 288.1 28.1 92.6 70.3 53.7
syn3 1279.7 2.0 257.1 4.9 2.2 33.4 36.0 7.2 9.5 76.8

ing ratios roughly 99.9%. This high scaling ratios imply
that SIFS can lead to a significant speedup.

Due to the space limitation, we only report the rejection
ratios of SIFS on syn2. Other results can be found in the
supplementary material. Fig. 2 shows that SIFS can identi-
fy most of the inactive features and samples. However, few
features and samples are identified in the second and later
triggerings of ISS and IFS. The reason may be that the task
here is so simple that one triggering is enough.

Table 1 reports the running time of solver without and with
IFS, ISS and SIFS for solving problem (P∗) at 1000 pairs of
parameter values. We can see that SIFS leads to significant
speedups, that is, up to 76.8 times. Taking syn2 for exam-
ple, without SIFS, the solver takes more than two hours to
solve problem (P∗) at 1000 pairs of parameter values. How-
ever, combined with SIFS, the solver only needs less than
three minutes for solving the same set of problems. From
the theoretical analysis in (Shalev-Shwartz & Zhang, 2016)
for Accelerated-Prox-SDCA, we can see that its computa-
tional complexity rises proportionately to the sample size
n and the feature dimension p. From this theoretical result,
we can see that the results in Figure 1 are roughly consis-
tent with the speedups we achieved shown in Table 1.

5.2. Experiments on Real Datasets

In this experiment, we evaluate the performance of SIFS
on 5 large-scale real datasets: real-sim, rcv1-train, rcv1-

test, url, and kddb, which are all collected from the project
page of LibSVM (Chang & Lin, 2011). See Table 2 for a
brief summary. We note that, the kddb dataset has about 20
million samples with 30 million features.

Table 2. Statistics of the real datasets.

Dataset Feature size: p Sample size:n
real-sim 20,958 72,309
rcv1-train 47,236 20,242
rcv1-test 47,236 677, 399
url 3,231,961 2,396,130
kddb 29,890,095 19,264,097

Recall that, SIFS detects the inactive features and sam-
ples in a static manner, i.e., we perform SIFS only once
before the optimization and thus the size of the problem
we need to perform optimization on is fixed. However, the
method in (Shibagaki et al., 2016) detects inactive features
and samples in a dynamic manner (Bonnefoy et al., 2014),
i.e., they perform their method along with the optimization
and thus the size of the problem would keep decreasing
during the iterative process. Thus, comparing SIFS with
the method in (Shibagaki et al., 2016) in terms of rejec-
tion ratios is inapplicable. We compare the performance of
SIFS with the method in (Shibagaki et al., 2016) in terms of
speedup. Specifically, we compare the speedup gained by
SIFS and the method in (Shibagaki et al., 2016) for solving
problem (P∗) at 1000 pairs of parameter values. The code
of the method in (Shibagaki et al., 2016) is obtained from
(https://github.com/husk214/s3fs).

https://github.com/husk214/s3fs
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Figure 3. Rejection ratios of SIFS on the real-sim dataset (first row: Feature Screening, second row: Sample Screening).

Table 3. Running time (in seconds) for solving problem (P∗) at 1000 pairs of parameter values on five real datasets.
Data
Set Solver Method in (Shibagaki et al., 2016)+Solver SIFS+Solver

Screen Solver Speedup Screen Solver Speedup
real-sim 3.93E+04 24.10 4.94E+03 7.91 60.01 140.25 195.00

rcv1-train 2.98E+04 10.00 3.73E+03 7.90 27.11 80.11 277.10
rcv1-test 1.10E+06 398.00 1.35E+05 8.10 1.17E+03 2.55E+03 295.11

url — 3.18E+04 8.60E+05 — 7.66E+03 2.91E+04 —
kddb — 4.31E+04 1.16E+06 — 1.10E+04 3.6E+04 —

Fig. 3 shows the rejection ratios of SIFS on the real-sim
dataset (other results are in the supplementary material). In
Fig. 3, we can see that some inactive features and samples
are identified in the 2nd and 3rd triggering of ISS and IFS,
which verifies the necessity of the alternating application
of ISS and IFS. SIFS is efficient since it always stops in 3
times of triggering. In addition, most of (> 98%) the in-
active features can be identified in the 1st triggering of IFS
while identifying inactive samples needs to apply ISS two
or more times. It may result from two reasons: 1) We run
ISS first, which reinforces the capability of IFS due to the
synergy effect (see Sections 4.1 and 4.2), see Section L.1 in
the supplementary material for further verification; 2) Fea-
ture screening here may be easier than sample screening.

Table 3 reports the running time of solver without and with
the method in (Shibagaki et al., 2016) and SIFS for solv-
ing problem (P∗) at 1000 pairs of parameter values on real
datasets. The speedup gained by SIFS is up to 300 times on
real-sim, rcv1-train and rcv1-test. Moreover, SIFS signif-
icantly outperforms the method in (Shibagaki et al., 2016)
in terms of speedup—by about 30 to 40 times faster on the
aforementioned three datasets. For datasets url and kddb,
we do not report the results of the solver as the sizes of the
datasets are huge and the computational cost is prohibitive.
Instead, we can see that the solver with SIFS is about 25

times faster than the solver with the method in (Shibagaki
et al., 2016) on both datasets url and kddb. Take the dataset
kddb as an example. The solver with SIFS takes about 13
hours to solve problem (P∗) for all 1000 pairs of parame-
ter values, while the solver with the method in (Shibagaki
et al., 2016) needs 11 days to finish the same task.

6. Conclusion
In this paper, we develop a novel data reduction method
SIFS to simultaneously identify inactive features and sam-
ples for sparse SVM. Our major contribution is a novel
framework for an accurate estimation of the primal and d-
ual optima based on strong convexity. To the best of our
knowledge, the proposed SIFS is the first static screening
method that is able to simultaneously identify inactive fea-
tures and samples for sparse SVMs. An appealing feature
of SIFS is that all detected features and samples are guaran-
teed to be irrelevant to the outputs. Thus, the model learned
on the reduced data is identical to the one learned on the
full data. Experiments on both synthetic and real datasets
demonstrate that SIFS can dramatically reduce the problem
size and the resulting speedup can be orders of magnitude.
We plan to generalize SIFS to more complicated models,
e.g., SVM with a structured sparsity-inducing penalty.
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