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Abstract

Recent studies disclose that maximizing the min-
imum margin like support vector machines does
not necessarily lead to better generalization per-
formances, and instead, it is crucial to opti-
mize the margin distribution. Although it has
been shown that for binary classification, char-
acterizing the margin distribution by the first-
and second-order statistics can achieve superior
performance. It still remains open for multi-
class classification, and due to the complexity
of margin for multi-class classification, optimiz-
ing its distribution by mean and variance can
also be difficult. In this paper, we propose
mcODM (multi-class Optimal margin Distribu-
tion Machine), which can solve this problem ef-
ficiently. We also give a theoretical analysis for
our method, which verifies the significance of
margin distribution for multi-class classification.
Empirical study further shows that mcODM al-
ways outperforms all four versions of multi-class
SVMs on all experimental data sets.

1. Introduction
Support vector machines (SVMs) and Boosting have
been two mainstream learning approaches during the past
decade. The former (Cortes & Vapnik, 1995) roots in the
statistical learning theory (Vapnik, 1995) with the central
idea of searching a large margin separator, i.e., maximiz-
ing the smallest distance from the instances to the classi-
fication boundary in a RKHS (reproducing kernel Hilbert
space). It is noteworthy that there is also a long history
of applying margin theory to explain the latter (Freund &
Schapire, 1995; Schapire et al., 1998), due to its tending to
be empirically resistant to over-fitting (Reyzin & Schapire,
2006; Wang et al., 2011; Zhou, 2012).
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Recently, the margin theory for Boosting has finally been
defended (Gao & Zhou, 2013), and has disclosed that the
margin distribution rather than a single margin is more cru-
cial to the generalization performance. It suggests that
there may still exist large space to further enhance for
SVMs. Inspired by this recognition, (Zhang & Zhou, 2014;
2016) proposed a binary classification method to optimize
margin distribution by characterizing it through the first-
and second-order statistics, which achieves quite satisfac-
tory experimental results. Later, (Zhou & Zhou, 2016) ex-
tends the idea to an approach which is able to exploit un-
labeled data and handle unequal misclassification cost. A
brief summary of this line of early research can be found
in (Zhou, 2014).

Although it has been shown that for binary classification,
optimizing the margin distribution by maximizing the mar-
gin mean and minimizing the margin variance simultane-
ously can get superior performance, it still remains open for
multi-class classification. Moreover, the margin for multi-
class classification is much more complicated than that for
binary class classification, which makes the resultant opti-
mization be a difficult non-differentiable non-convex pro-
gramming. In this paper, we propose mcODM (multi-class
Optimal margin Distribution Machine) to solve this prob-
lem efficiently. For optimization, we relax mcODM into a
series of convex quadratic programming (QP), and extend
the Block Coordinate Descent (BCD) algorithm (Tseng,
2001) to solve the dual of each QP. The sub-problem of
each iteration of BCD is also a QP. By exploiting its special
structure, we derive a sorting algorithm to solve it which is
much faster than general QP solvers. We further provide
a generalization error bound based on Rademacher com-
plexity, and further present the analysis of the relationship
between generalization error and margin distribution for
multi-class classification. Extensive experiments on twenty
two data sets show the superiority of our method to all four
versions of multi-class SVMs.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 formulates the
problem. Section 4 presents the proposed algorithm. Sec-
tion 5 discusses some theoretical analyses. Section 6 re-
ports on our experimental studies and empirical observa-
tions. Finally Section 7 concludes with future work.



Multi-Class Optimal Margin Distribution Machine

2. Preliminaries
We denote by X ∈ Rd the instance space and Y = [k]
the label set, where [k] = {1, . . . , k}. Let D be an un-
known (underlying) distribution over X × Y . A training
set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X × Y)m
is drawn identically and independently (i.i.d.) according to
distribution D. Let ϕ : X 7→ H be a feature mapping as-
sociated to some positive definite kernel κ. For multi-class
classification setting, the hypothesis is defined based on k
weight vectors w1, . . . ,wk ∈ H, where each weight vector
wl, l ∈ Y defines a scoring function x 7→ w⊤

l ϕ(x) and the
label of instance x is the one resulting in the largest score,
i.e., h(x) = argmaxl∈Y w⊤

l ϕ(x). This decision function
naturally leads to the following definition of the margin for
a labeled instance (x, y):

γh(x, y) = w⊤
y ϕ(x)−max

l ̸=y
w⊤

l ϕ(x).

Thus h misclassifies (x, y) if and only if it produces a neg-
ative margin for this instance.

Given a hypothesis set H of functions mapping X to Y
and the labeled training set S, our goal is to learn a func-
tion h ∈ H such that the generalization error R(h) =
E(x,y)∼D[1h(x)̸=y] is small.

3. Formulation
To design optimal margin distribution machine for multi-
class classification, we need to understand how to optimize
the margin distribution. (Gao & Zhou, 2013) proved that, to
characterize the margin distribution, it is important to con-
sider not only the margin mean but also the margin vari-
ance. Inspired by this idea, (Zhang & Zhou, 2014; 2016)
proposed the optimal margin distribution machine for bi-
nary classification, which characterizes the margin distri-
bution according to the first- and second-order statistics,
that is, maximizing the margin mean and minimizing the
margin variance simultaneously. Specifically, let γ̄ denote
the margin mean, and the optimal margin distribution ma-
chine can be formulated as:

min
w,γ̄,ξi,ϵi

Ω(w)− ηγ̄ +
λ

m

m∑
i=1

(ξ2i + ϵ2i )

s.t. γh(xi, yi) ≥ γ̄ − ξi,

γh(xi, yi) ≤ γ̄ + ϵi, ∀i,

where Ω(w) is the regularization term to penalize the
model complexity, η and λ are trading-off parameters, ξi
and ϵi are the deviation of the margin γh(xi, yi) to the mar-
gin mean. It’s evident that

∑m
i=1(ξ

2
i + ϵ2i )/m is exactly the

margin variance.

By scaling w which doesn’t affect the final classification
results, the margin mean can be fixed as 1, then the de-

viation of the margin of (xi, yi) to the margin mean is
|γh(xi, yi) − 1|, and the optimal margin distribution ma-
chine can be reformulated as

min
w,ξi,ϵi

Ω(w) +
λ

m

m∑
i=1

ξ2i + µϵ2i
(1− θ)2

s.t. γh(xi, yi) ≥ 1− θ − ξi,

γh(xi, yi) ≤ 1 + θ + ϵi, ∀i.

where µ ∈ (0, 1] is a parameter to trade off two differ-
ent kinds of deviation (larger or less than margin mean).
θ ∈ [0, 1) is a parameter of the zero loss band, which can
control the number of support vectors, i.e., the sparsity of
the solution, and (1− θ)2 in the denominator is to scale the
second term to be a surrogate loss for 0-1 loss.

For multi-class classification, let the regularization term
Ω(w) =

∑k
l=1 ∥wl∥2H/2 and combine with the definition

of margin, and we arrive at the formulation of mcODM,

min
wl,ξi,ϵi

1

2

k∑
l=1

∥wl∥2H +
λ

m

m∑
i=1

ξ2i + µϵ2i
(1− θ)2

(1)

s.t. w⊤
yi
ϕ(xi)−max

l ̸=yi

w⊤
l ϕ(xi) ≥ 1− θ − ξi,

w⊤
yi
ϕ(xi)−max

l ̸=yi

w⊤
l ϕ(xi) ≤ 1 + θ + ϵi, ∀i.

where λ, µ and θ are the parameters for trading-off de-
scribed previously.

4. Optimization
Due to the max operator in the second constraint, mcODM
is a non-differentiable non-convex programming, which is
quite difficult to solve directly.

In this section, we first relax mcODM into a series of con-
vex quadratic programming (QP), which can be much eas-
ier to handle. Specifically, at each iteration, we recast the
first constraint as k − 1 linear inequality constraints:

w⊤
yi
ϕ(xi)−w⊤

l ϕ(xi) ≥ 1− θ − ξi, l ̸= yi,

and replace the second constraint with

w⊤
yi
ϕ(xi)−Mi ≤ 1 + θ + ϵi,

where Mi = maxl ̸=yi w̄
⊤
l ϕ(xi) and w̄l is the solution to

the previous iteration. Then we can repeatedly solve the
following convex QP problem until convergence:

min
wl,ξi,ϵi

1

2

k∑
l=1

∥wl∥2H +
λ

m

m∑
i=1

ξ2i + µϵ2i
(1− θ)2

(2)

s.t. w⊤
yi
ϕ(xi)−w⊤

l ϕ(xi) ≥ 1− θ − ξi, ∀l ̸= yi,

w⊤
yi
ϕ(xi)−Mi ≤ 1 + θ + ϵi, ∀i.
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Introduce the lagrange multipliers ζli ≥ 0, l ̸= yi for the
first k − 1 constraints and βi ≥ 0 for the last constraint
respectively, the Lagrangian function of Eq. 2 leads to

L(wl, ξi, ϵi, ζ
l
i , βi)

=
1

2

k∑
l=1

∥wl∥2H +
λ

m

m∑
i=1

ξ2i + µϵ2i
(1− θ)2

−
m∑
i=1

∑
l ̸=yi

ζli(w
⊤
yi
ϕ(xi)−w⊤

l ϕ(xi)− 1 + θ + ξi)

+

m∑
i=1

βi(w
⊤
yi
ϕ(xi)−Mi − 1− θ − ϵi),

By setting the partial derivations of variables {wl, ξi, ϵi} to
zero, we have

wl =

m∑
i=1

δyi,l

∑
s̸=yi

ζsi − (1− δyi,l)ζ
l
i − δyi,lβi

ϕ(xi),

ξi =
m(1− θ)2

2λ

∑
l ̸=yi

ζli , ϵi =
m(1− θ)2

2λµ
βi. (3)

where δyi,l equals 1 when yi = l and 0 otherwise. We
further simplify the expression of wl as

wl =

m∑
i=1

(αl
i − δyi,lβi)ϕ(xi), (4)

by defining αl
i ≡ −ζli for ∀l ̸= yi and αyi

i ≡
∑

s̸=yi
ζsi and

substituting Eq. 4 and Eq. 3 into the Lagrangian function,
then we have the following dual problem

min
αl

i,α
yi
i ,βi

1

2

k∑
l=1

∥wl∥2H +
m(1− θ)2

4λ

m∑
i=1

(αyi

i )2

+
m(1− θ)2

4λµ

m∑
i=1

β2
i + (1− θ)

m∑
i=1

∑
l ̸=yi

αl
i

+ (Mi + 1 + θ)

m∑
i=1

βi (5)

s.t.
k∑

l=1

αl
i = 0, ∀i,

αl
i ≤ 0, ∀i,∀l ̸= yi,

βi ≥ 0, ∀i.

The objective function in Eq. 5 involves m(k + 1) vari-
ables in total, so it is not easy to optimize with respect
to all the variables simultaneously. Note that all the con-
straints can be partitioned into m disjoint sets, and the i-th
set only involves α1

i , . . . , α
k
i , βi, so the variables can be

divided into m decoupled groups and an efficient block co-
ordinate descent algorithm (Tseng, 2001) can be applied.

Specifically, we sequentially select a group of k + 1 vari-
ables α1

i , . . . , α
k
i , βi associated with instance xi to mini-

mize, while keeping other variables as constants, and repeat
this procedure until convergence.

Algorithm 1 below details the kenrel mcODM.

Algorithm 1 Kenrel mcODM
1: Input: Data set S.
2: Initialize α⊤ = [α1

1, . . . , α
k
1 , . . . , α

1
m, . . . , αk

m] and
β⊤ = [β1, . . . , βm] as zero vector.

3: while α and β not converge do
4: for i = 1, . . . ,m do
5: Mi ← maxl ̸=yi

∑m
j=1(α

l
j − δyj ,lβj)κ(xj ,xi).

6: end for
7: Solve Eq. 5 by block coordinate descent method.
8: end while
9: Output: α, β.

4.1. Solving the sub-problem

The sub-problem in step 7 of Algorithm 1 is also a con-
vex QP with k + 1 variables, which can be accomplished
by some standard QP solvers. However, by exploiting its
special structure, i.e., only a small quantity of cross terms
are involved, we can derive an algorithm to solve this sub-
problem just by sorting, which can be much faster than gen-
eral QP solvers.

Note that all variables except α1
i , . . . , α

k
i , βi are fixed, so

we have the following sub-problem:

min
αl

i,α
yi
i ,βi

∑
l ̸=yi

A

2
(αl

i)
2 +

∑
l ̸=yi

Blα
l
i +

D

2
(αyi

i )2 −Aαyi

i βi

+Byi
αyi

i +
E

2
β2
i + Fβi

s.t.
k∑

l=1

αl
i = 0, (6)

αl
i ≤ 0, ∀l ̸= yi,

βi ≥ 0.

where A = κ(xi,xi), Bl =
∑

j ̸=i κ(xi,xj)(α
l
j −

δyj ,lβj)+1− θ for ∀l ̸= yi, Byi
=

∑
j ̸=i κ(xi,xj)(α

yi

j −
δyj ,yiβj), D = A + m(1−θ)2

2λ , E = A + m(1−θ)2

2λµ and
F ≡Mi + 1 + θ −Byi

.

The KKT conditions of Eq. 6 indicate that there are scalars
ν, ρl and η such that

k∑
l=1

αl
i = 0, (7)

αl
i ≤ 0, ∀l ̸= yi, (8)
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βi ≥ 0, (9)

ρlα
l
i = 0, ρl ≥ 0, ∀l ̸= yi, (10)

Aαl
i +Bl − ν + ρl = 0, ∀l ̸= yi, (11)

ηβi = 0, η ≥ 0, (12)
−Aαyi

i + Eβi + F − η = 0, (13)
Dαyi

i −Aβi +Byi
− ν = 0. (14)

According to Eq. 8, Eq. 10 and Eq. 11 are equivalent to

Aαl
i +Bl − ν = 0, if αl

i < 0, ∀l ̸= yi, (15)

Bl − ν ≤ 0, if αl
i = 0, ∀l ̸= yi. (16)

In the same way, Eq. 12 and Eq. 13 are equivalent to

−Aαyi

i + Eβi + F = 0, if βi > 0, (17)
−Aαyi

i + F ≥ 0, if βi = 0. (18)

Thus KKT conditions turn to Eq. 7 - Eq. 9 and Eq. 14 -
Eq. 18. Note that

αl
i ≡ min

(
0,

ν −Bl

A

)
, ∀l ̸= yi, (19)

satisfies KKT conditions Eq. 8 and Eq. 15 - Eq. 16 and

βi ≡ max

(
0,

Aαyi

i − F

E

)
, (20)

satisfies KKT conditions Eq. 9 and Eq. 17 - Eq. 18. By
substituting Eq. 20 into Eq. 14, we obtain

Dαyi

i +Byi
− ν = max

(
0,

A

E
(Aαyi

i − F )

)
. (21)

Let’s consider the following two cases in turn.

Case 1: Aαyi

i ≤ F , according to Eq. 20 and Eq. 21, we
have βi = 0 and αyi

i =
ν−Byi

D . Thus, Aν−Byi

D ≤ F ,
which implies that ν ≤ Byi +

DF
A .

Case 2: Aαyi

i > F , according to Eq. 20 and Eq. 21, we

have βi =
Aα

yi
i −F

E > 0 and αyi

i =
Eν−AF−EByi

DE−A2 . Thus,

A
Eν−AF−EByi

DE−A2 > F , which implies that ν > Byi +
DF
A .

The remaining task is to find ν such that Eq. 7 holds. With
Eq. 7 and Eq. 19, it can be shown that

ν =

AByi

D +
∑

l:αl
i<0 Bl

A
D + |{l|αl

i < 0}|
, Case 1, (22)

ν =

AEByi
+A2F

DE−A2 +
∑

l:αl
i<0 Bl

AE
DE−A2 + |{l|αl

i < 0}|
, Case 2. (23)

In both cases, the optimal ν takes the form of (P +∑
l:αl

i<0 Bl)/(Q+ |{l|αl
i < 0}|), where P and Q are some

constants. (Fan et al., 2008) showed that it can be found
by sorting {Bl} for ∀l ̸= yi in decreasing order and then
sequentially adding them into an empty set Φ, until

ν∗ =
P +

∑
l∈Φ Bl

Q+ |Φ|
≥ max

l ̸∈Φ
Bl. (24)

Note that the Hessian matrix of the objective function of
Eq. 6 is positive definite, which guarantees the existence
and uniqueness of the optimal solution, so only one of
Eq. 22 and Eq. 23 can hold. We can first compute ν∗ ac-
cording to Eq. 24 for Case 1, and then check whether the
constraint of ν is satisfied. If not, we further compute ν∗

for Case 2. Algorithm 2 summarizes the pseudo-code for
solving the sub-problem.

Algorithm 2 Solving the sub-problem
1: Input: Parameters A, B = {B1, . . . , Bk}, D,E, F .
2: Initialize B̂ ← B, then swap B̂1 and B̂yi , and sort

B̂\{B̂1} in decreasing order.
3: i← 2, ν ← AByi

/D.
4: while i ≤ k and ν/(i− 2 +A/D) < B̂i do
5: ν ← ν + B̂i.
6: i← i+ 1.
7: end while
8: if ν ≤ Byi

+DF/A then
9: αl

i ← min(0, (ν −Bl)/A), l ̸= yi.
10: αyi

i ← (ν −Byi)/D.
11: βi ← 0.
12: else
13: i← 2, ν ← (AEB̂1 +A2F )/(DE −A2).
14: while i ≤ k and ν/(i− 2+AE/(DE−A2)) < B̂i

do
15: ν ← ν + B̂i.
16: i← i+ 1.
17: end while
18: αl

i ← min(0, (ν −Bl)/A), l ̸= yi.
19: αyi

i ← (Eν −AF − EByi
)/(DE −A2).

20: βi ← (Aαyi

i − F )/E.
21: end if
22: Output: α1

i , . . . , α
k
i , βi.

4.2. Speedup for linear kernel

In section 4.1, the proposed method can efficiently deal
with kernel mcODM. However, the computation of Mi in
step 5 of Algorithm 1 and the computation of parameters
B̄l in Algorithm 2 both involve the kernel matrix, whose
inherent computational cost takes O(m2) time, so it might
be computational prohibitive for large scale problems.

When linear kernel is used, these problems can be allevi-
ated. According to Eq. 4, w is spanned by the training
instance so it lies in a finite dimensional space under this
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circumstance. By storing w1, . . . ,wk explicitly, the com-
putational cost of Mi = maxl ̸=yi w

⊤
l xi can be much less.

Moreover, note that B̄l =
∑

j ̸=i x
⊤
i xj(α

l
j − δyj ,lβj) =∑m

j=1 x
⊤
i xj(ᾱ

l
j−δyj ,lβ̄j)−x⊤

i xi(ᾱ
l
i−δyi,lβ̄i) = w⊤

l xi−
A(αl

i − δyi,lβi), so B̄l can also be computed efficiently.

5. Analysis
In this section, we study the statistical property of mcODM.
To present the generalization bound of mcODM, we need
to introduce the following loss function Φ,

Φ(z) = 1z≤0 +
(z − 1 + θ)2

(1− θ)2
10<z≤1−θ,

γh,θ(x, y) = w⊤
y ϕ(x)−max

l∈Y
{w⊤

l ϕ(x)− (1− θ)1l=y},

where 1(·) is the indicator function that returns 1 when
the argument holds, and 0 otherwise. As can be
seen, γh,θ(x, y) is a lower bound of γh(x, y) and
Φ(γh,θ(x, y)) = Φ(γh(x, y)).

Theorem 1. Let H = {(x, y) ∈ X × [k] 7→
w⊤

y ϕ(x)|
∑k

l=1 ∥wl∥2H ≤ Λ2} be the hypothesis space
of mcODM, where ϕ : X 7→ H is a feature mapping
induced by some positive definite kernel κ. Assume that
S ⊆ {x : κ(x,x) ≤ r2}, then for any δ > 0, with prob-
ability at least 1 − δ, the following generalization bound
holds for any h ∈ H ,

R(h) ≤ 1

m

m∑
i=1

Φ(γh(xi, yi)) +
16rΛ

1− θ

√
2πk

m
+ 3

√
ln 2

δ

2m
.

Proof. Let H̃θ be the family of hypotheses mapping X ×
Y 7→ R defined by H̃θ = {(x, y) 7→ γh,θ(x, y) : h ∈ H},
with McDiarmid inequality (McDiarmid, 1989), yields the
following inequality with probability at least 1− δ,

E[Φ(γh,θ(x, y))] ≤
1

m

m∑
i=1

Φ(γh,θ(xi, yi))

+ 2RS(Φ ◦ H̃θ) + 3

√
ln 2

δ

2m
,∀h ∈ H̃θ.

Note that Φ(γh,θ) = Φ(γh), R(h) = E[1γh(x,y)≤0] ≤
E[1γh,θ(x,y)≤0] ≤ E[Φ(γh,θ(x, y))] and Φ(z) is 2

1−θ -
Lipschitz function, by using Talagrand’s lemma (Mohri
et al., 2012), we have

R(h) ≤ 1

m

m∑
i=1

Φ(γh(xi, yi)) +
4RS(H̃θ)

1− θ
+ 3

√
ln 2

δ

2m
.

According to Theorem 7 of (Lei et al., 2015), we have
RS(H̃θ) ≤ 4rΛ

√
2πk/m and proves the stated result.

Theorem 1 shows that we can get a tighter generalization
bound for smaller rΛ and smaller θ. Since γ ≤ 2rΛ, so
the former can be viewed as an upper bound of the margin.
Besides, 1 − θ is the lower bound of the zero loss band of
mcODM. This verifies that better margin distribution (i.e.,
larger margin mean and smaller margin variance) can yield
better generalization performance, which is also consistent
with the work of (Gao & Zhou, 2013).

6. Empirical Study
In this section, we empirically evaluate the effectiveness
of our method on a broad range of data sets. We first
introduce the experimental settings and compared meth-
ods in Section 6.1, and then in Section 6.2, we compare
our method with four versions of multi-class SVMs, i.e.,
mcSVM (Weston & Watkins, 1999; Crammer & Singer,
2001; 2002), one-versus-all SVM (ovaSVM), one-versus-
one SVM (ovoSVM) (Ulrich, 1998) and error-correcting
output code SVM (ecocSVM) (Dietterich & Bakiri, 1995).
In addition, we also study the influence of the number of
classes on generalization performance and margin distri-
bution in Section 6.3. Finally, the computational cost is
presented in Section 6.4.

6.1. Experimental Setup

We evaluate the effectiveness of our proposed methods on
twenty two data sets. Table 1 summarizes the statistics of
these data sets. The data set size ranges from 150 to more
than 581,012, and the dimensionality ranges from 4 to more
than 62,061. Moreover, the number of class ranges from 3
to 1,000, so these data sets cover a broad range of prop-
erties. All features are normalized into the interval [0, 1].
For each data set, eighty percent of the instances are ran-
domly selected as training data, and the rest are used as
testing data. For each data set, experiments are repeated
for 10 times with random data partitions, and the average
accuracies as well as the standard deviations are recorded.

mcODM is compared with four versions of multi-class
SVMs, i.e., ovaSVM, ovoSVM, ecocSVM and mcSVM.
These four methods can be roughly classified into two
groups. The first group includes the first three meth-
ods by converting the multi-class classification problem
into a set of binary classification problems. Specially,
ovaSVM consists of learning k scoring functions hl : X 7→
{−1,+1}, l ∈ Y , each seeking to discriminate one class
l ∈ Y from all the others, as can be seen it need train k
SVM models. Alternatively, ovoSVM determines the scor-
ing functions for all the combinations of class pairs, so it
need train k(k − 1)/2 SVM models. Finally, ecocSVM
is a generalization of the former two methods. This tech-
nique assigns to each class l ∈ Y a code word with length
c, which serves as a signature for this class. After training
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Table 1. Characteristics of experimental data sets.

ID Dataset #Instance #Feature #Class ID Dataset #Instance #Feature #Class

1 iris 150 4 3 12 sector 9,619 55,197 105
2 wine 178 13 3 13 pendigits 10,992 16 10
3 glass 214 9 6 14 news20 19,928 62,061 20
4 svmguide2 391 20 3 15 letter 20,000 16 26
5 svmguide4 612 10 6 16 protein 24,387 357 3
6 vehicle 846 18 4 17 shuttle 58,000 9 7
7 vowel 990 10 11 18 connect-4 67,557 126 3
8 segment 2,310 19 7 19 mnist 70,000 780 10
9 dna 3,186 180 3 20 aloi 108,000 128 1,000
10 satimage 6,435 36 6 21 rcv1 534,135 47,236 53
11 usps 9,298 256 10 22 covtype 581,012 54 7

c binary SVM models h1(·), . . . , hc(·), the class predicted
for each testing instance is the one whose signatures is the
closest to [h1(x), . . . , hc(x)] in Hamming distance. The
weakness of these methods is that they may produce un-
classifiable regions and their computational costs are usu-
ally quite large in practice, which can be observed in the
following experiments. On the other hand, mcSVM be-
longs to the second group. It directly determines all the
scroing functions at once, so the time cost is usually less
than the former methods. In addition, the unclassifiable re-
gions are also resolved.

For all the methods, the regularization parameter λ for
mcODM or C for binary SVM and mcSVM is selected
by 5-fold cross validation from [20, 22, . . . , 220]. For
mcODM, the regularization parameters µ and θ are both se-
lected from [0.2, 0.4, 0.6, 0.8]. For ecocSVM, the exhaus-
tive codes strategy is employed, i.e., for each class, we con-
struct a code of length 2k−1 − 1 as the signature. All the
selections for parameters are performed on training sets.

6.2. Results

Table 2 summarizes the detailed results on twenty two
data sets. As can be seen, the overall performance of
our method is superior or highly competitive to the other
compared methods. Specifically, mcODM performs signif-
icantly better than mcSVM/ovaSVM/ovoSVM/ecocSVM
on 17/19/18/17 over 22 data sets respectively, and achieves
the best accuracy on 20 data sets. In addition, as can be
seen, in comparing with other four methods which don’t
consider margin distribution, the win/tie/loss counts show
that mcODM is always better or comparable, almost never
worse than it.

6.3. Influence of the Number of Classes

In this section we study the influence of the number of
classes on generalization performance and margin distri-
bution, respectively.

6.3.1. GENERALIZATION PERFORMANCE

Figure 1 plots the generalization performance of all the five
methods on data set segment, and similar observation can
be found for other data sets. As can be seen, when the num-
ber of classes is less than four, all methods perform quite
well. However, as the fifth class is added, the generaliza-
tion performance of other four methods decreases drasti-
cally. This might be attributable to the introduction of some
noisy data, which SVM-style algorithms are very sensitive
to since they optimize the minimum margin. On the other
hand, our method considers the whole margin distribution,
so it can be robust to noise and relatively more stable.
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Figure 1. Generalization performance of all the five methods on
data set segment with the increase of the number of classes.

6.3.2. MARGIN DISTRIBUTION

Figure 2 plots the frequency histogram of margin distribu-
tion produced by mcSVM, ovaSVM and mcODM on data
set segment as the number of classes increases from two
to seven. As can be seen, when the number of classes is
less than four, all methods can achieve good margin distri-
bution, whereas with the increase of the number of classes,
the other two methods begin to produce negative margins.
At the same time, the distribution of our method becomes
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Table 2. Accuracy (mean±std.) comparison on twenty two data sets. Linear kernel is used. The best accuracy on each data set is bolded.
•/◦ indicates the performance of mcODM is significantly better/worse than the compared methods (paired t-tests at 95% significance
level). The average rank and top1 times are listed in the third and second row from the bottom. The win/tie/loss counts for mcODM are
summarized in the last row. ovoSVM and ecocSVM did not return results on some data sets in 48 hours.

Dataset mcSVM ovaSVM ovoSVM ecocSVM mcODM

iris 84.7±5.0• 82.0±5.0• 73.0±7.1• 73.3±4.2• 87.3±3.4
wine 96.5±2.6• 97.0±2.4 96.8±3.1 91.6±2.7• 98.4±1.9
glass 62.0±7.6• 57.8±2.1• 62.4±6.0• 60.4±4.0• 68.2±7.3
svmguide2 80.9±2.6• 81.5±2.3• 74.6±5.4• 79.0±3.6• 84.1±1.8
svmguide4 86.6±3.2• 77.2±3.1• 77.1±6.9• 74.2±4.3• 87.8±3.5
vehicle 80.5±2.1• 78.5±2.9• 73.5±3.5• 76.9±2.5• 85.6±6.6
vowel 65.4±2.1 44.1±2.6• 71.1±4.9 43.1±2.0• 65.6±3.9
segment 95.3±0.9• 92.3±0.7• 93.2±2.2• 90.7±0.8• 96.7±1.3
dna 95.1±0.6• 95.1±0.7• 93.0±1.0• 90.9±1.1• 95.6±0.7
satimage 81.8±0.5• 80.1±0.7• 77.4±4.2• 76.0±1.4• 89.1±8.0
usps 95.1±0.3 94.2±0.3• 94.5±0.6• 92.3±0.7• 95.1±0.6
sector 93.3±0.4• 93.1±0.5• 89.9±0.6• N/A 93.6±0.6
pendigits 94.8±0.3• 91.8±0.5• 95.7±0.8• 87.6±0.7• 96.7±0.9
news20 83.3±0.3• 83.0±0.3• 69.4±0.4• N/A 83.6±0.3
letter 76.9±0.4• 64.9±1.0• 75.7±1.2• N/A 82.7±1.6
protein 68.7±0.3 68.7±0.4 68.1±0.3• 66.5±0.5• 70.2±2.3
shuttle 97.2±0.1• 89.9±2.8• 97.4±0.1• 84.2±0.0• 99.6±0.0
connect-4 75.7±0.1• 75.7±0.1• 75.7±0.2• 75.1±0.2• 94.4±7.6
mnist 92.5±0.2• 91.5±0.2• 90.9±0.5• 87.6±0.2• 95.2±0.3
aloi 90.1±0.2• 82.2±0.2• N/A N/A 91.4±0.3
rcv1 92.8±0.1 92.7±0.1 92.1±0.1• N/A 93.0±1.1
covtype 71.7±0.1 71.2±0.1• 72.7±0.1 70.6±0.1• 72.8±1.6

Avg. Rank 2.45 3.18 3.45 4.82 1.09

mcODM: w/t/l 17/5/0 19/3/0 18/3/0 17/0/0

“sharper”, which prevents the instance with small margin,
so our method can still perform relatively well as the num-
ber of classes increases, which is also consistent with the
observation from Figure 1.

6.4. Time Cost

We compare the single iteration time cost of our method
with mcSVM, ovaSVM, ovoSVM on all the data sets ex-
cept aloi, on which ovoSVM could not return results in 48
hours. All the experiments are performed with MATLAB
2012b on a machine with 8×2.60 GHz CPUs and 32GB
main memory. The average CPU time (in seconds) on each
data set is shown in Figure 3. The binary SVM used in
ovaSVM, ovoSVM and mcSVM are both implemented by
the LIBLINEAR (Fan et al., 2008) package. It can be seen
that for small data sets, the efficiency of all the methods are
similar, however, for data sets with more than ten classes,
e.g., sector and rcv1, mcSVM and mcODM, which learn
all the scroing functions at once, are much faster than
ovaSVM and ovoSVM, owing to the inefficiency of binary-
decomposition as discussed in Section 6.1. Note that LIB-
LINEAR are very fast implementations of binary SVM and
mcSVM, and this shows that our method is also computa-
tionally efficient.

7. Conclusions
Recent studies disclose that for binary class classification,
maximizing the minimum margin does not necessarily lead
to better generalization performances, and instead, it is
crucial to optimize the margin distribution. However, it
remains open to the influence of margin distribution for
multi-class classification. We try to answer this question
in this paper. After maximizing the margin mean and min-
imizing the margin variance simultaneously, the resultant
optimization is a difficult non-differentiable non-convex
programming. We propose mcODM to solve this problem
efficiently. Extensive experiments on twenty two data sets
validate the superiority of our method to four versions of
multi-class SVMs. In the future it will be interesting to ex-
tend mcODM to more general learning settings, i.e., multi-
label learning and structured learning.
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Figure 2. Frequency histogram of the margin distribution produced by mcSVM, ovaSVM and mcODM on data set segment as the
number of classes increase from two to seven.
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