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Abstract
Deep neural networks have been shown to be
very successful at learning feature hierarchies in
supervised learning tasks. Generative models, on
the other hand, have benefited less from hierar-
chical models with multiple layers of latent vari-
ables. In this paper, we prove that hierarchical
latent variable models do not take advantage of
the hierarchical structure when trained with some
existing variational methods, and provide some
limitations on the kind of features existing mod-
els can learn. Finally we propose an alternative
architecture that does not suffer from these lim-
itations. Our model is able to learn highly in-
terpretable and disentangled hierarchical features
on several natural image datasets with no task-
specific regularization.

1. Introduction
A key property of deep feed-forward networks is that they
tend to learn learn increasingly abstract and invariant repre-
sentations at higher levels in the hierarchy (Bengio, 2009;
Zeiler & Fergus, 2014) In the context of image data, low
levels may learn features corresponding to edges or basic
shapes, while higher levels learn more abstract features,
such as object detectors (Zeiler & Fergus, 2014).

Generative models with a hierarchical structure, where
there are multiple layers of latent variables, have been
less successful compared to their supervised counter-
parts (Sønderby et al., 2016). In fact, the most success-
ful generative models often use only a single layer of la-
tent variables (Radford et al., 2015; van den Oord et al.,
2016), and those that use multiple layers only show modest
performance increases in quantitative metrics such as log-
likelihood (Sønderby et al., 2016; Bachman, 2016). Be-
cause of the difficulties in evaluating generative models
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insu�cient for generation
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Figure 1. Left: Body parts feature detectors only carry a small
amount of information about an underlying image, yet, it is suffi-
cient for a confident classification as a face. Right: if a hierarchi-
cal generative model attempts to reconstruct an image based on
these high-level features, it could generate inconsistent images,
even when each part can be perfectly generated. Even though this
”face” is clearly absurd, Google cloud platform classification API
can identify with 93% confidence that this is a face.

(Theis et al., 2015), and the fact that adding network layers
increases the number of parameters, it is not always clear
whether the improvements truly come from the choice of
a hierarchical architecture. Furthermore, the capability of
learning a hierarchy of increasingly complex and abstract
features has only been demonstrated to a limited extent,
with feature hierarchies that are not nearly as rich as the
ones learned by feed-forward networks (Gulrajani et al.,
2016).

Part of the problem is inherent and unavoidable for any
generative model. The heart of the matter is that while
highly invariant and local features are often sufficient for
classification, generative modeling requires preservation of
details (as illustrated in Figure 1). In fact, most latent fea-
tures in a generative model of images cannot even demon-
strate scale and translation invariance. The size and loca-
tion of a sub-part often has to be dependent on the other
sub-parts. For example, an eye should only be generated
with the same size as the other eye, at symmetric locations
with respect to the center of the face, with appropriate dis-
tance between them. The inductive biases that are directly
encoded into the architecture of convolutional networks is
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not sufficient in the context of generative models.

On the other hand, other problems are associated with spe-
cific models or design choices, and may be avoided with
alternative training criteria and architectures. The goal of
this paper is to provide a deeper understanding of the de-
sign and performance of common hierarchical latent vari-
able models. We focus on variational models, though it
should be possible to generalize most of the conclusions
to adversarially trained models that support inference (Du-
moulin et al., 2016; Donahue et al., 2016). In particular, we
study two classes of models with a hierarchical structure:

1) Stacked hierarchy: The first type we study is charac-
terized by recursively stacking generative models on top
of each other. Most existing models (Sønderby et al.,
2016; Gulrajani et al., 2016; Bachman, 2016; Kingma et al.,
2016), belong to this class. We show that these models have
two limitations. First, we show that if these models can
be trained to optimality, then the bottom layer alone con-
tains enough information to reconstruct the data distribu-
tion, and the layers above the first one can be ignored. This
result holds under fairly general conditions, and does not
depend on the specific family of distributions used to de-
fine the hierarchy (e.g., Gaussian). Second, we argue that
many of the building blocks commonly used to construct
hierarchical generative models are unlikely to help us learn
disentangled features.

2) Architectural hierarchy: Motivated by these limita-
tions, we turn our attention to single layer latent variable
models. We propose an alternative way to learn disentan-
gled hierarchical features by crafting a network architec-
ture that prefers to place high-level features on certain parts
of the latent code, and low-level features in others. We
show that this approach, called Variational Ladder Au-
toencoder, allows us to learn very rich feature hierarchies
on natural image datasets such as MNIST, SVHN (Netzer
et al., 2011) and CelebA (Liu et al., 2015); in contrast,
generative models with a stacked hierarchical structure fail
to learn such features.

2. Problem Setting
We consider a family of latent variable models specified
by a joint probability distribution pθ(x, z) over a set of
observed variables x and latent variables z. The fam-
ily of models is assumed to be parametrized by θ. Let
pθ(x) denote the marginal distribution of x. We wish to
maximize the marginal log-likelihood p(x) over a dataset
X = {x(1), . . . ,x(N)} drawn from some unknown un-
derlying distribution pdata(x). Formally we would like to
maximize

log pθ(X) =
N∑
n=1

log pθ(x
(i)) (1)

which is non-convex and often intractable for complex gen-
erative models, as it involves marginalization over the la-
tent variables z.

We are especially interested in unsupervised feature learn-
ing applications, where by maximizing (1) we hope to dis-
cover a meaningful representation for the data x in terms
of latent features given by pθ(z|x).

2.1. Variational Autoencoders

A popular solution (Kingma & Welling, 2013; Jimenez
Rezende et al., 2014) for optimizing the intractable
marginal likelihood (1) is to optimize the evidence lower
bound (ELBO) by introducing an inference model qφ(z|x)
parametrized by φ 1:

log p(x) ≥ Eq(z|x)[log p(x, z)− log q(z|x)]
= Eq(z|x)[log p(x|z)]−KL(q(z|x)‖p(z))
= L(x; θ, φ) (2)

where KL is the Kullback-Leibler divergence.

2.2. Hierarchical Variational Autoencoders

A hierarchical VAE (HVAE) can be thought of as a series
of VAEs stacked on top of each other. It has the following
hierarchy of latent variables z = {z1, . . . , zL}, in addition
to the observed variables x. We use the conventional nota-
tion where z1 represents the lowest layer (closest to x) and
zL the top layer. Using chain rule, the joint distribution
p(x, z1, . . . , zL) can be factored as follows

p(x, z1, . . . , zL) = p(x|z>0)
L−1∏
`=1

p(z`|z>`)p(zL) (3)

where z>` indicates (z`+1, · · · , zL), and z>0 = z =
(z1, . . . , zL). Note that this factorization via chain-rule is
fully general. In particular it accounts for recent models
that use shortcut connections (Kingma et al., 2016; Bach-
man, 2016), where each hidden layer z` directly depends
on all layers above it (z>`). We shall refer to this fully
general formulation as autoregressive HVAE.

Several models assume a Markov independence structure
on the hidden variables, leading to the following sim-
pler factorization (Jimenez Rezende et al., 2014; Gulrajani
et al., 2016; Kaae Sønderby et al., 2016)

p(x, z) = p(x|z`)
L−1∏
l=1

p(z`|z`+1)p(zL) (4)

1We omit the dependency on θ and φ for the remainder of the
paper.
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We refer to this common but more restrictive formulation
as Markov HVAE.

For the inference distribution q(z|x) we do not assume
any factorized structure to account for complex infer-
ence techniques used in recent work (Kaae Sønderby
et al., 2016; Bachman, 2016). We also denote q(x, z) =
pdata(x)q(z|x).

Both p(x|z) and q(z|x) are jointly optimized, as before in
Equation (2), to maximize the ELBO objective

LELBO = Epdata(x)Eq(z|x)[log p(x|z)]−
Epdata(x)[KL(q(z|x)||p(z))]

=
L∑
l=0

Eq(z,x)[log p(zl|z>l)] +H(q(z|x)) (5)

where we define z0 ≡ x, zL+1 ≡ 0, H denotes the entropy
of a distribution, and the expectation over pdata(x) is esti-
mated by the samples in the training dataset. This can be
interpreted as stacking VAEs on top of each other.

3. Limitations of Hierarchical VAEs
3.1. Representational Efficiency

One of the main reasons deep hierarchical networks are
widely used as function approximators is their represen-
tational power. It is well known that certain functions can
be represented much more compactly with deep networks,
requiring exponentially less parameters compared to shal-
low networks (Bengio et al., 2009). However, we show
that under ideal optimization of LELBO, HVAE models do
not lead to improved representational power. This is be-
cause for a well trained HVAE, a Gibbs chain on the bottom
layer, which is a single layer model, can be used to recover
pdata(x) exactly.

We first show this formally for Markov HVAE with the fol-
lowing proposition

Proposition 1. LELBO in Eq.(5) is globally maximized
as a function of q(z|x) and p(x|z) when LELBO =
−H(pdata(x)). If LELBO is globally maximized for a
Markov HVAE, the following Gibbs sampling chain con-
verges to pdata(x) if it is ergodic

z
(t)
1 ∼ q(z1|x(t))

x(t+1) ∼ p(x|z(t)1 ) (6)

Proof of Proposition 1. We notice that

LELBO = Epdata(x)q(z|x)

[
log

p(x, z)

q(z|x)

]
= Epdata(x)q(z|x)

[
log

p(z|x)
q(z|x)

]
+ Epdata(x)[log p(x)]

= −Epdata(x)[KL(q(z|x)||p(z|x))]
−KL(pdata(x)||p(x))−H(pdata(x))

By non-negativity of KL-divergence, and the fact that KL
divergence is zero if an only if the two distributions are
identical, it can be seen that this is uniquely optimized
when p(x) =

∫
z
p(x, z)dz = pdata(x) and ∀x, q(z|x) =

p(z|x) and the optimum is

L∗ELBO = −H(pdata(x))

This also implies that ∀x

q(x|z1) =
q(z1|x)pdata(x)

q(z1)
= p(x|z1) (7)

Because the following Gibbs chain converges to pdata(x)
when it is ergodic

z
(t)
1 ∼ q(z1|x(t))

x(t+1) ∼ q(x|z(t)1 )

We can replace q(x|z(t)1 ) with p(x|z(t)1 ) using (7) and the
chain still converges to pdata(x).

Therefore under the assumptions of Proposition 1 we
can sample from pdata(x) without using the latent code
(z2, · · · , zL) at all. Hence, optimization of the LELBO
objective and efficient representation are conflicting, in the
sense that optimality implies some level of redundancy in
the representation.

We demonstrate that this phenomenon occurs in practice,
even though the conditions of Proposition 1 might not be
met exactly (e.g., the objective is not globally optimized).
We train a factorized three layer VAE in Equation (4) on
MNIST by optimizing the ELBO criteria from Equation
(5). We use a model where each conditional distribution is a
factorized Gaussian p(z`|z`+1) = N (µ`(z`+1), σ`(z`+1))
where µ` and σ` are deep neural networks. We compare:
the samples generated by the Gibbs chain in Equation (6)
with samples generated by ancestral sampling with the en-
tire model in Figure 2. We observe that the Gibbs chain
generates samples (left panel) with similar visual quality
as ancestral sampling with the entire model (right panel),
even though the Gibbs chain only used the bottom layer of
the model.

This problem can be generalized to autoregressive HVAEs.
One can sample from pdata(x) without using p(z`|z>`) for
1 ≤ ` < L, at all. We prove this in the Appendix.
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3.2. Feature learning

Another significant advantage of hierarchical models for
supervised learning is that they learn rich and disentangled
hierarchies of features. This has been demonstrated for ex-
ample using various visualization techniques (Zeiler & Fer-
gus, 2014). However, we show in this section that typical
HVAEs do not enjoy this property.

Recall that we think of p(z|x) as a (probabilistic) fea-
ture detector, and q(z|x) as an approximation to p(z|x).
It might therefore be natural to think that q might learn
hierarchical features similarly to a feed-forward network
x → z` → · · · → zL, where higher layers correspond
to higher level features that become increasingly abstract
and invariant to nuisance variations. However, if q(z>`|z`)
maps low level features to high level features, then the re-
verse mapping q(z`|z>`) maps high level features to likely
low level sub-features. For example, if zL correspond to
object classes, then q(zL−1|zL) could represent the distri-
bution over object subparts given the object class.

Suppose we train LELBO in Equation (5) to optimality, we
would have

p(x) = pdata(x), q(z|x) = p(z|x)

Recall that

q(x, z) := pdata(x)q(z|x)
p(x, z) := p(z)p(x|z) = p(x)p(z|x)

Comparing the two we see that

p(x, z) = q(x, z)

if the joint distributions are identical, then any conditional
distribution would also be identical, which implies that for
any z>`, q(z`|z>`) = p(z`|z>`).

For the majority of models the conditional distributions
p(z`|z>`) belong to a very simple distribution family such
as parameterized Gaussians (Kingma & Welling, 2013)
(Jimenez Rezende et al., 2014) (Kaae Sønderby et al.,
2016) (Kingma et al., 2016). Therefore for a perfectly
optimized LELBO in the Gaussian case, the only type of
feature hierarchy we can hope to learn is one under which
q(z`|z>`) is also Gaussian. This limits the hierarchical rep-
resentation we can learn. In fact, the hierarchies we observe
for feed-forward models (Zeiler & Fergus, 2014) require
complex multimodal distributions to be captured. For ex-
ample, the distribution over object subparts for an object
category is unlikely to be unimodal and cannot be well ap-
proximated with a Gaussian distribution.

More generally, as shown in (Zhao et al., 2017), even when
LELBO is not globally optimized, optimizing LELBO
encourages q(z`|z>`) and p(z`|z>`) to match. Since

p(z`|z>`) typically belongs to some parameterized distri-
bution family such as Gaussians, this encourages q(z`|z>`)
to belong to that distribution family as well.

We experimentally validate these intuitions in Figure 3,
where we train a three layer Markov HVAE with factorized
Gaussian conditionals p(z`|z`+1) on MNIST and SVHN.
Details about the experimental setup are explained in the
Appendix. As suggested in (Kingma & Welling, 2013), we
reparameterize the stochasticity in p(z`|z`+1) using a sep-
arate noise variable ε` ∼ N (0, I), and implicitly rewrite
the original conditional distribution as

z` = µ`(z`+1) + σ`(z`+1)� ε`

where � indicates element-wise product. We fix the value
of εk to a random sample from N (0, I) at all layers k =
1, · · · , `− 1, `+ 1, · · · , L except for one, and observe the
variations in x generated by randomly sampling ε`. We
observe in Figure 3 that only very minor variations cor-
respond to lower layers (Left and center panels), and al-
most all the variation is represented by the top layer (Right
panel). More importantly, no notable hierarchical relation-
ship between features is observed.

4. Variational Ladder Autoencoders
Given the limitations of hierarchical architectures de-
scribed in the previous section, we focus on an alternative
approach to learn a hierarchy of disentangled features.

Our approach is to define a simple distribution with no
hierarchical structure over the latent variables p(z) =
p(z1, · · · , zL). For example, the joint distribution p(z) can
be a white Gaussian. Instead we encourage the latent code
z1, · · · , zL to learn features with different levels of abstrac-
tion by carefully choosing the mappings p(x|z) and q(z|x)
between input x and latent code z. Our approach is based
on the following intuition:

Assumption: If zi is more abstract than zj , then the infer-
ence mapping q(zi|x) and generative mapping when other
layers (denoted as z¬i

) are fixed p(x|zi, z¬i = z0¬i
) re-

quires a more expressive network to be captured.

This informal assumption suggests that we should use neu-
ral networks of different level of expressiveness to generate
the corresponding features; the more abstract features re-
quire more expressive networks, and vice versa. We loosely
quantify expressiveness with depth of the network. Based
on these assumptions we are able to design an architecture
that disentangles hierarchical features for many natural im-
age datasets.
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Figure 2. Left: Samples obtained by running the Gibbs sampling chain in Proposition 1, using only the bottom layer of a 3-layer recursive
hierarchical VAE. Right: samples generated by ancestral sampling from the same model. The quality of the samples is comparable,
indicating that the bottom layer contains enough information to reconstruct the data distribution.

Figure 3. A hierarchical three layer VAE with Gaussian conditional distributions p(zl|zl+1) does not learn a meaningful feature hierarchy
on MNIST and SVHN when trained with the ELBO objective. Left panel: Samples generated by sampling noise ε1 at the bottom layer,
while holding ε2 and ε3 constant. Center panel: Samples generated by sampling noise ε2 at the middle layer, while holding ε1 and ε3
constant. Right panel: Samples generated by sampling noise ε3 at the top layer, while holding ε1 and ε2 constant. For both MNIST
and SVHN we observe that the top layer represents essentially all the variation in the data (right panel), leaving only very minor local
variations for the lower layers (left and center panels). Compare this with the rich hierarchy learned by our VLAE model, shown in
Figures 5 and 6.

4.1. Model Definition

We decompose the latent code into subparts z =
{z1, z2, . . .}, where z1 is related to x via a shallow net-
work, and increase the depth of the network depth up to
level L, so that zL is related to x via a deep network. In
particular, we share parameters with a ladder-like architec-
ture (Valpola, 2015; Pezeshki et al., 2015). Because of this
similarity we denote this architecture as Variational Lad-
der Autoencoder (VLAE). Formally, our model, shown in
Figure 4 is defined as follows

1) Generative Network: p(z) = p(z1, · · · , zL) is a
simple prior on all latent variables. We choose it as a
standard Gaussian N (0, I). The conditional distribution

p(x|z1, z2, . . . , zL) is defined implicitly as:

z̃L = fL(zL) (8)
z̃` = f`(z̃`+1, z`) ` = 1, · · · , L− 1 (9)
x ∼ r(x; f0(z̃1)) (10)

where f` is parametrized as a neural network, and z̃` is an
auxiliary variable we use to simplify the notation. r is a
distribution family parameterized by f0(z̃1). In our experi-
ments we use the following choice for f`:

z̃` = u`([z̃`+1;v`(z`)]) (11)

where [·; ·] denotes concatenation of two vectors, and
v`,u` are neural networks. We choose r as a fixed vari-
ance factored Gaussian with mean given by µr = f0(z̃1).
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Figure 4. Inference and generative models for VLAE (left) and
LVAE (right). Circles indicate stochastic nodes, and squares are
deterministically computed nodes. Solid lines with arrows denote
conditional probabilities; solid lines without arrows denote deter-
ministic mappings; dash lines indicates regularization to match
the prior p(z). Note that in VLAE, we do not attempt to regular-
ize the distance between h and z̃.

2) Inference Network: For the inference network, we
choose q(z|x) as

h` = g`(h`−1) (12)
z` ∼ N (µ`(h`),σ`(h`)) (13)

where ` = 1, · · · , L, g`, µ`, σ` are neural networks, and
h0 ≡ x.

3) Learning: For learning we use the ELBO criterion as in
Equation (2):

L(x) = Eq(z|x)[log p(x|z)]−KL(q(z|x)‖p(z)) (14)

where p(z) = N (0, I) denotes the prior for z. This is
tractable if r has tractable log likelihood, i.e., when r is
a Gaussian.

This is essentially the inference and learning framework for
a one-layer VAE; the hierarchy is only implicitly defined by
the network architecture, therefore we call this a flat hier-
archy model. Motivated by our earlier theoretical results,
we do not use additional layers of latent variables.

4.2. Comparison with Ladder Variational
Autoencoders

Our architecture resembles the ladder variational autoen-
coder (LVAE) (Sønderby et al., 2016). However the two
models are very different. The purpose of our architecture
is to connect subparts of the latent code with networks of
different expressive power (depth); the model is encour-
aged to place high-level, complex features at the top, and
low-level, simple features at the bottom, in order to reach
lower reconstruction error with latent codes of the same
capacity. Empirically, this allows the network to learn dis-
entangled factors of variation, corresponding to different

subparts of the latent code. Meanwhile, because it is essen-
tially a single-layer flat model, our VLAE does not exhibit
the problems we have identified with traditional hierarchi-
cal VAE described in Section 3.

Ladder Variational Autoencoders (LVAE) on the other
hand, utilize the ladder architecture from the infer-
ence/encoding side; its generative model is a standard
HVAE. While the ladder inference network performs better
than the one used in the original HVAE, ladder variational
autoencoders still suffer from the problems we discussed
in Section 3. The difference is between our model (VLAE)
and LVAE is illustrated in Figure 4

An additional advantage over ladder variational autoen-
coders (and more generally HVAEs) is that our definition
of the generative network Equ.(10) allows us to select a
much richer family of generative models p. Because for
HVAE the LELBO optimization requires the evaluation of
log p(z`|z`+1) shown in Equ.(5), a reparameterized HVAE
has to inject noise into the network in a way that corre-
sponds to a conditional distribution with a tractable log-
likelihood. For example, a HVAE can inject noise ε` by

z` = µ`(z`+1) + σ`(z`+1)� ε` (15)

only because this corresponds to Gaussian conditional dis-
tributions p(zl|zl+1). In comparison, for VLAE we only
require evaluation of log p(x|z1, · · · , zL), so except for the
bottom layer r we can combine noise using arbitrary black
box functions f`.

5. Experiments
We train VLAE over several datasets and visualize the se-
mantic meaning of the latent code. 2 According to our as-
sumptions, complex, high-level information will be learned
by latent codes at higher layers, whereas simple, low-level
features will be represented by lower layers.

In Figure 5, we visualize generation results from MNIST,
where the model is a 3-layer VLAE with 2 dimensional
latent code (z) at each layer. The visualizations are gen-
erated by systematically exploring the 2D latent code for
one layer, while randomly sampling other layers. From
the visualization, we see that the three layers encode stroke
width, digit width and tilt and digit identity respectively.
Remarkably, the semantic meaning of a particular latent
code is stable with respect to the sampled latent codes from
other layers. For example, in the second layer, the left side
represents narrow digits whereas the right side represents
wide digits. Sampling latent codes at other layers will con-
trol the digit identity, but this will have no influence on

2Code is available at https://github.com/ermongroup/Variational-
Ladder-Autoencoder
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Figure 5. VLAE on MNIST. Generated digits obtained by systematically exploring the 2D latent code from one layer, and randomly
sampling from other layers. Left panel: The first (bottom) layer encodes stroke width, Center panel: the second layer encodes digit
width and tilt, Right panel: the third layer encodes (mostly) digit identity. Note that the samples are not of state-of-the-art quality only
because of the restricted 2-dimensional latent code used to enable visualization.

Figure 6. VLAE on SVHN. Each sub-figure corresponds to images generated when fixing latent code on all layers except for one,
which we randomly sample from the prior distribution. From left to right the random sampled layer go from bottom layer to top layer.
Left panel: The bottom layer represents color schemes; Center-left panel: the second layer represents shape variations of the same
digit; Center-right panel: the third layer represents digit identity (interestingly these digits have similar style although having different
identities); Right panel: the top layer represents the general structure of the image.

Figure 7. VLAE on CelebA. Each sub-figure corresponds to images generated when fixing latent code on all layers except for one,
which we randomly sample from the prior distribution. From left to right the random sampled layer go from bottom layer to top layer.
Left panel: The bottom layer represents ambient color; Center-left panel: the second bottom layer represents skin and hair color;
Center-right panel: the second top layer represents face identity; Right panel: the top layer presents pose and general structure.
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the width. This is interesting given that width is actually
correlated with the digit identity; for example, digit 1 is
typically thin while digit 0 is mostly wide. Therefore, the
model will generate more zeros than ones if the latent code
at the second layer corresponds to a wide digit, as shown in
the visualization.

Next we evaluate VLAE on the Street View House Num-
ber (SVHN, Netzer et al. (2011)) dataset, where it is sig-
nificantly more challenging to learn interpretable represen-
tations since it is relatively noisy, containing certain digits
which do not appear in the center. However, as is shown in
Figure 6, our model is able to learn highly disentangled fea-
tures through a 4-layer ladder, which includes color, digit
shape, digit context, and general structure. These features
are highly disentangled: since the latent code at the bottom
layer controls color, modifying the code from other three
layers while keeping the bottom layer fixed will generate
a set of images with the same general tone. Moreover, the
latent code learned at the top layer is the most complex
one, which captures rich variations lower layers cannot ac-
curately represent.

Finally, we display compelling results from another chal-
lenging dataset, CelebA (Liu et al., 2015), which includes
200,000 celebrity images. These images are highly varied
in terms of environment and facial expressions. We visu-
alize the generation results in Figure 7. As in the SVHN
model, the latent code at the bottom layer learns the am-
bient color of the environment while keeping the personal
details intact. Controlling other latent codes will change
the other details of the individual, such as skin color, hair
color, identity, pose (azimuth); more complicated features
are placed at higher levels of the hierarchy.

6. Discussions
Training hierarchical deep generative models is a very chal-
lenging task, and there are two main successful families
of methods. One family defines the “destruction” and re-
construction of data using a pre-defined process. Among
them, LapGANs (Denton et al., 2015) define the process
as repeatedly downsampling, and Diffusion Nets (Sohl-
Dickstein et al., 2015) defines a forward Markov chain that
converts a complex data distribution to a simple, tractable
one. Without having to perform inference, this makes train-
ing much easier, but it does not provide latent variables for
other downstream tasks (unsupervised learning).

Another line of work focuses on learning a hierarchy of
latent variables by stacking single layer models on top of
each other. Many models also use more flexible inference
techniques to improve performance (Sønderby et al., 2016;
Dinh et al., 2014; Salimans et al., 2015; Rezende & Mo-
hamed, 2015; Li et al., 2016; Kingma et al., 2016). How-

ever we show that there are limitations to stacked VAEs.

Our work distinguishes itself from prior work by explicitly
discussing the purpose of learning such models: the advan-
tage of learning a hierarchy is not in better representation
efficiency, or better samples, but rather in the introduction
of structure in the features, such as hierarchy or disentan-
glement. This motivates our method, VLAE, which jus-
tifies our intuition that a reasonable network structure can
be, by itself, highly effective at learning structured (disen-
tangled) representations. Contrary to previous efforts on
hierarchical models, we do not stack VAEs on top of each
other, instead we use a “flat” approach.

Our experimental results resemble those obtained with In-
foGAN (Chen et al., 2016); both frameworks learn disen-
tangled representations from the data in an unsupervised
manner. The InfoGAN objective, however, explicitly max-
imizes the mutual information between the latent variables
and the observation; whereas in VLAE, this is achieved
through the reconstruction error objective which encour-
ages the use of the latent code. Furthermore we are able
to explicitly disentangle features with different level of ab-
stractness.

7. Conclusions
In this paper, we discussed the potential practical value
of learning a hierarchical generative model over a non-
hierarchical one. We show that under some assumptions
little can be gained in terms of representation efficiency or
sample quality. We further show that traditional HVAE
models have trouble learning structured features. Based
on these insights, we consider an alternative to learning
structured features by leveraging the expressive power of
a neural network. Empirical results show that we can learn
highly disentangled features.

One limitation of VLAE is the inability to learn struc-
tures other than hierarchical disentanglement. Future work
should consider more principled ways of designing archi-
tectures that allow for learning features with more complex
structures.
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Donahue, Jeff, Krähenbühl, Philipp, and Darrell, Trevor. Adver-
sarial feature learning. arXiv preprint arXiv:1605.09782, 2016.

Dumoulin, Vincent, Belghazi, Ishmael, Poole, Ben, Lamb,
Alex, Arjovsky, Martin, Mastropietro, Olivier, and Courville,
Aaron. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

Gulrajani, Ishaan, Kumar, Kundan, Ahmed, Faruk, Taiga,
Adrien Ali, Visin, Francesco, Vázquez, David, and Courville,
Aaron C. Pixelvae: A latent variable model for natural images.
CoRR, abs/1611.05013, 2016. URL http://arxiv.org/
abs/1611.05013.

Jimenez Rezende, D., Mohamed, S., and Wierstra, D. Stochastic
Backpropagation and Approximate Inference in Deep Genera-
tive Models. ArXiv e-prints, January 2014.

Kaae Sønderby, C., Raiko, T., Maaløe, L., Kaae Sønderby, S., and
Winther, O. Ladder Variational Autoencoders. ArXiv e-prints,
February 2016.

Kingma, D. P and Welling, M. Auto-Encoding Variational Bayes.
ArXiv e-prints, December 2013.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, Diederik P, Salimans, Tim, and Welling, Max. Im-
proving variational inference with inverse autoregressive flow.
arXiv preprint arXiv:1606.04934, 2016.

Li, C., Zhu, J., and Zhang, B. Learning to generate with memory.
arXiv preprint arXiv:1602.07416, 2016.

Liu, Ziwei, Luo, Ping, Wang, Xiaogang, and Tang, Xiaoou. Deep
learning face attributes in the wild. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV), 2015.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessandro,
Wu, Bo, and Ng, Andrew Y. Reading digits in natural images
with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp.
5, 2011.

Pezeshki, Mohammad, Fan, Linxi, Brakel, Philemon, Courville,
Aaron, and Bengio, Yoshua. Deconstructing the ladder net-
work architecture. arXiv preprint arXiv:1511.06430, 2015.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised
representation learning with deep convolutional generative ad-
versarial networks. arXiv preprint arXiv:1511.06434, 2015.

Rezende, D. J. and Mohamed, S. Variational inference with nor-
malizing flows. arXiv preprint arXiv:1505.05770, 2015.

Salimans, T., Kingma, D. P., Welling, M., et al. Markov chain
monte carlo and variational inference: Bridging the gap. In In-
ternational Conference on Machine Learning, pp. 1218–1226,
2015.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Gan-
guli, S. Deep unsupervised learning using nonequilibrium ther-
modynamics. arXiv preprint arXiv:1503.03585, 2015.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and
Winther, O. Ladder variational autoencoders. In Advances In
Neural Information Processing Systems, pp. 3738–3746, 2016.
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A. Additional Results
Proposition 2. LELBO for HVAE in Eq.(5) is optimized
when LELBO = −H(pdata(x)). If LELBO is optimized
the following Gibbs sampling chain converges to pdata(x)
if it is ergodic

z(t) ∼ q(z|x(t))

x(t+1) ∼ p(x|z(t)) (16)

Proof of Proposition 2. As in the proof of Proposition 1
when LELBO is optimized, q(z|x) = p(z|x). Because the
following Gibbs chain converges to pdata(x)

z(t) ∼ q(z|x(t))

x(t+1) ∼ q(x|z(t))

We can replace q(x|z(t)) with p(x|z(t)) and the chain still
converges to pdata(x).

B. Experimental Details
B.1. Gaussian HVAE

Architecture: For l = 1, 2

zl ∼ N (W1fl(zl+1), sigm(W2fl(zl+1))
2)

whereW1,W2 are trainable linear transformation matrices,
and sigm is sigmoid activation function. fl is a two layer
dense network. For l = 0, we let

x ∼ N (f0(z1), σ
2I)

where σ is a hyper-parameter that can be specified apriori
or trained. f0 is a two layer convolutional network with
1/2 stride for spatial up-sampling. For inference we use
the same architecture as the generator.

Learning: During training we use the Adam (Kingma &
Ba, 2014) optimizer with learning rate 10−4. We also an-
neal the scale the KL-regularization from 0 to 1 to encour-
age use of latent feature during early stages of training.

B.2. VLAE

For VLAE, we use varying layers of convolution depending
on size of input image. However, for the ladder connections
we do not use convolution. Because of our argument in in-
troduction and Figure 1, generative models do not benefit
from convolutional latent features. Therefore we always
flatten convolutional layers and apply linear transformation
to reduce dimension for each ladder connection. For im-
plementation details please refer to our code.


	Introduction
	Problem Setting
	Variational Autoencoders
	Hierarchical Variational Autoencoders

	Limitations of Hierarchical VAEs
	Representational Efficiency
	Feature learning

	Variational Ladder Autoencoders
	Model Definition
	Comparison with Ladder Variational Autoencoders

	Experiments
	Discussions
	Conclusions
	Acknowledgement
	Additional Results
	Experimental Details
	Gaussian HVAE
	VLAE


