
Supplementary Material: Asynchronous Stochastic Gradient Descent with
Delay Compensation

A. Theorem 3.1 and Its Proof
Theorem 3.1:
Assume the loss function is L1-Lipschitz. If λ ∈ [0, 1] make the following inequality holds,

K∑
k=1

1

σ3
k(x,wt)

≥ 2

Cij

(
K∑

k=1

1

σk(x,wt)

)2

+ C
′
ijL

2
1|ϵt|

 , (1)

where Cij =
1

1+λ (
uiujβ

lilj
√
α
)2, C

′

ij =
1

(1+λ)α(lilj)2
, and the model converges to the optimal model, then the MSE of λG(wt)

is smaller than the MSE of G(wt) in approximating Hessian H(wt).

Proof:

For simplicity, we abbreviate E(Y |x,w∗) as E, Gt as G(wt) and Ht as H(wt). First, we calculate the MSE of Gt, λGt

to approximate Ht for each element of Gt. We denote the element in the i-th row and j-th column of G(wt) as Gt
ij and

H(wt) as Hij(t).

The MSE of Gt
ij :

E(Gt
ij − EHt

ij)
2 = E(Gt

ij − EGt
ij)

2 + (EHt
ij − EGt

ij)
2 = E(Gt

ij)
2 − (EGt

ij)
2 + ϵ2t (2)

The MSE of λgij :

E(λGt
ij − EHt

ij)
2 = λ2E(Gt

ij − EGt
ij)

2 + (EHt
ij − λEGt

ij)
2

= λ2E(Gt
ij)

2 − λ2(EGt
ij)

2 + (1− λ)2(EGt
ij)

2 + ϵ2t + 2(λ− 1)EGt
ijϵt (3)

The condition for E(Gt
ij − EHt

ij)
2 ≥ E(λGt

ij − EHt
ij)

2 is

(1− λ2)(E(Gt
ij)

2 − (EGt
ij)

2) ≥ 2(1− λ)(EGt
ij)

2 + 2(λ− 1)EGt
ijϵt (4)

Inequality (4) is equivalent to

(1 + λ)E(Gt
ij)

2 ≥ 2[(EGt
ij)

2 − EGt
ijϵt] (5)

Next we calculate E(Gt
ij)

2, and (EGt
ij)

2 which appear in Eqn.(5). For simplicity, we denote σk(x,wt) as σk, and I[Y=k]
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as zk. Then we can get:

E(gij)2 = E(Y |x,wt)

(
∂

∂wi
logP (Y |x,wt)

)2(
∂

∂wj
logP (Y |x,wt)

)2

(6)

≥ E(Y |x,w∗)

(
K∑

k=1

(
− zk
σk

))4

(lilj)
2

= α (lilj)
2

(
K∑

k=1

1

σ3
k(x,wt)

)
(7)

(Ehij)
2 =

(
E(Y |x,w∗)

K∑
k=1

∂σk

∂wi

(
− zk
σk

)
·

K∑
k=1

∂σk

∂wj

(
− zk
σk

))2

≤ β2 (uiuj)
2

(
K∑

k=1

1

σk(x,wt)

)2

. (8)

By substituting Ineq.(7) and Ineq.(8) into Ineq.(5), a sufficient condition for Ineq.(5) to be satisfied is
∑K

k=1
1

σ3
k
(x,wt)

≥

2

[
Cij

(∑K
k=1

1
σk(x,wt)

)2
+ C

′
ijL

2
1|ϵt|

]
because Gt

ij ≤ L2
1. �

B. Corollary 3.2 and Its Proof
Corollary 3.2: A sufficient condition for inequality (1) is λ ∈ [0, 1] and ∃k0 ∈ [K] such that σk0 ∈[
1− K−1

2(CijK2+C
′
ijL

2
1ϵt)

, 1

]
.

Proof:
Denote ∆ = K−1

2CijK2 and F (σ1, ..., σK) =
∑K

k=1
1

σ3
k(x,wt)

− 2Cij

(∑K
k=1

1
σk(x,wt)

)2
− 2C

′

ijL
2
1|ϵt|. If ∃k1 ∈ [K] such

that σk1 ∈ [1−∆, 1], we have for k ̸= k1 σk ∈ [0,∆]. Therefore

F (σ1, ..., σK) ≥ 1

(σk1)
3
+

K − 1

∆3
− 2Cij

(
1

σk1

+
K − 1

∆

)2

− 2C
′

ijL
2
1|ϵt| (9)

≥ K − 1

∆3
− 2Cij

((
K − 1

∆

)2

+
1

σ2
k1

+
2(K − 1)

σk1∆

)
− 2C

′

ijL
2
1|ϵt| (10)

≥ K − 1

∆3
− 2Cij

(
(K − 1)2

∆2
+

2K − 1

σk1∆

)
− 2C

′

ijL
2
1|ϵt| (11)

=
1

∆

(
K − 1

∆2
− 2Cij

(
(K − 1)2

∆
+

2K − 1

σk1

))
− 2C

′

ijL
2
1|ϵt| (12)

≥ 1

∆

(
K − 1

∆2
− 2Cij

(
(K − 1)2 + 2K − 1

∆

))
− 2C

′

ijL
2
1|ϵt| (13)

≥ 1

∆2

(
K − 1

∆
− 2CijK

2 − 2C
′

ijL
2
1|ϵt|

)
(14)

= 0 (15)

where Ineq.(11) and (13) is established since σk1 > ∆; and Eqn.(15) is established by putting ∆ = K−1
2(CijK2+C

′
ijL

2
1|ϵt|)

in

Eqn.(14). �



Supplementary: Asynchronous Stochastic Gradient Descent with Delay Compensation

C. Uniform upper bound of MSE
Lemma C.1 Assume the loss function is L1-Lipschitz, and the diagonalization error of Hessian is upper bounded by ϵD,
i.e., ||Diag(H(wt))−H(wt)|| ≤ ϵD, 1 then we have, for ∀t,

mset(Diag(λG)) ≤ 4λ2V1 + 4(1− λ)2L4
1 + 4ϵ2t + 4ϵD, (16)

where V1 is the upper bound of the variance of G(wt).

Proof:

mset(Diag(λG)) (17)

≤E∥Diag(λG(wt))−H(wt)∥2 (18)

≤4E∥Diag(λG(wt))− E(Diag(λG(wt)))∥2 + 4∥E(Diag(λG(wt)))− E(Diag(G(wt)))∥2 (19)

+ 4∥E(Diag(G(wt)))− E(Diag(H(wt)))∥2 + 4∥E(Diag(H(wt)))− EH(wt)∥2 (20)

≤4λ2V1 + 4(1− λ)2L4
1 + 4ϵ2t + 4ϵD (21)

D. Convergence Rate for DC-ASGD: Convex Case
DC-ASGD is a general method to compensate delay in ASGD. We first show the convergence rate for convex loss function.
If the loss function f(w) is convex about w, we can add a regularization term ρ

2∥w∥
2 to make the objective function

F (w) + ρ
2∥w∥

2 strongly convex. Thus, we assume that the objective function is µ-strongly convex.

Theorem 4.1: (Strongly Convex) If f(w) is L2-smooth and µ-strongly convex about w, ∇f(w) is L3-smooth about w
and the expectation of the ∥ · ∥22 norm of the delay compensated gradient is upper bounded by a constant G. By setting the
learning rate ηt =

1
µt , DC-ASGD has convergence rate as

EF (wt)− F (w∗) ≤ 2L2
2G

2

tµ4
(1 + 4τCλ) +

2G2L2
2θ
√
τ

µ4t
√
t

+
L3L3

2τ
2G3

µ6t2
,

where θ = 2HKLG
µ

√
L2

µ (1 + τGL3

µL2
) and Cλ = (1− λ)L2

1 + ϵD, and the expectation is taking with respect to the random
sampling of DC-ASGD and E(y|x,w∗).

Proof:
We denote gdc(wt) = g(wt) + λg(wt)⊙ g(wt)⊙ (wt+τ −wt), gh(wt) = g(wt) +Hit(wt)(wt+τ −wt) and ∇Fh(wt) =
∇F (wt) + EitHit(wt)(wt+τ − wt). Obviously, we have Egh(wt) = ∇Fh(wt). By the smoothness condition, we have

EF (wt+τ+1)− F (w∗) (22)

≤ F (wt+τ )− F (w∗)− ⟨∇F (wt+τ ), wt+τ+1 − wt+τ ⟩+
L2

2
∥wt+τ+1 − wt+τ∥2 (23)

≤ F (wt+τ )− F (w∗)− ηt+τ ⟨∇F (wt+τ ), g
dc(wt)⟩+

L2η
2
t+τG

2

2
(24)

= F (wt+τ )− F (w∗)− ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )⟩+ ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )−∇Fh(wt)⟩ (25)

+ηt+τ ⟨∇F (wt+τ ),Egh(wt)− gdc(wt)⟩+
L2η

2
t+τG

2

2
(26)

Since f(w) is L2-smooth and µ strongly convex, we have

−⟨∇F (wt+τ ),∇F (wt+τ )⟩ ≤ −µ2∥wt+τ − w∗∥2 ≤ −2µ2

L2
(F (wt+τ )− F (w∗)). (27)

1(LeCun, 1987) demonstrated that the diagonal approximation to Hessian for neural networks is an efficient method with no much
drop on accuracy
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For the term ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )−∇Fh(wt)⟩, we have

ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )−∇Fh(wt)⟩ (28)

≤ ηt+τ∥∇F (wt+τ )∥∥∇F (wt+τ )−∇Fh(wt)∥ (29)

≤ ηt+τG∥∇F (wt+τ )−∇Fh(wt)∥ (30)

By the smoothness condition for ∇F (w), we have

∥∇F (wt+τ )−∇Fh(wt)∥ ≤ L3

2
∥wt+τ − wt∥2 ≤ L3τG

2

2

τ−1∑
j=0

η2
t+j (31)

Let ηt = L2

µ2t , we can get
∑τ

j=1 η
2
t+j ≤

L2
2

µ4 · τ
t(t+τ) ≤

2L2
2τ

µ4(t+τ)2 .

For the term ηt+τ ⟨∇F (wt+τ ),Egh(wt)− gdc(wt)⟩, we have

⟨∇F (wt+τ ),E(gh(wt)− gdc(wt))⟩ (32)
≤ ∥∇F (wt+τ )∥∥E(λg(wt)⊙ g(wt)−H(wt))(wt+τ − wt)∥ (33)

≤ G2τ

τ−1∑
j=0

ηt+j(∥E(λg(wt)⊙ g(wt)− g(wt)⊙ g(wt)∥+ ∥g(wt)⊙ g(wt)−Diag(H(wt))∥+ ∥Diag(H(wt))−H(wt)∥)

(34)

≤ 2G2L2τ

(t+ τ)µ2
(Cλ + ϵt), (35)

where Cλ = (1− λ)L2
1 + ϵD.

Using Lemma F.1, ϵt ≤ θ
√

1
t ≤ θ

√
τ

t+τ . Putting inequality 27 and 31 in inequality 26, we have

EF (wt+τ+1)− F (w∗) ≤
(
1− 2

t+ τ

)
(EF (wt)− F (w∗)) +

L3L
3
2τ

2G3

µ6(t+ τ)3
(36)

+
2G2L2

2τ

µ4(t+ τ)2

(
Cλ + θ

√
τ

t+ τ

)
+

L2
2G

2

2(t+ τ)2µ4
(37)

We can get

EF (wt)− F (w∗) ≤ 2L2
2G

2

tµ4
(1 + 4τCλ) +

2G2L2
2θ
√
τ

µ4t
√
t

+
L3L3

2τ
2G3

µ6t2
. (38)

by induction. �
Discussion:
(1). Following the above proof steps and using ∥∇F (wt+τ ) −∇F (wt)∥ ≤ L2∥wt+τ − wt∥, we can get the convergence
rate of ASGD is

EF (wt)− F (w∗) ≤ 2L2
2G

2

tµ4
(1 + 4τL2) . (39)

Compared the convergence rate of DC-ASGD with ASGD, the extra term 2G2L2
2θ

√
τ

µ4t
√
t

+
L3L3

2τ
2G3

µ6t2 converge to zero faster

than 2L2
2G

2

tµ4 (1 + 4τCλ) in terms of the order of t. Thus, when t is large, the extra term has smaller value. We assume that
t is large and the term can be neglected. Then the condition for DC-ASGD outperforming ASGD is L2 > Cλ.

E. Convergence Rate for DC-ASGD: Nonconvex Case
Theorem 5.1: (Nonconvex Case) Assume that Assumptions 1-4 hold. Set the learning rate

ηt =

√
2(F (w1)− F (w∗)

bTV 2L2
, (40)
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where b is the mini-batch size, and V is the upper bound of the variance of the delay-compensated gradient. If T ≥
max{O(1/r4), 2D0bL2/V

2} and delay τ is upper-bounded as below,

τ ≤ min

{
L2V

Cλ

√
L2T

2D0b
,
V

Cλ

√
L2T

2D0b
,
TV

C̃

√
L2

bD0
,
V L2T

4C̃

√
TL2

2D0b

}
. (41)

then DC-ASGD has the following ergodic convergence rate,

min
t={1,··· ,T}

E(∥∇F (wt)∥2) ≤ V

√
2D0L2

bT
, (42)

where the expectation is taken with respect to the random sampling in SGD and the data distribution P (Y |x,w∗).

Proof:
We denote gm(wt)+λgm(wt)⊙ gm(wt)⊙ (wt+τ −wt) as gdcm (wt) where m ∈ {1, · · · , b} is the index of instances in the
minibatch. From the proof the Theorem 1 in ASGD (Lian et al., 2015), we can get

EF (wt+τ+1)− F (wt+τ ) (43)

≤ ⟨∇F (wt+τ ), wt+τ − wt⟩+
L2

2
∥wt+τ+1 − wt+τ∥2 (44)

≤ −ηt+τ ⟨∇F (wt+τ ),
b∑

m=1

Egdcm (wt)⟩+
η2
t+τL2

2
E

∥∥∥∥∥
b∑

m=1

gdcm (wt)

∥∥∥∥∥
2
 (45)

≤ − bηt+τ

2

∥∇F (wt+τ )∥2 +

∥∥∥∥∥
b∑

m=1

Egdcm (wt)

∥∥∥∥∥
2

−

∥∥∥∥∥∇F (wt+τ )−
b∑

m=1

Egdcm (wt)

∥∥∥∥∥
2


+
η2
t+τL2

2
E

∥∥∥∥∥
b∑

m=1

gdcm (wt)

∥∥∥∥∥
2
 (46)

For the term T1 =
∥∥∥∇F (wt+τ )−

∑b
m=1 Egdcm (wt)

∥∥∥2, by using the smooth condition of g, we have

T1 =

∥∥∥∥∥∇F (wt+τ )−
b∑

m=1

Egdcm (wt)

∥∥∥∥∥
2

(47)

≤

∥∥∥∥∥∇F (wt+τ )−∇Fh(wt) +∇Fh(wt)−
b∑

m=1

Egdcm (wt)

∥∥∥∥∥
2

(48)

≤ 2

∥∥∥∥L3

2
∥wt+τ − wt∥2

∥∥∥∥2 + 2

∥∥∥∥∥∇Fh(wt)−
b∑

m=1

Egdcm (wt)

∥∥∥∥∥
2

(49)

≤ (L2
3π

2/2 + 2(((1− λ)L2
1 + ϵD)2 + ϵ2t ))∥wt+τ − wt∥2 (50)

Thus by following the proof of ASGD, we have

E(T1) ≤ 4(L2
3π

2/4 + ((1− λ)L2
1 + ϵD)2 + ϵ2t )

(
bτη2

t+τV
2 + τ2η2

t+τ

∥∥∥bEgdcm (wt)
∥∥∥2) . (51)

For the term T2 = E
(∥∥∥∑b

m=1 g
dc
m (wt)

∥∥∥2), it has

E(T2) ≤ bV 2 +
∥∥∥bEgdcm (wt)

∥∥∥2 . (52)
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By putting Ineq.(51) and Ineq.(52) in Ineq.(46), we can get

E(F (wt+τ+1)− F (wt+τ ) (53)

≤ − bηt+τ

2
E∥∇F (wt+τ )∥2 +

(
η2
t+τL2

2
− ηt+τ

2b

)
E
(∥∥∥bEgdcm (wt)

∥∥∥2)
+

(
η2
t+τ bL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + ϵ2t )b
2τη3

t+τ

)
V 2 (54)

+(L2
3π

2/2 + 2((1− λ)L2
1 + ϵD)2 + ϵ2t )bτ

2η3
t+τE

(∥∥∥bEgdcm (wt)
∥∥∥2) (55)

Summarizing the Ineq.(55) from t = 1 to t+ τ = T , we have

EF (wT+1)− F (w1) (56)

≤− b

2

T∑
t=1

ηtE∥∇F (wt)∥2 +
T∑

t=1

(
η2
t+τ bL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + ϵ2t )b
2τη3

t+τ

)
V 2 (57)

+

T∑
t=1

(
η2
tL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + ϵ2t )bτ
2η3

t − ηt
2b

)
E
∥∥∥bEgdcm (wmax{t−τ,1})

∥∥∥2 . (58)

By Lemma F.1 and under our assumptions, we have when t > T0, wt will goes into a strongly convex neighbourhood of
some local optimal wloc. Thus, ϵt ≤ ϵnc + θ

√
1/(t− T0), when t > T0 and ϵt < maxs∈1,··· ,T0 ϵs when t < T0.

Let ηt =
√

2(F (w1)−F (w∗)
bTV 2L2

. It follows that

T∑
t=1

ηtL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + ϵ2t )bτ
2η2

t (59)

≤
T∑

t=1

{
ηtL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + 2ϵ2nc)bτ
2η2

t

}
+ 2bτ2η2

t (4T0 max
s∈1,··· ,T0

(ϵs)
2 + 4θ2 log(T − T0)) (60)

We ignore the log(T − T0) term and regards C̃2 = 4T0 maxs∈1,··· ,T0(ϵs)
2 + 4θ2 log(T − T0) as a constant, which yields

T∑
t=1

ηtL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + ϵ2t )bτ
2η2

t (61)

≤
T∑

t=1

{
ηtL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + 2ϵ2nc)bτ
2η2

t

}
+ 2τ2η2

t bC̃
2 (62)

ηt should be set to make

T∑
t=1

(
η2tL2

2
+ (L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + 2ϵ2nc)bτ
2η3t +

2τ2η3t bC̃
2

T
− ηt

2b

)
≤ 0. (63)

Then we can get

1

T

T∑
t=1

E∥∇F (wt)∥2 (64)

≤
2(F (w1)− F (w∗) + Tb(η2

tL2 + 2(L2
3π

2/2 + 2((1− λ)L2
1 + ϵD)2 + 2ϵ2nc)bτη

3
t )V

2 +
η3
t C̃

24bτ

T
V 2

bTηt
(65)

≤2(F (w1)− F (w∗)

bTηt
+ (ηtL2 + 2(L2

3π
2/2 + 2((1− λ)L2

1 + ϵD)2 + 2ϵ2nc)bτη
2
t )V

2 +
η2
t C̃

24bτV 2

T
(66)

(67)
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We set ηt to make

(2(L2
3π

2/2 + 2((1− λ)L2
1 + ϵD)2 + 2ϵ2nc)bτη

2
t ) +

η2
t C̃

24bτ

T
≤ ηtL2 (68)

Thus let ηt =
√

2(F (w1)−F (w∗)
bTV 2L2

,

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ V

√
2D0L2

bT
. (69)

And we can get the condition for T by putting η in ineq.63 and ineq.68, we can get that

τ ≤ min

{
L2V

Cλ

√
L2T

2D0b
,
V

Cλ

√
L2T

2D0b
,
TV

C̃

√
L2

bD0
,
V L2T

4C̃

√
TL2

2D0b

}
. (70)

F. Decreasing rate of the approximation error ϵt

Since ϵt is contained the proof of the convergence rate for DC-ASGD , in this section we will introduce a lemma which
describes the approximation error ϵt the for both convex and nonconvex cases.

Lemma F.1 Assume that the true label y is generated according to the distribution P(Y = k|x,w∗) = σk(x,w
∗) and

f(x, y,w) = −
∑K

k=1(I[y=k] log σk(x;w)). If we assume that the loss function is µ-strongly convex about w. We denote wt is
the output of DC-ASGD by using the outerproduct approximation of Hessian, we have

ϵt =
∣∣∣E(x,y|w∗)

∂2

∂w2
f(x, y,wt)− E(x,y|w∗)

(
∂

∂w
f(x, y,wt)

)
⊗
(

∂

∂w
f(x, y,wt)

) ∣∣∣ ≤ θ

√
1

t
,

where θ = 2HKLV L2

µ2

√
1
µ (1 +

L2+λL2
1

L2
τ).

If we assume that the loss function is µ-strongly convex in a neighborhood of each local optimal d(wloc, r),∣∣∣∂2P(Y=k|x,w)
∂2w × 1

P (Y=k|x,w)

∣∣∣ ≤ H , ∀k, x, w, each σk(w) is L-Lipschitz continuous about w. We denote wt is the out-
put of DC-ASGD by using the outerproduct approximation of Hessian, we have

ϵt =
∣∣∣E(x,y|w∗)

∂2

∂w2
f(x, y,wt)− E(x,y|w∗)

(
∂

∂w
f(x, y,wt)

)
⊗
(

∂

∂w
f(x, y,wt)

) ∣∣∣ ≤ θ

√
1

t− T0
+ ϵnc.

where t > T0 ≥ O( 1
r8 ).

Proof:

E(y|x,w∗)
∂2

∂w2
f(x, Y,wt) = −E(y|x,w∗)

∂2

∂w2

(
K∑

k=1

(I[y=k] log σk(x;wt))

)

= −E(y|x,w∗)
∂2

∂w2
log

(
K∏

k=1

σk(x,wt)
I[y=k]

)

= −E(y|x,w∗)
∂2

∂w2
log P(y|x,wt)

= −E(y|x,w∗)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)
+ E(y|x,w∗)

(
∂
∂ω

P(y|x,wt)

P(y|x,wt)

)2

= −E(y|x,w∗)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)
+ E(y|x,w∗)

(
∂

∂ω
log P(y|x,wt)

)2

.

= −E(y|x,w∗)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)
+ E(y|x,w∗)

(
∂

∂ω
f(x, Y,wt)

)2

. (71)
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Since E(y|x,wt)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)
= 0 by the two equivalent methods to calculating fisher information matrix (Friedman et al.,

2001), we have∣∣∣∣∣E(y|x,w∗)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)

∣∣∣∣∣ =
∣∣∣∣∣E(y|x,w∗)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)
− E(y|x,wt)

∂2

∂ω2 P(y|x,wt)

P(y|x,wt)

∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

∂2

∂ω2
P(Y = k|X = x,wt)×

P(Y = k|x,w∗)− P(Y = k|x,wt)

P(Y = k|x,wt)

∣∣∣∣∣ (72)

≤ H ·
K∑

k=1

|P(Y = k|x,w∗)− P(Y = k|x,wt)|

≤ HKL∥wt − wloc∥+HK max
k=1,··· ,K

|P(Y = k|x,wloc)− P(Y = k|x,w∗)| (73)

≤ HKL∥wt − wloc∥+ ϵnc. (74)

For strongly convex objective functions, ϵnc = 0 and wloc = w∗. The only thing we need is to prove the convergence of
DC-ASGD without using the information of ϵt like before. By the smoothness condition, we have

EF (wt+τ+1)− F (w∗) (75)

≤ F (wt+τ )− F (w∗)− ηt+τ ⟨∇F (wt+τ ),Egdc(wt)⟩+
L2η

2
t+τV

2

2
(76)

= F (wt+τ )− F (w∗)− ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )⟩ (77)

+ηt+τ ⟨∇F (wt+τ ),∇F (wt+τ )− Egdc(wt)⟩+
L2η

2
t+τV

2

2
(78)

≤ (1− 2ηt+τµ
2

L2
)(F (wt+τ )− F (w∗)) + ηt+τ∥∇F (wt+τ )∥∥∇F (wt+τ )− Egdc(wt)∥+

L2η
2
t+τV

2

2
(79)

≤ (1− 2ηt+τµ
2

L2
)(F (wt+τ )− F (w∗)) + ηt+τV · (L2 + λL2

1)∥wt+τ − wt∥+
L2η

2
t+τV

2

2
(80)

≤ (1− 2ηt+τµ
2

L2
)(F (wt+τ )− F (w∗)) + ηt+τV · (L2 + λL2

1)∥
τ∑

j=1

ηt+τ−jg
dc(wt)∥+

L2η
2
t+τV

2

2
(81)

Taking expectation to the above inequality, we can get

EF (wt+τ+1)− F (w∗) ≤ (1− 2ηt+τµ
2

L2
)(EF (wt+τ )− F (w∗)) +

η2
t+τ (L2 + λL2

1)V
2τ

2
+

L2η
2
t+τV

2

2
(82)

≤ (1− 2ηt+τµ
2

L2
)(EF (wt+τ )− F (w∗)) +

η2
t+τV

2L2

2
(1 +

L2 + λL2
1

L2
τ). (83)

Let ηt = L2

µ2t , we have

EF (wt+1)− F (w∗) ≤
(
1− 2

t

)
(EF (wt)− F (w∗)) +

V 2L2
2

2µ4t2

(
1 +

L2 + λL2
1

L2
τ

)
. (84)

We can get

EF (wt)− F (w∗) ≤ 2L2
2V

2

tµ4

(
1 +

L2 + λL2
1

L2
τ

)
. (85)

by induction. Then we can get

∥wt − w∗∥2 ≤ 4L2
2V

2

tµ5

(
1 +

L2 + λL2
1

L2
τ

)
. (86)

By putting Ineq.86 into Ineq.73, we can get the result in the theorem.

For nonconvex case, if wt ∈ B(wloc, r), we have E(wt−wloc) ≤ 1
µ
E∇F (wt) under the assumptions. Next we will prove that,

for nonconvex loss function f(x, y,wt), DC-ASGD has ergodic convergence rate. mint=1,··· ,T E∥ ∂
∂wt

F (x, y,wt)∥2 =

O(1/
√
T ), where the expectation is taking with respect to the stochastic sampling.
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Figure 1. Error rates of the global model with Different λ0 w.r.t. number of effective passes on CIFAR-10

Compared with the proof of ASGD (Lian et al., 2015), DC-ASGD with Hessian approximation has

T1 = ∥∇F (wt+τ )− Egdc(wt)∥2 (87)

= ∥∇F (wt+τ )−∇F (wt)− λEg(wt)⊙ g(wt) · (wt+τ − wt)∥2 (88)

≤ 2∥∇F (wt+τ )−∇F (wt)∥2 + 2∥λEg(wt)⊙ g(wt) · (wt+τ − wt)∥2 (89)

≤ 2(L2
2 + λ2L4

1)∥wt+τ − wt∥2, (90)

since L1 is the upper bound of ∇f(w) and L2 is the smooth coefficient of f(w). Suppose that η =
√

2D0

bTV 2L2
and τ is

upper bounded as Theorem 5.1,

min
t=1,··· ,T

E∥∇F (wt)∥2 ≤ 1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ O(
1

T 1/2
). (91)

Referring to a recent work of Lee et.al (Lee et al., 2016), GD with a random initialization and sufficiently small constant
step size converges to a local minimizer almost surely under the assumptions in Theorem 1.2. Thus, the assumption that
F (w) is µ-strongly convex in the r-neighborhood of arbitrary local minimum wloc is easily to be satistied with probability
one. By the L1-Lipschitz assumption, we have P (Y = k|x,wt)−P (Y = k|x,wloc) ≤ L1∥wt−wloc∥. By the L2-smooth
assumption, we have L2∥wt−wloc∥2 ≥ ⟨∇F (wt), wt−wloc⟩. Thus for wt ∈ B(wloc, r), we have ∥∇F (wt)∥ ≤ L2∥wt−
wloc∥ ≤ L2r. By the continuously twice differential assumption, we can assume that ∥∇F (wt)∥ ≤ L2∥wt−wloc∥ ≤ L2r
for wt ∈ B(wloc, r) and ∥∇F (wt)∥ ≤ L2∥wt − wloc∥ > L2r for wt /∈ B(wloc, r) without loss of generality 2. Therefore
mint=1,··· ,T E∥∇F (wt)∥2 ≤ L2

2r
2 is a sufficient condition for E∥wT − wloc∥ ≤ r.

min
t=1,··· ,T0

E∥∇F (wt)∥2 ≤ O(
1

T
1/2
0

) ≤ r2. (92)

We have T0 ≥ O
(

1
r4

)
.

Thus we have finished the proof for nonconvex case.

G. Experimental Results on the Influence of λ
In this section, we show how the parameter λ affect our DC-ASGD algorithm. We compare the performance of respectively
sequential SGD, ASGD and DC-ASGD-a with different value of initial λ0

3. The results are given in Figure 1. This
experiment reflects to the discussion in Section 5, too large value of this parameter (λ0 > 2 in this setting) will introduce
large variance and lead to a wrong gradient direction, meanwhile too small will make the compensation influence nearly
disappear. As λ decreasing, DC-ASGD will gradually degrade to ASGD. A proper λ will lead to significant better accuracy.

2We can choose r small enough to make it satisfied.
3We also compare different λ0 for DC-ASGD-c and the results are very similar to DC-ASGD-a.



Supplementary: Asynchronous Stochastic Gradient Descent with Delay Compensation

H. Large Mini-batch Synchronous SGD with Delay-Compensated Gradient
In this section, we discuss how delay-compensated gradient can be used in synchronous SGD. The effective mini-batch
size in SSGD is usually enlarged M times comparing with sequential SGD. A learning rate scaling trick is commonly used
to overcome the influence of large mini-batch size in SSGD (Goyal et al., 2017): when the mini-batch size is multiplied by
M , multiply the learning rate by M . For sequential mini-batch SGD with learning rate η we have:

wt+M = wt − η
M−1∑
j=0

g(wt+j , zt+j), (93)

where zt+j is the t+ j-th minibatch.

On the other hand, taking one step with M times large mini-batch size and learning rate η̂ = Mη in synchronous SGD
yields:

ŵt+1 = wt − η̂
1

M

M−1∑
j=0

g(wt, z
j
t ), (94)

where zjt is the t-th minibatch on local machine j.

Assume that zt+j = zjt . The assumption g(wt+j , zt+j) ≈ g(wt, z
j
t ) was made in synchronous SGD(Goyal et al., 2017).

However, it often may not hold.

If we denote w̃j
t+1 = wt − η̂ 1

M

∑
i<j g(wt, z

i
t), we can unfold the summation in Eq.94 to

w̃j+1
t+1 = w̃j

t+1 − η̂
1

M
g(wt, z

j
t ), j < M, (95)

then we have ŵt+1 = w̃M
t+1. We propose to use Eq.(5) in the main paper to compensate this assumption and apply

delay-compensated gradient to update Eq.95 with:

g(wt+j , zt+j) ≈ g̃(w̃j
t+1, z

j
t ) := g(wt, z

j
t ) + λg(wt, z

j
t )⊙ g(wt, z

j
t )⊙ (w̃j

t+1 − wt)
)
, (96)

w̃j+1
t+1 = w̃j

t+1 − η̂
1

M
g̃(w̃j

t+1, z
j
t ), j < M. (97)

Please note that we redefine the previous w̃j+1
t+1 in Eq.97. For j > 1, we need to design an order to make w̃j

t+1 ≈ wt+j .
Choosing w̃j

t+1 according to the increasing order of ∥w̃j
t+1 − wt∥2 can be used since the smaller distance with wt will

induce more accurate approximation by using Taylor expansion.
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