Identify the Nash Equilibrium in Static Games with Random Payoffs

A. Proof of Lemma 2

The proof of Lemma 2 relies on the folloing lemma:

Lemma 7. For positive measurable functions f;, we have:

( / fjl ﬁ(w)dw)K < fjl [ @ )

Proof. By Cauchy-Schwarz inequality, Eq. (4) is correct for K = 2. We use mathematical induction to prove that it still
holds for K > 2. Specifically, assume InEq. (4) is true for K — 1, considering case K, by Holder’s inequality we have:
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Now we present the proof of Lemma 2.

Proof. With straight-forward computations, we have:
K K K P,
P.(v=k) = / dPy = / —dP.

Because we need a bound for any measurable function 1, we need to construct the ¢ that minimizes the last expression.
Obviously, the last expression is mlnumzed for ¢ (z) = arg mmk< K ‘jllz , so that

Z Py(v =k) /dP1 mln /mm dPy.

For vector P = {dP,--- ,dPx}, define r;( P) be the i-th smallest value in P, we have
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The above inequality is proven by Lemma 7.Note that Zk fde < K, so Hk>2 frk P ) < (%)K’1 < e. With
Jensen’s inequality, it yields that: -
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B. Proof of Lemma 3
Proof. With Hoeffding’s inequality and InEq. (2) in the main text, we have
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Then, applying the union bound, we complete the proof. O

C. Proof of Lemma 4

In this section, we are going to show that E[y — T'(ty)] < O(H.(j)log~) to complete the proof of Lemma 4. The proof is
the same as that of Theorem 1 in (Auer et al., 2002), except some constants.

Proof. For simplicity, let s; denote s%(j). Considering s : us < ps,, let ev(s,y) be the event that s is pulled at line 22 by
Alg. 1 at round ~y. Let T;(¢,) denote the number of pulls on arm s in line 22 Alg. 1 when Alg. 1 selects column j for the
~-th time. Then, E[T(¢,)] can be bounded as follows:

.
E[T,(ty)] = Z [The algorithm pulls arm s in line 22 when Alg. 1 selects column j for the ~y-th round |
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Since [is, + 2loey’ < 54 /21987 a¢least one of the following three events happens:
. fi 2 g pp

° fs, < us+2\/21°g”

By Hoeffding’s inequality, the probability that the first and the second events happen is at most 27/~%, and for [ >

m log ~y, the third event will not happen. So we have E[T(¢,)] = O (ﬁ log ’y). Then, with straight-
s s1

forward computations we complete the proof. O
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D. Proof of Lemma 5

Proof. Suppose s* # nmone. If at round v, Alg.1 does not select Ry-[1) or C-[9), then at least one of following events
happens:

e 35 ¢ {none, s*}, s = NE(M,;);
e NE(M;) = none.
For the first part, it is easy to see that s # sX(s[1]) or s # s%(s[2]). So by Lemma 4, the size of this part is at most

2022 AMH (1)) + 225 A(He(4)))-

Similarly, if the second case happens, then s* # arg ming ¢ gu(s+) fls’ OF 8% # argmMaxy eqoi(s+) fs'- When the second
case happens for the -th round, due to Alg.1, we selected R,-(1) for at least |y/m] times and C- ) for at least |y/n]
times. So by Lemma 4, the size of the second part is at most [(m + n)(A(H,(s*[1])) + A(H.(s*[2])))]. O

E. Proof of Lemma 6
This proof is the same as the proof of Theorem 6 in Kalyanakrishnan et al. (2012), except the statement and some constants.

Proof. Without loss of generality, consider a bandit model v = {s1,--- , s, }. Suppose ps, > fis,,,. At each round, we
pull arms in v as from line 21 to line 23 in Alg. 1. Let H = ., m Let s1(y) = arg maxge, fis after round
S1 Si

7, and s3(y) = arg max,e.,\ s, (v) U (8, |Ts(7)], |7]). Denote 7(y) be the set of time steps  in the first v round. If after -,
round, we have L(s1(7), [Ts, () (7)], |T]) > U(s2(7), |Tsy (1) (7)]; IT]), we now show that E, = O(H, log %)

. . sy Hits
Now let us introduce some notations. Define ¢ = % and

Hsy — fsy =1,
A= ‘
Hsy — Hs; 2 > 2

During round +y, we partition the set of arms into three subsets:

o AboveY :={se€v:fs— B(Ts(7),7v) > c}.
e Below” :={s€v: s+ B(Ts(7),7) < c}.

e Middle” := v\(Above” U Below?).

And by Lemma 2 in Kalyanakrishnan et al. (2012), if we cannot identify arg maxgec, () after round ~, then s1(v) €
Middle” or s3(y) € Middle”. And with similar computation to Lemma 4 in Kalyanakrishnan et al. (2012), if for all arm

s;, we pulled at least 4[ 7% In m;?ﬁ times, then Vs, s ¢ Middle” with probability at least 1 — Sfrgz . The rest is all the

same as Theorem 6 in Kalyanakrishnan et al. (2012).

O

F. Proof of Theorem 5

Proof. With the same argument as Theorem 8 in Even-Dar et al. (2006), for s1, S2, suppose s, — fts, = A > 0. Then
with probability at least 1 —§/(mn), after round v = O(%), we have fis, —is, > 251(7). So by the union bound,
the racing algorithm stops after finite time with probability at least 1 — 4.

Then we show that Alg. 2 is 6-PAC.

According to Lemma 3, the probability that there is an arm s such that |z, — ps| > 51 () for some + is at most 6. Suppose
VS,’)/, |ﬂs - /Ls| > /81(7)
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For the case N E(M) = none, consider arm s. If s ¢ {s*(s[1]), s%(s[2])}, clearly, it will be eliminated when its confidence
bounds are disjoint with the confidence bounds of s} (s[1]) and s} (s[2]). Otherwise, if s € {s%(s[1]), s’(s[2])}, without
loss of generality, suppose s = s(s[1]). Obviously, there is a sequence S = {s1,S2,- -, Sax} such that (1) s = s1;
(2) S2i+1 = S:(82i+1[1]) and S9; = 5:<321[2D for all ’L', where Sj = S(jfl)%(2k)+1; (3) S2i41 € COl(82i> and S2i42 €
row(sa;+1). And according to Alg.2, all the arms in S will be eliminated when their confidence bounds are disjoint.

For the case s* = NE(M) # none, obviously, it won’t be eliminated by our elimination rule, so Algorithm is §-PAC.

Up to now we have proven the two statements about Alg. 2 in Theorem 5. O

G. Correctness of baseline

Here, We present the stopping and recommendation rules of our baseline algorithm in detail.

Stopping and recommendation rules: In each round, we pull all arms. Let 82(7) = +/log(5mn~2/45) /7. After the ¢-th
round, if one of the following event happens, the algorithm stops:

e For some arm s, if for all s € row(s)\s,Iye, after vy, rounds, fis + 262(7s,0) < [ and for all ' €

col(s)\s, Iy(s"), after vy rounds, jis > jisr + 282(7Vs,d), then the recommendation rule recommends s as the
NE.

e Forall arm s, if 38" € row(s), iy + B2(t,0) < fis — Ba(t,d) or Is’ € col(s), fisr — B2(t,8) > fis + B2(t,d), then
the recommendation rule determines that the underlying game does not have a NE.

Obviously, this algorithm is 6-PAC and the proof for this statement is the same as the proof for Theorem 5.



