A. Proof of Lemma 2

The proof of Lemma 2 relies on the folloing lemma:
Lemma 7. For positive measurable functions f_{i}, we have:

$$
\begin{equation*}
\left(\int \prod_{i=1}^{K} f_{i}(x) d x\right)^{K} \leq \prod_{i=1}^{K} \int f_{i}^{K}(x) d x \tag{4}
\end{equation*}
$$

Proof. By Cauchy-Schwarz inequality, Eq. (4) is correct for $K=2$. We use mathematical induction to prove that it still holds for $K>2$. Specifically, assume InEq. (4) is true for $K-1$, considering case K, by Holder's inequality we have:

$$
\begin{aligned}
\left(\int \prod_{i=1}^{K} f_{i}(x) d x\right)^{K} & =\left(\int f_{K}(x) \prod_{i=1}^{K-1} f_{i}(x) d x\right)^{K} \\
& \leq\left(\left(\int f_{K}^{K}(x) d x\right)^{\frac{1}{K}}\left(\int\left(\prod_{i=1}^{K-1} f_{i}(x)\right)^{\frac{K}{K-1}} d x\right)^{\frac{K-1}{K}}\right)^{K} \\
& =\left(\int f_{K}^{K}(x) d x\right)\left(\int\left(\prod_{i=1}^{K-1} f_{i}(x)\right)^{\frac{K}{K-1}} d x\right)^{K-1} \\
& \leq \prod_{i=1}^{K} \int f_{i}^{K}(x) d x
\end{aligned}
$$

Now we present the proof of Lemma 2.
Proof. With straight-forward computations, we have:

$$
\sum_{k=1}^{K} P_{k}(\psi=k)=\sum_{k=1}^{K} \int_{\psi=k} d P_{k}=\sum_{k=1}^{K} \int_{\psi=k} \frac{d P_{k}}{d P_{1}} d P_{1}
$$

Because we need a bound for any measurable function ψ, we need to construct the ψ that minimizes the last expression. Obviously, the last expression is minimized for $\psi(x)=\arg \min _{k \leq K} \frac{d P_{k}}{d P_{1}}(x)$, so that

$$
\sum_{k=1}^{K} P_{k}(\psi=k) \geq \int d P_{1} \min _{k} \frac{d P_{k}}{d P_{1}}=\int \min _{k} d P_{k}
$$

For vector $\bar{P}=\left\{d P_{1}, \cdots, d P_{K}\right\}$, define $r_{i}(\bar{P})$ be the i-th smallest value in \bar{P}, we have

$$
\left(\int\left(\prod_{k} d P_{k}\right)^{\frac{1}{K}}\right)^{K}=\left(\int\left(\prod_{k} r_{k}(\bar{P})\right)^{\frac{1}{K}}\right)^{K} \leq \prod_{k} \int r_{k}(\bar{P})=\int \min _{k} d P_{k} \prod_{k \geq 2} \int r_{k}(\bar{P})
$$

The above inequality is proven by Lemma 7.Note that $\sum_{k} \int d P_{k} \leq K$, so $\prod_{k \geq 2} \int r_{k}(\bar{P}) \leq\left(\frac{K}{K-1}\right)^{K-1}<e$. With Jensen's inequality, it yields that:

$$
\begin{aligned}
\sum_{k=1}^{K} P_{k}(\psi=k) & \geq \frac{1}{e}\left(\int\left(\prod_{k} d P_{k}\right)^{\frac{1}{K}}\right)^{K} \\
& =\frac{1}{e} \exp \left\{K \log \int\left(\prod_{k} d P_{k}\right)^{\frac{1}{K}}\right\} \\
& =\frac{1}{e} \exp \left\{K \log \int\left(\prod_{k} \frac{d P_{k}}{d P_{1}}\right)^{\frac{1}{K}} d P_{1}\right\} \\
& \geq \frac{1}{e} \exp \left\{\sum_{k} \int d P_{1} \log \frac{d P_{k}}{d P_{1}}\right\} \\
& =\frac{1}{e} \exp \left\{-\sum_{k=2}^{K} K L\left(P_{1}, P_{k}\right)\right\}
\end{aligned}
$$

B. Proof of Lemma 3

Proof. With Hoeffding's inequality and InEq. (2) in the main text, we have

$$
\begin{aligned}
P\left(i: \frac{1}{u_{i}^{\prime}} \sum_{i=1}^{u_{i}^{\prime}} Y_{i}^{s}-\mu_{s}>\beta\left(u_{i}, t_{i}\right)\right) & \leq \sum_{i \geq 1} P\left(\frac{1}{u_{i}^{\prime}} \sum_{i=1}^{u_{i}^{\prime}} Y_{i}^{s}-\mu_{s}>\beta\left(u_{i}, t_{i}\right)\right) \\
& \leq \sum_{i \geq 1} \exp \left\{-2 u_{i}^{\prime} \beta\left(u_{i}, t_{i}\right)^{2}\right\} \\
& \leq \sum_{i \geq 1} \exp \left\{-2 u_{i} \beta\left(u_{i}, t_{i}\right)^{2}\right\} \\
& \leq \frac{\delta}{2 K} .
\end{aligned}
$$

Then, applying the union bound, we complete the proof.

C. Proof of Lemma 4

In this section, we are going to show that $\mathbb{E}\left[\gamma-T\left(t_{\gamma}\right)\right] \leq O\left(H_{c}(j) \log \gamma\right)$ to complete the proof of Lemma 4 . The proof is the same as that of Theorem 1 in (Auer et al., 2002), except some constants.

Proof. For simplicity, let s_{1} denote $s_{c}^{*}(j)$. Considering $s: \mu_{s}<\mu_{s_{1}}$, let $e v(s, \gamma)$ be the event that s is pulled at line 22 by Alg. 1 at round γ. Let $T_{s}\left(t_{\gamma}\right)$ denote the number of pulls on arm s in line 22 Alg. 1 when Alg. 1 selects column j for the γ-th time. Then, $\mathbb{E}\left[T_{s}\left(t_{\gamma}\right)\right]$ can be bounded as follows:

$$
\begin{aligned}
\mathbb{E}\left[T_{s}\left(t_{\gamma}\right)\right] & =\sum_{\gamma^{\prime}=1}^{\gamma} \mathbb{1}[\text { The algorithm pulls arm } s \text { in line } 22 \text { when Alg. } 1 \text { selects column } j \text { for the } \gamma \text {-th round }] \\
& \leq l+\sum_{\gamma^{\prime}=1}^{\gamma} \mathbb{1}\left[T_{s}\left(t_{\gamma}^{\prime}-1\right) \geq l, e v\left(s, \gamma^{\prime}\right)\right] \\
& \leq l+\sum_{\gamma^{\prime}=1}^{\gamma} \mathbb{1}\left[T_{s}\left(t_{\gamma}^{\prime}-1\right) \geq l, \bar{\mu}_{s_{1}}+\sqrt{2 \frac{\log t}{T_{s_{1}}\left(t_{\gamma}^{\prime}-1\right)}} \leq \bar{\mu}_{s}+\sqrt{2 \frac{\log \gamma^{\prime}}{T_{s}\left(t_{\gamma}^{\prime}-1\right)}}\right] \\
& \leq l+\sum_{\gamma^{\prime}=1}^{\gamma} \mathbb{1}\left[T_{s}\left(t_{\gamma}^{\prime}-1\right) \geq l, \min _{\gamma_{1} \in\left[1, \gamma^{\prime}-1\right]} \bar{\mu}_{s_{1}}+\sqrt{2 \frac{\log \gamma}{\gamma_{1}}} \leq \max _{\gamma_{2} \in[l, \gamma-1]} \bar{\mu}_{s}+\sqrt{2 \frac{\log \gamma}{\gamma_{2}}}\right] \\
& \leq l+\sum_{\gamma^{\prime}=1}^{\gamma} \sum_{\gamma_{1}=0}^{\gamma-1} \sum_{\gamma_{2}=l}^{\gamma-1} \mathbb{1}\left[\bar{\mu}_{s_{1}}+\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{1}}} \leq \bar{\mu}_{s}+\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{2}}}\right]
\end{aligned}
$$

Since $\bar{\mu}_{s_{1}}+\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{1}}} \leq \bar{\mu}_{s}+\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{2}}}$, at least one of the following three events happens:

- $\bar{\mu}_{s_{1}} \leq \mu_{s_{1}}-\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{1}}}$;
- $\bar{\mu}_{s} \leq \mu_{s}-\sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{2}}} ;$
- $\mu_{s_{1}} \leq \mu_{s}+2 \sqrt{2 \frac{\log \gamma^{\prime}}{\gamma_{2}}}$.

By Hoeffding's inequality, the probability that the first and the second events happen is at most $2 \gamma^{\prime-4}$, and for $l \geq$ $\frac{8}{\left(\mu_{s}-\mu_{s_{1}}\right)^{2}} \log \gamma$, the third event will not happen. So we have $\mathbb{E}\left[T_{s}\left(t_{\gamma}\right)\right]=O\left(\frac{1}{\left(\mu_{s}-\mu_{s_{1}}\right)^{2}} \log \gamma\right)$. Then, with straightforward computations we complete the proof.

D. Proof of Lemma 5

Proof. Suppose $s^{*} \neq$ none. If at round γ, Alg. 1 does not select $R_{s^{*}[1]}$ or $C_{s^{*}[2]}$, then at least one of following events happens:

- $\exists s \notin\left\{\right.$ none,$\left.s^{*}\right\}, s=N E\left(\overline{\mathbf{M}}_{t}\right)$;
- $N E\left(\overline{\mathbf{M}}_{t}\right)=$ none.

For the first part, it is easy to see that $s \neq s_{r}^{*}(s[1])$ or $s \neq s_{c}^{*}(s[2])$. So by Lemma 4, the size of this part is at most $2\left(\sum_{i} \Lambda\left(H_{r}(i)\right)+\sum_{j} \lambda\left(H_{c}(j)\right)\right)$.
Similarly, if the second case happens, then $s^{*} \neq \arg \min _{s^{\prime} \in \operatorname{row}\left(s^{*}\right)} \bar{\mu}_{s^{\prime}}$ or $s^{*} \neq \arg \max _{s^{\prime} \in \operatorname{col}\left(s^{*}\right)} \bar{\mu}_{s^{\prime}}$. When the second case happens for the γ-th round, due to Alg.1, we selected $R_{s^{*}[1]}$ for at least $\lfloor\gamma / m\rfloor$ times and $C_{s^{*}[2]}$ for at least $\lfloor\gamma / n\rfloor$ times. So by Lemma 4, the size of the second part is at most $\left\lceil(m+n)\left(\Lambda\left(H_{r}\left(s^{*}[1]\right)\right)+\Lambda\left(H_{c}\left(s^{*}[2]\right)\right)\right)\right\rceil$.

E. Proof of Lemma 6

This proof is the same as the proof of Theorem 6 in Kalyanakrishnan et al. (2012), except the statement and some constants.

Proof. Without loss of generality, consider a bandit model $v=\left\{s_{1}, \cdots, s_{k}\right\}$. Suppose $\mu_{s_{i}}>\mu_{s_{i+1}}$. At each round, we pull arms in v as from line 21 to line 23 in Alg. 1. Let $H=\sum_{i=2} \frac{1}{\left(\mu_{s_{1}}-\mu_{s_{i}}\right)^{2}}$. Let $s_{1}(\gamma)=\arg \max _{s \in v} \bar{\mu}_{s}$ after round γ, and $s_{2}(\gamma)=\arg \max _{s \in v \backslash s_{1}(\gamma)} U\left(s,\left|T_{s}(\tau)\right|,|\tau|\right)$. Denote $\tau(\gamma)$ be the set of time steps t in the first γ round. If after γ_{v} round, we have $L\left(s_{1}(\gamma),\left|T_{s_{1}(\gamma)}(\tau)\right|,|\tau|\right)>U\left(s_{2}(\gamma),\left|T_{s_{2}(\gamma)}(\tau)\right|,|\tau|\right)$, we now show that $\mathbb{E} \gamma_{v}=O\left(H_{v} \log \frac{H_{v}}{\delta}\right)$.
Now let us introduce some notations. Define $c=\frac{\mu_{s_{1}}+\mu_{s_{2}}}{2}$ and

$$
\Delta_{i}:= \begin{cases}\mu_{s_{1}}-\mu_{s_{2}} & i=1 \\ \mu_{s_{1}}-\mu_{s_{i}} & i \geq 2\end{cases}
$$

During round γ, we partition the set of arms into three subsets:

- Above ${ }^{\gamma}:=\left\{s \in v: \bar{\mu}_{s}-\beta\left(T_{s}(\gamma), \gamma\right)>c\right\}$.
- Below ${ }^{\gamma}:=\left\{s \in v: \bar{\mu}_{s}+\beta\left(T_{s}(\gamma), \gamma\right)<c\right\}$.
- Middle ${ }^{\gamma}:=v \backslash\left(\right.$ Above $^{\gamma} \cup$ Below $\left.^{\gamma}\right)$.

And by Lemma 2 in Kalyanakrishnan et al. (2012), if we cannot identify $\arg \max _{s \in v} \mu(s)$ after round γ, then $s_{1}(\gamma) \in$ Middle ${ }^{\gamma}$ or $s_{2}(\gamma) \in M i d d l e^{\gamma}$. And with similar computation to Lemma 4 in Kalyanakrishnan et al. (2012), if for all arm s_{i}, we pulled at least $4\left\lceil\frac{1}{2 \Delta_{i}} \ln \frac{m n \gamma^{4}}{4 \delta}\right\rceil$ times, then $\forall s, s \notin M i d d l e^{\gamma}$ with probability at least $1-\frac{3 \delta H_{v}}{m n \gamma^{4}}$. The rest is all the same as Theorem 6 in Kalyanakrishnan et al. (2012).

F. Proof of Theorem 5

Proof. With the same argument as Theorem 8 in Even-Dar et al. (2006), for s_{1}, s_{2}, suppose $\mu_{s_{1}}-\mu_{s_{2}}=\Delta>0$. Then with probability at least $1-\delta /(m n)$, after round $\gamma=O\left(\frac{\ln (m n / \delta \Delta)}{\Delta^{2}}\right)$, we have $\bar{\mu}_{s_{1}}-\bar{\mu}_{s_{2}}>2 \beta_{1}(\gamma)$. So by the union bound, the racing algorithm stops after finite time with probability at least $1-\delta$.
Then we show that Alg. 2 is δ-PAC.
According to Lemma 3, the probability that there is an arm s such that $\left|\bar{\mu}_{s}-\mu_{s}\right|>\beta_{1}(\gamma)$ for some γ is at most δ. Suppose $\forall s, \gamma,\left|\bar{\mu}_{s}-\mu_{s}\right|>\beta_{1}(\gamma)$.

For the case $N E(\mathbb{M})=$ none, consider arm s. If $s \notin\left\{s_{r}^{*}(s[1]), s_{c}^{*}(s[2])\right\}$, clearly, it will be eliminated when its confidence bounds are disjoint with the confidence bounds of $s_{r}^{*}(s[1])$ and $s_{c}^{*}(s[2])$. Otherwise, if $s \in\left\{s_{r}^{*}(s[1]), s_{c}^{*}(s[2])\right\}$, without loss of generality, suppose $s=s_{r}^{*}(s[1])$. Obviously, there is a sequence $S=\left\{s_{1}, s_{2}, \cdots, s_{2 k}\right\}$ such that (1) $s=s_{1}$; (2) $s_{2 i+1}=s_{r}^{*}\left(s_{2 i+1}[1]\right)$ and $s_{2 i}=s_{c}^{*}\left(s_{2 i}[2]\right)$ for all i, where $s_{j}=s_{(j-1) \%(2 k)+1}$; (3) $s_{2 i+1} \in \operatorname{col}\left(s_{2 i}\right)$ and $s_{2 i+2} \in$ $\operatorname{row}\left(s_{2 i+1}\right)$. And according to Alg.2, all the arms in S will be eliminated when their confidence bounds are disjoint.
For the case $s^{*}=N E(\mathbb{M}) \neq n o n e$, obviously, it won't be eliminated by our elimination rule, so Algorithm is δ-PAC.
Up to now we have proven the two statements about Alg. 2 in Theorem 5.

G. Correctness of baseline

Here, We present the stopping and recommendation rules of our baseline algorithm in detail.
Stopping and recommendation rules: In each round, we pull all arms. Let $\beta_{2}(\gamma)=\sqrt{\log \left(5 m n \gamma^{2} / 4 \delta\right) / \gamma}$. After the t-th round, if one of the following event happens, the algorithm stops:

- For some $\operatorname{arm} s$, if for all $s^{\prime} \in \operatorname{row}(s) \backslash s, \exists \gamma_{s^{\prime}}$, after $\gamma_{s^{\prime}}$ rounds, $\bar{\mu}_{s}+2 \beta_{2}\left(\gamma_{s^{\prime}}, \delta\right) \leq \bar{\mu}_{s^{\prime}}$ and for all $s^{\prime} \in$ $\operatorname{col}(s) \backslash s, \exists \gamma\left(s^{\prime}\right)$, after $\gamma_{s^{\prime}}$ rounds, $\bar{\mu}_{s} \geq \bar{\mu}_{s^{\prime}}+2 \beta_{2}\left(\gamma_{s^{\prime}}, \delta\right)$, then the recommendation rule recommends s as the NE.
- For all arm s, if $\exists s^{\prime} \in \operatorname{row}(s), \bar{\mu}_{s^{\prime}}+\beta_{2}(t, \delta) \leq \bar{\mu}_{s}-\beta_{2}(t, \delta)$ or $\exists s^{\prime} \in \operatorname{col}(s), \bar{\mu}_{s^{\prime}}-\beta_{2}(t, \delta) \geq \bar{\mu}_{s}+\beta_{2}(t, \delta)$, then the recommendation rule determines that the underlying game does not have a NE.

Obviously, this algorithm is δ-PAC and the proof for this statement is the same as the proof for Theorem 5.

