
Identify the Nash Equilibrium in Static Games with Random Payoffs

A. Proof of Lemma 2
The proof of Lemma 2 relies on the folloing lemma:
Lemma 7. For positive measurable functions fi, we have:(∫ K∏

i=1

fi(x)dx

)K
≤

K∏
i=1

∫
fKi (x)dx. (4)

Proof. By Cauchy-Schwarz inequality, Eq. (4) is correct for K = 2. We use mathematical induction to prove that it still
holds for K > 2. Specifically, assume InEq. (4) is true for K − 1, considering case K, by Holder’s inequality we have:(∫ K∏

i=1

fi(x)dx

)K
=

(∫
fK(x)

K−1∏
i=1

fi(x)dx

)K

≤
((∫

fKK (x)dx
) 1
K
(∫

(

K−1∏
i=1

fi(x))
K
K−1 dx

)K−1
K

)K

=
(∫

fKK (x)dx
)(∫

(

K−1∏
i=1

fi(x))
K
K−1 dx

)K−1

≤
K∏
i=1

∫
fKi (x)dx.

Now we present the proof of Lemma 2.

Proof. With straight-forward computations, we have:
K∑
k=1

Pk(ψ = k) =

K∑
k=1

∫
ψ=k

dPk =

K∑
k=1

∫
ψ=k

dPk
dP1

dP1.

Because we need a bound for any measurable function ψ, we need to construct the ψ that minimizes the last expression.
Obviously, the last expression is minimized for ψ(x) = arg mink≤K

dPk
dP1

(x), so that
K∑
k=1

Pk(ψ = k) ≥
∫
dP1 min

k

dPk
dP1

=

∫
min
k
dPk.

For vector P̄ = {dP1, · · · , dPK}, define ri(P̄ ) be the i-th smallest value in P̄ , we have(∫
(
∏
k

dPk)
1
K

)K
=
(∫

(
∏
k

rk(P̄ ))
1
K

)K
≤
∏
k

∫
rk(P̄ ) =

∫
min
k
dPk

∏
k≥2

∫
rk(P̄ ).

The above inequality is proven by Lemma 7.Note that
∑
k

∫
dPk ≤ K, so

∏
k≥2

∫
rk(P̄ ) ≤ ( K

K−1 )K−1 < e. With
Jensen’s inequality, it yields that:

K∑
k=1

Pk(ψ = k) ≥ 1

e

(∫
(
∏
k

dPk)
1
K

)K
=

1

e
exp

{
K log

∫
(
∏
k

dPk)
1
K

}
=

1

e
exp

{
K log

∫
(
∏
k

dPk
dP1

)
1
K dP1

}
≥ 1

e
exp

{∑
k

∫
dP1 log

dPk
dP1

}

=
1

e
exp

{
−

K∑
k=2

KL(P1, Pk)

}
.
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B. Proof of Lemma 3
Proof. With Hoeffding’s inequality and InEq. (2) in the main text, we have

P

i :
1

u′i

u′i∑
i=1

Y si − µs > β(ui, ti)

 ≤∑
i≥1

P

 1

u′i

u′i∑
i=1

Y si − µs > β(ui, ti)


≤
∑
i≥1

exp
{
−2u′iβ(ui, ti)

2
}

≤
∑
i≥1

exp
{
−2uiβ(ui, ti)

2
}

≤ δ

2K
.

Then, applying the union bound, we complete the proof.

C. Proof of Lemma 4
In this section, we are going to show that E[γ − T (tγ)] ≤ O(Hc(j) log γ) to complete the proof of Lemma 4. The proof is
the same as that of Theorem 1 in (Auer et al., 2002), except some constants.

Proof. For simplicity, let s1 denote s∗c(j). Considering s : µs < µs1 , let ev(s, γ) be the event that s is pulled at line 22 by
Alg. 1 at round γ. Let Ts(tγ) denote the number of pulls on arm s in line 22 Alg. 1 when Alg. 1 selects column j for the
γ-th time. Then, E[Ts(tγ)] can be bounded as follows:

E [Ts(tγ)] =

γ∑
γ′=1

1[The algorithm pulls arm s in line 22 when Alg. 1 selects column j for the γ-th round ]

≤ l +

γ∑
γ′=1

1
[
Ts(t

′
γ − 1) ≥ l, ev(s, γ′)

]
≤ l +

γ∑
γ′=1

1

[
Ts(t

′
γ − 1) ≥ l, µ̄s1 +

√
2

log t

Ts1(t′γ − 1)
≤ µ̄s +

√
2

log γ′

Ts(t′γ − 1)

]

≤ l +

γ∑
γ′=1

1

[
Ts(t

′
γ − 1) ≥ l, min

γ1∈[1,γ′−1]
µ̄s1 +

√
2

log γ

γ1
≤ max
γ2∈[l,γ−1]

µ̄s +

√
2

log γ

γ2

]

≤ l +

γ∑
γ′=1

γ−1∑
γ1=0

γ−1∑
γ2=l

1

[
µ̄s1 +

√
2

log γ′

γ1
≤ µ̄s +

√
2

log γ′

γ2

]
.

Since µ̄s1 +
√

2 log γ′

γ1
≤ µ̄s +

√
2 log γ′

γ2
, at least one of the following three events happens:

• µ̄s1 ≤ µs1 −
√

2 log γ′

γ1
;

• µ̄s ≤ µs −
√

2 log γ′

γ2
;

• µs1 ≤ µs + 2
√

2 log γ′

γ2
.

By Hoeffding’s inequality, the probability that the first and the second events happen is at most 2γ′−4, and for l ≥
8

(µs−µs1 )2 log γ, the third event will not happen. So we have E[Ts(tγ)] = O
(

1
(µs−µs1 )2 log γ

)
. Then, with straight-

forward computations we complete the proof.
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D. Proof of Lemma 5
Proof. Suppose s∗ 6= none. If at round γ, Alg.1 does not select Rs∗[1] or Cs∗[2], then at least one of following events
happens:

• ∃s /∈ {none, s∗}, s = NE(M̄t);

• NE(M̄t) = none.

For the first part, it is easy to see that s 6= s∗r(s[1]) or s 6= s∗c(s[2]). So by Lemma 4, the size of this part is at most
2(
∑
i Λ(Hr(i)) +

∑
j λ(Hc(j))).

Similarly, if the second case happens, then s∗ 6= arg mins′∈row(s∗) µ̄s′ or s∗ 6= arg maxs′∈col(s∗) µ̄s′ . When the second
case happens for the γ-th round, due to Alg.1, we selected Rs∗[1] for at least bγ/mc times and Cs∗[2] for at least bγ/nc
times. So by Lemma 4, the size of the second part is at most d(m+ n)(Λ(Hr(s

∗[1])) + Λ(Hc(s
∗[2])))e.

E. Proof of Lemma 6
This proof is the same as the proof of Theorem 6 in Kalyanakrishnan et al. (2012), except the statement and some constants.

Proof. Without loss of generality, consider a bandit model v = {s1, · · · , sk}. Suppose µsi > µsi+1 . At each round, we
pull arms in v as from line 21 to line 23 in Alg. 1. Let H =

∑
i=2

1
(µs1−µsi )2 . Let s1(γ) = arg maxs∈v µ̄s after round

γ, and s2(γ) = arg maxs∈v\s1(γ) U(s, |Ts(τ)|, |τ |). Denote τ(γ) be the set of time steps t in the first γ round. If after γv
round, we have L(s1(γ), |Ts1(γ)(τ)|, |τ |) > U(s2(γ), |Ts2(γ)(τ)|, |τ |), we now show that Eγv = O(Hv log Hv

δ ).

Now let us introduce some notations. Define c =
µs1+µs2

2 and

∆i :=

µs1 − µs2 i = 1,

µs1 − µsi i ≥ 2

During round γ, we partition the set of arms into three subsets:

• Aboveγ := {s ∈ v : µ̄s − β(Ts(γ), γ) > c}.

• Belowγ := {s ∈ v : µ̄s + β(Ts(γ), γ) < c}.

• Middleγ := v\(Aboveγ ∪Belowγ).

And by Lemma 2 in Kalyanakrishnan et al. (2012), if we cannot identify arg maxs∈v µ(s) after round γ, then s1(γ) ∈
Middleγ or s2(γ) ∈Middleγ . And with similar computation to Lemma 4 in Kalyanakrishnan et al. (2012), if for all arm
si, we pulled at least 4d 1

2∆i
ln mnγ4

4δ e times, then ∀s, s /∈ Middleγ with probability at least 1 − 3δHv
mnγ4 . The rest is all the

same as Theorem 6 in Kalyanakrishnan et al. (2012).

F. Proof of Theorem 5
Proof. With the same argument as Theorem 8 in Even-Dar et al. (2006), for s1, s2, suppose µs1 − µs2 = ∆ > 0. Then
with probability at least 1−δ/(mn), after round γ = O( ln(mn/δ∆)

∆2 ), we have µ̄s1− µ̄s2 > 2β1(γ). So by the union bound,
the racing algorithm stops after finite time with probability at least 1− δ.

Then we show that Alg. 2 is δ-PAC.

According to Lemma 3, the probability that there is an arm s such that |µ̄s−µs| > β1(γ) for some γ is at most δ. Suppose
∀s, γ, |µ̄s − µs| > β1(γ).
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For the caseNE(M) = none, consider arm s. If s /∈ {s∗r(s[1]), s∗c(s[2])}, clearly, it will be eliminated when its confidence
bounds are disjoint with the confidence bounds of s∗r(s[1]) and s∗c(s[2]). Otherwise, if s ∈ {s∗r(s[1]), s∗c(s[2])}, without
loss of generality, suppose s = s∗r(s[1]). Obviously, there is a sequence S = {s1, s2, · · · , s2k} such that (1) s = s1;
(2) s2i+1 = s∗r(s2i+1[1]) and s2i = s∗c(s2i[2]) for all i, where sj = s(j−1)%(2k)+1; (3) s2i+1 ∈ col(s2i) and s2i+2 ∈
row(s2i+1). And according to Alg.2, all the arms in S will be eliminated when their confidence bounds are disjoint.

For the case s∗ = NE(M) 6= none, obviously, it won’t be eliminated by our elimination rule, so Algorithm is δ-PAC.

Up to now we have proven the two statements about Alg. 2 in Theorem 5.

G. Correctness of baseline
Here, We present the stopping and recommendation rules of our baseline algorithm in detail.

Stopping and recommendation rules: In each round, we pull all arms. Let β2(γ) =
√

log(5mnγ2/4δ)/γ. After the t-th
round, if one of the following event happens, the algorithm stops:

• For some arm s, if for all s′ ∈ row(s)\s,∃γs′ , after γs′ rounds, µ̄s + 2β2(γs′ , δ) ≤ µ̄s′ and for all s′ ∈
col(s)\s,∃γ(s′), after γs′ rounds, µ̄s ≥ µ̄s′ + 2β2(γs′ , δ), then the recommendation rule recommends s as the
NE.

• For all arm s, if ∃s′ ∈ row(s), µ̄s′ + β2(t, δ) ≤ µ̄s − β2(t, δ) or ∃s′ ∈ col(s), µ̄s′ − β2(t, δ) ≥ µ̄s + β2(t, δ), then
the recommendation rule determines that the underlying game does not have a NE.

Obviously, this algorithm is δ-PAC and the proof for this statement is the same as the proof for Theorem 5.


