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Abstract

In e-commerce, different payment transactions have different levels of risk. Risk is gener-
ally higher for digital goods, but it also differs based on product and its popularity, the
offer type (packaged game, virtual currency to a game or subscription service), storefront
and geography. Existing fraud policies and models make decisions independently for each
transaction based on transaction attributes, payment velocities, user characteristics, and
other relevant information. However, suspicious transactions may still evade detection and
hence we propose a novel approach leveraging a graph based perspective to uncover rela-
tionships among suspicious transactions, i.e., inter-transaction dependency. Our focus is
to detect suspicious transactions by capturing common fraudulent behaviors that would
not be considered suspicious when being considered in isolation. In this paper, we present
HitFraud that leverages heterogeneous information networks for collective fraud detec-
tion by exploring correlated and fast evolving fraudulent behaviors. First, a heterogeneous
information network is designed to link entities of interest in the transaction database via
different semantics. Then, graph based features are efficiently discovered from the network
exploiting the concept of meta-paths, and decisions on frauds are made collectively on
test instances. Experiments on real-world payment transaction data from Electronic Arts
demonstrate that the prediction performance is effectively boosted by HitFraud where
the computation of meta-path based features is largely optimized. Notably, recall can be
improved up to 7.93% and F-score 4.62% compared to baselines.

1. Introduction

Fraud detection has attracted significant research efforts in recent years for various tasks
including finance, security and web services. In this work, we investigate the fraud detection
problem on electronic game platforms where it is desirable to identify suspicious payment
transactions in an early stage in order to avoid chargebacks and to enhance normal users’
experience. Current fraud models make independent decisions for each transaction, and
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detection becomes harder when intelligent adversaries are used, e.g., proxy IP addresses.
Graph based methods can detect frauds by leveraging the linkage information between en-
tities of interest Gyöngyi et al. (2004); Hooi et al. (2016); Jiang et al. (2014). Such methods
are relatively harder to evade because making a fraud payment transaction unavoidably
generates links in the graph which reveals inter-transaction dependency.

Existing graph based fraud detection approaches heavily focus on homogeneous informa-
tion networks and bipartite graphs. Heterogeneous information networks (HINs) Sun et al.
(2011) are a special type of information networks that involve multiple types of nodes or
multiple types of links. In a HIN, different types of nodes and links have different semantic
meanings. Such complex and semantically enriched networks possess great potential for
knowledge discovery Ji et al. (2011); Kong et al. (2013); Sun et al. (2009). Its applications
to fraud detection, however, are largely unexplored.

Therefore, we are motivated to investigate how to leverage HINs to facilitate the fraud
detection task. Most importantly, we seek to capture the inter-transaction dependency. It
is critical to explore such relationships among suspicious transactions because fraudulent
behaviors are often correlated and fast evolving. (1) HINs provide us with an effective and
compact representation of linked transactions in various semantics, e.g., the same currency,
the same IP address, and the same game titles. The statistics of the label information (i.e.,
fraud or normal) of these linked transactions can be aggregated, and thereby add a new
dimension of measurements to distinguish suspicious transactions from normal ones based
on the correlated fraudulent behaviors. (2) In order to tackle the problem of fast evolving
fraudulent behaviors, we should not only consider the inter-transaction dependency across
training transactions and test transactions, but also include the dependency among test
transactions. Hence, suspicious transactions are identified in a semi-supervised manner by
iteratively obtaining the predicted labels of test transactions and updating the statistics of
linked transactions in alternation. Such a collective prediction procedure has the potential
to detect a suspicious transaction even if it appears to be normal by itself but its linked
transactions (other test transactions in a batch sharing categorical variables) are identified
as very suspicious, and thereby improve the recall metric. The main contributions of this
work are threefold:

• As fraud payment transactions generally do not occur in isolation, i.e., fraudulent be-
haviors are often correlated and fast evolving, we formulate the fraud detection task as
a collective prediction problem in a HIN to capture relationships among fraud payment
transactions.

• To address the daunting challenge on huge feature space, we design a HIN that can
effectively capture the various relationships among transactions. Here meta-paths (a
sequence of link types) are explored to identify the relevant inter-transaction dependency
features. We propose an effective and efficient algorithm to compute meta-path based
features in the framework of collective fraud detection.

• We validate that the correlated and fast evolving fraudulent behaviors can indeed be ex-
plored to more effectively capture fraud payment transactions. We evaluate the proposed
framework on real-world payment transaction data from Electronic Arts payment sys-
tem, and results show that recall and F-score can significantly be improved by exploring
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inter-transaction dependency via the proposed collective fraud detection method based
on HINs.

2. Methodology

2.1. HIN Construction

In this work, we use Electronic Arts (EA) payment transaction data as an example to do the
study. All transactions on EA digital platform go through a set of policies, rules and models
to determine their levels of risk, and a subset of them are sent for additional manual review.
An experienced team reviews those transactions and decides if they should be rejected or
approved, and this review decision is used as the ground-truth for training and evaluating
fraud detection algorithms. We collected manual review data for n = 130K transactions
during a recent period. Each transaction is associated with a d = 2K dimensional feature
vector, including transaction attributes, payment velocities, user characteristics, and other
relevant information.

A HIN is constructed by linking entities of interest from several selected databases.
Transactions are the target instances on which fraud decisions are made, so each transaction
ID is represented as a node in the network, and the set of transaction IDs compose a node
type in the network schema. In addition, other entities that are directly or indirectly related
to a transaction are considered here, and they compose other node types in the schema,
including billing accounts, user accounts, game titles, IP addresses, etc. Links are added
based on common semantics. For example, a transaction is linked with a user if the user
placed the transaction, and a transaction is linked with an item if the transaction contains
the item. As a result, the constructed HIN is composed of over 400K nodes and 1.5M links.
It integrates data involving m = 12 types of nodes, such as transaction, user, item, title,
currency, source, country, etc. which are connected through r = 15 types of links, such as

“transaction
containsItem−−−−−−−−→ item”, “billing

billingIP−−−−−−→ IP”, etc. Its network schema is shown in
Figure 1 where each rectangle represents a node type, and each line represents a link type.

We can represent a HIN as a directed graph G = (V, E). V = V1 ∪ · · · ∪ Vm denotes the
set of nodes involving m node types: V1 = {v11, · · · , v1n1

}, · · · ,Vm = {vm1 , · · · , vmnm
} where

vip represents the p-th node of type i. E = E1 ∪ · · · ∪ Er ⊆ V × V denotes the set of links
between nodes in V involving r link types. Mathematically, a link type k starting from
source nodes of type i and ending at target nodes of type j is described by an adjacency
matrix Ak ∈ Rni×nj where Ak[p, q] = 1 if there exists a link in Ek between vip and vjq ,

otherwise Ak[p, q] = 0. We can write this link type as “V i E
k

−→ Vj”. We may assume
without loss of generality that nodes in V1 are the target entities, i.e., transactions, in the
case of fraud detection. The number of target entities is denoted as n = n1. Formally, we
are given a data matrix X = [xT

1 ; · · · ; xT
n ] where xi ∈ Rd is the feature vector of the i-th

transaction which typically involves extensive feature engineering and domain knowledge.
Labels are denoted as y = [y1, · · · , yn] where yi = 1 if the i-th transaction is a fraud,
otherwise yi = 0.
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Figure 1: The network schema of EA
payment transaction data.
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(b) A meta-path P.

Figure 2: An example of computing a meta-
path from sparse links.

2.2. Capturing Inter-Transaction Dependency

First, we briefly review the concept of meta-path following previous work Cao et al. (2014);
Kong et al. (2013); Sun et al. (2011). In general, a meta-path corresponds to a type of path
within the network schema, containing a certain sequence of link types. For example, in Fig-

ure 1, a meta-path “transaction
containsItem−−−−−−−−→ item

isT itle−−−−→ title
isT itle−1

−−−−−−→ item
containsItem−1

−−−−−−−−−−→
transaction” denotes a composite relation between transactions where containsItem−1 rep-
resents the inverted relation of containsItem. The semantic meaning of this meta-path is
that transactions contain items that belong to the same game title. Different meta-paths
usually represent different semantic meanings between linked nodes. In this manner, various
relationships among transactions can be described by a set of meta-paths. By capturing
such inter-transaction dependency and aggregating the label information of the linked trans-
actions, we could better detect correlated fraudulent behaviors. In other words, we could
identify transactions with highly risky values in a categorical variable, e.g., game title. Intu-
itively, when a recent launch of FIFA attracts many frauds to it, transactions that contain
FIFA would be more suspicious than others. Similarly, transactions that are related to
user accounts, billing accounts, IP addresses and currencies with high risk could also be
identified.

The implementation of meta-paths is essentially a chain of matrix multiplications. Let’s
denote a meta-path as P =< Ek1 , · · · , Ekl > where the source node of Ek1 is of type
s and the target node of Ekl is of type t. The semantic meaning of this meta-path is
mathematically described as P = Ak1 × · · · ×Akl ∈ Rns×nt . It is usually assumed that the
strength of connection between vsp and vtq on such semantics is positively correlated with
P[p, q], because P[p, q] is the (weighted) count of paths connecting vsp and vtq that follow
the sequence of links in P. Hereinafter, P and P will be used interchangeably when the
meaning is clear from context.
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2.3. Efficient Computation of Meta-Paths

Cardinality, which refers to the maximum number of times a node of the source node type
can be linked with nodes of the target node type, is represented by the styling of a line
and its endpoint in Figure 1. The notation style is similar to entity-relationship diagrams
(ERDs) where a Crow’s foot shows many-to-one relationship.

Let’s consider a meta-path “transaction
fromSource−−−−−−−−→ source

fromSource−1

−−−−−−−−−→ transaction”
and denote it as P =< Ek1 , Ek2 > where Ek1 is the set of links indicating which source a
transaction is from, and Ek2 is its inverted relation. The adjacency matrix of Ek1 is denoted
as A ∈ Rn×ns where n = 130K is the number of transactions and ns is the number of
sources, then that of Ek2 is AT , and P = A×AT . Because each transaction is conducted
on one of EA game stores, Ek1 here is a many-to-one relation between transactions and
sources. That is to say, A is extremely sparse with one value per row, and its sparsity ratio
is 1− 1/ns > 98%.

The adjacency matrix A is shown in Figure 2 for 100 randomly sampled transactions,
as well as the the meta-path P = A ×AT . As we can see, through the direct application
of matrix chain multiplication, the computation of a meta-path almost turns a sparse ad-
jacency matrix A into a full matrix P. Moreover, there are a lot of redundancy in P. For
this particular meta-path, if i-th transaction and the j-th transaction are from the same
source k, i.e., A[i, k] = A[j, k] = 1, they have exactly the same row and column in P, i.e.,
P[i, :] = P[j, :] = P[:, i] = P[:, j].

Fortunately, we are not interested in the concrete form of a meta-path itself. For the
purpose of obtaining features for fraud detection on transactions, the meta-paths that we
need to compute should have the same source node type and target node type which is a
transaction. Because each transaction may be linked with different number of transactions
through a meta-path, aggregation functions are employed to combine the label information
of linked transactions in order to derive a fixed number of meta-path based features. For
example, we can use the weighted label fraction of linked transactions as the feature z ∈ Rn

for each meta-path Kong et al. (2013, 2012). It is formulated as follows:

z = D×P× y (1)

where D ∈ Rn×n is a diagonal matrix and D[i, i] = 1/
∑

j P[i, j]. In this manner, zi indicates
the ratio of being frauds among transactions that are connected with the i-transaction
through the meta-path. Note that in the supervised learning setting, the ground-truth label
information in y of test transactions are unknown or withheld, and they can be initialized
and updated through collective prediction.

2.3.1. Many-to-One Cases

Next, we will introduce how to obtain the feature z without explicitly computing the meta-
path P. Since the concept of meta-path is defined as a sequence of link types, it can also
be considered as a sequence of node types that are endpoints of these links (different link
sequences can correspond to the same node sequence though), say, P =< Vk0 , · · · ,Vkl >.
We have k0 = kl = 1 since we only consider meta-paths whose source node type and target
node type are transaction. It is assumed that transaction is always the node set of the
largest size, i.e., argmaxi{|V i||V i ∈ P} = 1, and t denotes the node set of the smallest size
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in P, i.e., argmini{|V i||V i ∈ P} = t. Therefore, we can decompose a meta-path P into
two parts at the node type t, and its matrix form can be written as P = P1 × PT

2 where
P1,P2 ∈ Rn×nt .

Definition 1 (Simple Meta-path) A meta-path is a simple meta-path if it is a sequence
of many-to-one relations.

Note that a simple meta-path itself is a (composite) many-to-one relation. For example,

“transaction
byBilling−−−−−−→ billing

isAccount−−−−−−→ account
isType−−−−→ type” is a simple meta-path. Most

meta-paths are a concatenation of a simple meta-path and another meta-path, and their
features can efficiently be computed.

Lemma 1 Given a meta-path P = P1×PT
2 where P1 is a simple meta-path, the computa-

tion of Eq. (1) on P can be reduced to:

z = P1 × (D2 ×PT
2 × y) (2)

where D2 ∈ Rnt×nt is a diagonal matrix and D2[i, i] = 1/
∑

j P2[j, i].

Proof 1 The detailed proof is presented in Cao et al. (2017).

Eq. (2) is important because it enables us to obtain the weighted label fraction of
linked nodes without extensive matrix operations. In this manner, we can effectively avoid
computing the redundant full matrix of a meta-path as an intermediate result.

2.3.2. Many-to-Many Cases

Let’s consider the meta-path “transaction
containsItem−−−−−−−−→ item

isT itle−−−−→ title
isT itle−1

−−−−−−→ item
containsItem−1

−−−−−−−−−−→ transaction”. It involves a many-to-many link type, i.e., “transaction
containsItem−−−−−−−−→

item”, in Figure 1.

Definition 2 (Complex Meta-path) A meta-path is a complex meta-path if it contains
at least one many-to-many relation.

Note that a complex meta-path is “usually” a (composite) many-to-many relation. Now,
we dichotomize all meta-paths into simple meta-paths and complex meta-paths. Given any
nontrivial meta-path (l > 1), we still decompose it into two parts at the node type of the
smallest size, P = P1 ×PT

2 , and we propose to compute its features as follows:

z = D1 ×P1 × (D2 ×PT
2 × y) (3)

where D1 ∈ Rn×n is a diagonal matrix and D1[i, i] = 1/
∑

j P1[i, j]. Obviously, D1 = In
where In is an identity matrix when P1 is a simple meta-path. Therefore, Eq. (2) is a
special case of Eq. (3) in the many-to-one scenarios.

However, Eq. (3) is not equivalent to Eq. (1) or Eq. (2) when P1 is a complex meta-path.

For example, P =“transaction
containsItem−−−−−−−−→ item

isT itle−−−−→ title
isT itle−1

−−−−−−→ item
containsItem−1

−−−−−−−−−−→
transaction” can be decomposed as P1 = P2 =“transaction

containsItem−−−−−−−−→ item
isT itle−−−−→ title”
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Figure 3: Prediction performance.

where P1 is a complex meta-path. In Eq. (1), we compute the average fraction of frauds in
the linked transactions and each transaction is weighted by the number of common game
titles in the current transaction. It does not, however, distinguish which game titles are
shared. In other words, each shared game title is counted equally. In contrast, Eq. (3) counts
a shared rare title more than a shared popular title because D2 accounts for a normalization
step at the title level. The similarity between two transactions increases proportionally to
the number of titles they share, but is offset by the popularity of the title.

2.4. Collective Fraud Detection

So far we have explored the inter-transaction dependency to capture the correlated fraud-
ulent behaviors where the correlations mainly exist between training transactions and test
transactions. We further notice that fraudulent behaviors are fast evolving. For example, a
batch of new transactions may be made by the same new billing account but with different
IP addresses, some of which are rather risky and others might be proxy. It is desirable to
mark all these transactions as suspicious.

The inference problem for collective fraud detection in a HIN is to learn a predictive
function f : (V, E ,X) → y. Conventional classification approaches usually make an inde-
pendent and identically distributed (i.i.d.) assumption, and thus the probability of each
transaction being a fraud is inferred independently as f(xi) ∝ Pr(yi = 1|xi). In addition to
the given features X, we include the meta-path based features

{
z1, · · · , zc

}
where c is the

number of extracted meta-paths. Therefore, the target is to learn

f(xi) ∝ Pr(yi = 1|xi, z
1
i , · · · , zci ) (4)

In this manner, however, the inference of different transactions is essentially not in-
dependent, because meta-path based features contain the (predicted) label information of
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linked transactions in both training and test sets. It can be done in an iterative framework
where the label of a transaction is inferred based on the labels of its linked transactions
through its meta-path based features, and its predicted label will further be used to infer
the labels of its linked transactions by updating their meta-path based features. It is similar
to the framework of Heterogeneous Collective Classification (HCC) Kong et al. (2012), and
we improve it with a more efficient way of computing meta-path based features.

Definition 3 (Downsized Meta-path) Given the node sequence of a meta-path P =<
Vk0 , · · · ,Vkl >, it is a downsized meta-path if nk0 > · · · > nkl.

It is assumed that the meta-paths of interest in this work can be decomposed as two
coupled downsized meta-paths which however is not true for all meta-paths. We design
the process of meta-path exploration based on discussions in the last section which can be
summarized into two facts: (1) Meta-paths that are used for feature computation in our task
always start from and end at transaction nodes. (2) Each meta-path can be decomposed
into two parts at the node type of the smallest size. Therefore, we can perform a breadth-
first-search from transaction nodes to find all downsized meta-paths from V1 to each other
node type. In the search procedure, say, the current meta-path P is from V1 to V i, we

enumerate link types “V i E
k

−→ Vj” in the network schema. If |V i| > |Vj |, a new meta-path
P′ = P×Ak is added into Sj . Search will be expanded from the newly added meta-paths
until all downsized meta-paths from V1 to V i have been included in Si.

3. Results

3.1. Experimental Setup

Experiments are conducted on EA payment transaction data that contains n = 130K
transactions with manual review labels. For training and evaluation purposes, we segment
the data into two consecutive parts so that one-week data is used for testing models and the
preceding weeks are used for training. Based on sliding windows, 7 data segmentations are
created, each of which is denoted as W1 to W7. Four metrics are reported: recall, precision,
F-score and accuracy.

3.2. Effectiveness with Different Classifiers

One claim of this paper is that HitFraud can work well in conjunction with a variety
of base classifiers. To evaluate this claim, we conduct experiments using various base
classifiers, including random forest (RF), support vector machines (SVM), logistic regression
(LR), and factorization machines (FM). The implementations of these base classifiers from
scikit-learn1 and fastFM2 are used with default hyperparameter configurations. The
baselines are the same base classifiers that explore only the given feature space X. Figure 3
shows the prediction performance comparing HitFraud to the baselines. We can observe
that, by conducting collective fraud detection, HitFraud is usually able to outperform
the baselines with multiple choices of base classifiers, on multiple datasets, in multiple

1. http://scikit-learn.org
2. https://github.com/ibayer/fastFM
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Figure 4: Computation cost of meta-paths.

evaluation metrics. For example, with random forest on the W1 dataset, recall is boosted
7.93% from 0.6737 to 0.7271 (p = 0.000), precision 0.28% from 0.9517 to 0.9543 (p = 0.218),
F-score 4.62% from 0.7889 to 0.8253 (p = 0.000), and accuracy 1.17% from 0.9257 to
0.9366 (p = 0.003). According to these raw p-values, recall, F-score and accuracy are all
significant, although precision is non-significant. In few cases, precision is sacrificed to boost
recall and the overall F-score. However, precision and recall can be improved at the same
time by HitFraud in most cases. In general, it demonstrates that HitFraud is flexible
and effective in conjunction with a diversity of underlying classification algorithms, and
the inter-transaction dependency can indeed be explored to more effectively capture fraud
payment transactions.

3.3. Efficiency in Meta-Path Computation

There is much redundancy in the plain-vanilla computation of meta-path based features
which aggravates not only the time cost but also the memory consumption. There are in
total c = 38 meta-paths explored in this work, and some examples of meta-paths are shown
in Cao et al. (2017). Figure 4 compares the time cost of computing each meta-path based
feature between the approach proposed in Section 2.3 for HitFraud and HCC presented
in Kong et al. (2012). The comparison of memory cost is omitted due to space limit
whose trend is similar to Figure 4. Note that this experiment is conducted on a network
constructed from one-week data, because the time and space cost for HCC is formidable
on the whole dataset. We can observe that the discrepancy of time cost is significant even
on the log scale. For a few cases where HitFraud and HCC take almost the same time,
those are meta-paths that involve nearly one-to-one relation where redundancy is not very

severe, e.g., “transaction
byUser−−−−→ user

byUser−1

−−−−−−→ transaction”. Obviously, it is not very likely
that many users would place multiple transactions within one week. In general, the time
complexity of discovering relevant network features in HitFraud is linear to the number
of transactions and insensitive to the type of relationships.

4. Conclusions

In this paper, we propose HitFraud, a collective fraud detection algorithm that cap-
tures the inter-transaction dependency. Meta-path based features are efficiently computed
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through the use of pre-computing downsized meta-paths. Suspicious transactions in the test
set are collectively identified when they share common fraudulent behaviors. Experiments
on EA payment transaction data demonstrate that the prediction performance is effectively
boosted by HitFraud with different choices of base classifiers. It is validated that the
correlated and fast evolving fraudulent behaviors can indeed be explored to more effectively
capture fraud payment transactions.
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