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Abstract

Excessive treatment or testing of patients is considered one of the most ubiquitous and
persistent forms of waste and abuse in healthcare. Some estimates show excessive treatment
to be as high as 8% of all medical insurance provider expenditures. It is very difficult to
identify an extraneous or unnecessary procedure or drug because there is such a wide variety
of diagnoses and an equally large number of treatment options.

Our goal in this paper was to show how RBMs can be utilized effectively to ferret out
abnormal treatments where the prescribed treatment for a given diagnosis is not strictly
followed. To test our hypothesis we generated 200,000 different injuries and injected 10%
of the injuries with unnecessary treatments to reflect estimated industry prevalence levels.
Using testing and training sets we found that Restricted Boltzmann Machines (RBMs)
were able to reach AUCs of .95, lifts at 9.5 and recalls at 50%. Implementing our approach
on real-world client datasets have shown performances levels that approach simulation
performances despite additional noise.

1. Introduction: Overutilization in healthcare

Waste and abuse from overtreatment (AKA overutilization) by medical providers is perva-
sive throughout the United States and many other nations. It persists despite concerted
efforts by governments and insurance providers to catch this type of abuse. A report from
the Institute of Medicine in 2010 estimated up to 30% of health insurance expenditures were
due to waste and abuse. Overtreatment accounts for over a quarter of waste and abuse or
8% of total U.S. health expenditures.(KIiff, 2012)

Part of the problem in mitigating overutilization is the difficulty in parsing valid treat-
ments from invalid/unnecessary treatments. The variety of diagnosis and potential drugs
and treatments to address them create innumerable permutations and combinations. Ad-
ditionally the validation of prescribed treatments for any given diagnosis require time and
specialized medical knowledge from trained professionals. We offer a machine learning
approach using Restricted Boltzmann Machines (RBMs) to model likely combinations of
treatments and diagnosis enabling us to better highlight unlikely treatments where overuti-
lization is most likely.

Our work in this paper with medical overutilization is motivated by a client engagement
specifically related to occupational insurance where the client coverage only includes occu-
pational injuries. Simulations of similar injury data sets revealed an ability for the RBMs
to gain lift of 9 to 10 times given sample sizes of 200,000 with 10% fraud.
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2. Data sources and data simulation

Due to underdevelopment of data collections from our motivating client, itemized treatments
and diagnosis were predominantly in the form of transcribed descriptions. Lack of officially
coded medical data necessitated the processing of descriptions from unstructured data in
to structured pseudo medical codes so that we could conduct further modeling. We used
common NLP techniques to prepare diagnosis and treatment descriptions by tokenizing,
stemming, and removing stop words and common medical terms. To assign drug codes we
conducted cosine similarity between the word frequency of described drug treatments and
the published list of USDA drugs. On the remaining treatment and diagnosis descriptions we
used a combination of topic modeling and hierarchical clustering to group similar treatments
and similar diagnosis.

Ultimately the goal was a concise 800 by 200,000 matrix of treatment occurrences for
each injury. Structuring the statements, diagnosis, drug prescriptions and treatments into
codes allowed us to then transform the list of injuries in to an occurrence matrix of rows
and columns. Each row was an injury and each column designated an injury claim was
associated to assorted classes of diagnosis or treatments. An injury could contain multiple
diagnoses and treatments.

In order to test the feasibility of capturing overutilization we simulated a dataset
of 200,000 injuries and injected 10% of the injuries with fraud.! The simulation pro-
cess started by defining 400 by 800 probability matrix. Fach of 400 distinct diagnoses
mapped 2 to 20 out of 800 possible treatments as high probability occurrences. Injuries
with a particular diagnosis were not guaranteed to have that diagnosis treatment set
but would likely select from the high probability mapped to that diagnosis. Likewise
a given injury diagnosis might occasionally assign as a low probability treatment. In-
juries were then simulated by picking a random diagnosis and probabilistically select-
ing a combination of mapped treatments. Each injury had a 10% chance of being se-
lected for overutilization in which case a random extra treatment is added to the injury.
The result was a 800 by 200,000 matrix of injuries
with treatments as features and injuries as obser-
vations. All subsequent results were derived from
training and testing on the simulated data. In order
to stress test results we also ran a simulation of data
with only 1% of injuries containing added treatments.

Total injuries: 200,000
Diagnosis classes: 400
Treatment classes: 800
Fraud simulated: 10%

3. Methodology

Finding treatment fraud can be framed as a categorical outlier problem. Diagnosis and
treatments can be thought of as different categories. There are many situations in which
one category often implies another: a bone fracture diagnosis often requires an x-ray treat-
ment. There are also categories that rarely happen together. For example, a bone fracture
diagnosis rarely coincides with a pupil dilation treatment. If we can effectively model the

"While certain estimates of total impact from abuse and fraud are higher, we chose a more conservative
number of 10% and also experimented with 1% injection of fraud.
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likelihood of different sets of categories in our categorical system (treatments and diagnosis),
then we should be able to find injuries that stray from expectation.

There are a number of methods to mine categorical systems for outliers, such as Logistic
regression. However, given the dimensionality of our matrices and the sparsity of data we
found that this approach had difficulty converging. The logistic regression approach required
training and maintenance of a separate model for each category. When working with high
dimensional categorical variables this could result in management of hundreds or thousands
of models.

We also investigated associated rule mining as a technique for categorical outlier detec-
tion.(Preetha and Radha, 2012) While associated rule mining can effectively find combi-
nations of categories with good support it is not effective when data is sparse and general
support levels are low. We found that most combinations we observed in our data did not
offer high enough levels of support sufficient for us to differentiate categories that belonged
together from those that did not.

RBMs are a limited graph model (or neural network) which has only one input layer
and one hidden layer and no output. Unlike traditional neural networks they do not train
based on a target, but instead try to converge based solely on input data — an unsupervised
neural network. A further advantage of the RBM based approach is that it leverages
Gibbs sampling which allows it to traverse the relatively high dimensionality of our data
set to explore for all the potential interrelationships between the categories.(Hinton, 2002)
RBMs are often compared to autoencoders in that they both have similar abilities to act as
nonlinear dimensionality reducers. However, autoencoders typically use a deterministic back
propagation approach whereas RBMs use Gibbs sampling which is a stochastic approach.

The resulting RBM model contains neu-
ron weights that estimate the interrelation-
ships of different features from the training
data. We can then use the trained RBM to
predict likely combinations of categories for
new input data. If the trained RBM’s pre-
diction of categories matches the actual in-
put data then the difference between the ac-
tual and predicted treatments will be small.
If the actual input data contains unlikely
combinations then the predicted treatments
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Figure 1: By definition an RBM is a two will not match and the difference between
layered fully connected neural network. actual and predicted will be larger. Large
Above an Injury with 5 features train an differences represent high risk for treatment
RBM model of one visible and one hidden fraud small differences represent low risk.

layer. We trained RBMs on an occurrence ma-

trix of injuries where each column is a treat-
ment. The resulting RBM model re-estimated the occurrence of given treatments. We
compared the predicted treatments from the RBM with the actual treatments billed. We
rolled up injury level risk using mean squared error (MSE):
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Where T is the total number of treatment categories, y; is the actual occurrence of a
treatment category, and ¢, is the predicted occurrence of a treatment category. Using these
metrics we could then estimate risk of overutilization and make suggestions to the medical

team for further investigation into an injury claim.

3.1. Validation

We took a stratified sample of data and submitted the
results to the internal medical review team. The re-
view team was then required to make blind evaluations
of whether an injury was at high or low risk for fraud.
The resulting sample was then used as a test set. For val-
idation of model results on simulated data we created a
90/10 training/test split. Following results are based off
of the simulated 10% test set from the 200K generated
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Injury2 1 0 0 O
Injury 3 0 1 0 1
Injury4 0 0 1 O

injuries.

3.2. Picking hyper-parameters

Table 1: Treatment occurrence
matrix

Modeling was executed in R wusing the deepnet li-

brary.(Rong, 2015) Restricted Boltzmann Machines offers

a number of potential hyper parameters to tune the RBM. Deepnet uses a sigmoid activa-
tion function for both visible and hidden layers. We used the default batch size (100) and
learning rate (0.8) and focused our initial tuning efforts on finding the optimal number of
hidden layer nodes and the number of iterations per sample. In general smaller numbers of
hidden neurons are faster to compute and offer dimensionality reduction while higher num-
bers of hidden neurons allow greater ability to find nonlinear relationships between input
features but risk overfitting. Epoch describes the total number of times the RBM iterated

through weight estimations.

In order to find optimal parameters we
iterated through different combinations of
hidden layer and epoch combinations. For
each combination we used the business vali-
dation results to calculate the Response Op-
erator Characteristic curve and the area un-
der the curve (AUC) as an approximation
of relative model power. Using our gener-
ated data the calculation of the AUC lever-
ages our a priori knowledge of which in-
juries were injected with fraud.? We then
estimated the parameter combination that
would result in the highest probable AUC
for both mean over treatment and mean
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Figure 2: Mapped parameters with final
selected hyper parameter at 8 epochs and
1000 hidden layer nodes.

squared error. Poor performance near low values hidden nodes shows possible under-fitting.

2In practice, calculation of AUC on live data requires investigation and verification by users of fraud or

not fraud on a stratified sampled data.
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We expected a more degradation at high hidden node counts but instead found increasing
epochs more quickly led to overfitting. The optimal combination of these hyper parame-
ters was estimated to be 1000 hidden nodes and 8 epochs using the mean squared error
calculation [see figure 2]. Subsequent results analysis is reported on this model version.

4. Results

The optimal hyper parameters resulted in an AUC of 0.96 (using the MSE calculation) and

lift ratios of 9.5 at recalls of 50%.

Figure 3: Response operator characteristic curves from mean squared error risk score

Figure 4: Lift compared to recall for RBM mean squared error risk score
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To understand how sample size affects
the performance we generated a learning
curve [see figure 5]. For benchmarking pur-
poses, we used a smaller number of hidden
layer of 300 nodes and 9 epochs. It shows
that under differing circumstances that the
RBMs stabilize at similar rates. Our main
simulation set with 10% fraud and another
set with 1% fraud both tend to stabilize
with sample sizes above 40,000. This shows
the RBMs can be more sensitive to smaller
sample sizes, and less sensitive to variation
in the prevalence of fraud. In real data with
more noise the performance requires more
observations for similar dimensionalities.

We calculated the risk scores for the
population by taking the mean squared er-
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Figure 5: Test set based learning curve from
our simulation of 200K injuries with a 10%
fraud rate and 100K injuries with a 1% fraud
rate

ror found for each injury in the test set. Because our data set had 800 dimensions and most
treatments for a given injury are zero (not present), the mean squared errors range from
near 0 to 0.003. For display purposes we scaled the test set scores from zero to one and
power transformed the scores to have a median of 0.5 resulting in the following equation:
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1
mse — min (mse) ) 9.55

rebalanced_score = < -
max (mse) — min (mse)
We can see the distribution of scores in
figure 6 with injuries generated with fraud 1400
distinguished from those with no fraud. We
can see clearly that fraud injuries are rep-
resented among the top scores. Using this
score we can effectively isolate most of the
injuries where we injected extra unneces-
sary treatments.
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Real world data is generally not as clean
as simulation data. However, we’'ve seen
the RBM performs well with lifts in the Figure 6: Distribution of fraud and

range of 2 to 4 for recalls of 50%. Real non-fraud risk scores from the test set after
client data has shown more sensitivity to rebalancing scores to a median of 0.5.
sample size than simulated data with large

improvements from sample increases. This

is likely due to greater levels of noise in real

data. Mandating the use of standardized medical coding like ICD10 into the invoicing would
reduce noise in the formation of the injury occurrence matrix. In lieu of coded data, match-
ing claim descriptions against integrated diagnosis dictionaries and procedure dictionaries
may offer better medical coding than purely unsupervised methods.

Though we do not suggest RBMs are the only method in this space, (Bayesian networks
have been used extensively) RBMs have proven to have utility in identifying treatment
overutilization. These results show RBMs can effectively identify high risk outliers despite
the noisiness of our data and the dimensionality of the feature space. We recommend
consideration of RBMs not just within insurance fraud, but in any situation where we are
faced with high dimensional categorical outlier detection.?
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