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Abstract
Hybrid methods for Bayesian network structure learning that incorporate both observed data and
expert knowledge have proven to be important in many fields. Previous studies have presented
both exact and approximate hybrid methods for structure learning. In this paper, we propose an
approximate method based on local search that is capable of efficiently handling a variety of prior
knowledge constraints, including an important class of non-decomposable ancestral constraints
that assert indirect causation between random variables. In our experiments, our proposed approxi-
mate method is able to significantly outperform an existing state-of-the-art approximate method in
finding feasible solutions when hard constraints are imposed. Our approach is able to find near-
optimal networks while scaling up to almost fifty random variables. In contrast, previous exact
methods are unable to handle more than twenty random variables. Furthermore, we show that
when prior knowledge is integrated, we are often able to produce a network much closer to the
ground truth network, particularly when the amount of data is limited.
Keywords: Bayesian network; structure learning; local search; expert knowledge; hard con-
straints; ancestral constraints.

1. Introduction

A Bayesian network (BN) is a probabilistic graphical model of a probability distribution with appli-
cations in various fields including medicine (Flores et al., 2011), ecology (Pollino et al., 2007), and
bioinformatics (Friedman et al., 2000).

In practice, BNs are usually either fully specified by an expert or learned directly from ob-
served data; however, both approaches have major drawbacks. Experts usually do not have suffi-
cient domain knowledge to produce the full network, especially as the number of random variables
increases. On the other hand, the task of learning the BN structure directly from data is NP-hard,
even to approximate to within a reasonable factor (Chickering et al., 2003; Dasgupta, 1999) and
data is often limited or expensive.

1.1 Expert Knowledge Constraints.

In many fields, hybrid methods for BN structure learning that incorporate both expert knowledge and
data have been applied to obtain superior results; e.g. Flores et al. (2011); Sesen et al. (2013); Oyen
et al. (2016); Antal et al. (2004). These studies use approximate search methods with informative
priors, allowing an expert to specify confidence levels in various constraints. In contrast, we focus
on incorporating prior knowledge as hard constraints. Our method builds on MINOBS, a local
search based memetic algorithm for BN structure learning by Lee and van Beek (2017). We are
able to handle the following types of constraints in our method.
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(1) Existence of an arc: assert that a directed arc xy exists. The user can also specify that an
undirected arc xy exists if the direction is not known.

(2) Absence of an arc: assert that the directed arc xy does not exist.

(3) Ordering constraint: assert x comes before y in some ordering of the nodes in the BN. This
implies that there exists no directed y, x-path (but the converse does not necessarily hold).

(4) (Positive) Ancestral constraint: assert the existence of a directed x, y-path.

We refer to such constraints collectively as side constraints. These side constraints are expres-
sive enough to indirectly handle some other common constraints, such as undirected arc absence
(no arc xy or yx), causal tiers (only arcs from a lower tier variable to a higher tier variable are
permitted) and specifying root nodes and leaves.

The primary challenge of our work was incorporating ancestral constraints which cannot be
handled locally (by modifying the parents of a single node), or by pruning the space of orderings.
They are notoriously difficult to incorporate into the structure learning process (Chen et al., 2016).
However, ancestral constraints are important for a number of reasons. First, although ancestral con-
straints are weaker than directed arc existence constraints, direct dependencies can only be known
given a high degree of domain knowledge. Experts are more likely to provide useful information
when less specific constraints can also be asserted (Flores et al., 2011). Secondly, ancestral con-
straints can assert that one variable is an indirect cause of another, which is an abundant form of
expert knowledge in many domains (e.g. Şahin et al. (2006); Ma et al. (2017); Leu and Chang
(2013); Chen and Leu (2014); Giordano et al. (2013)). Thirdly, ideally BNs built for knowledge
discovery or knowledge representation should encode all known causal dependencies. In our ex-
periments, we demonstrate that imposing ancestral constraints produces a BN much closer to the
ground truth network in terms of their causal statements. In fact, BN structure learning from data
alone cannot distinguish between causation and correlation.

1.2 Results.

We present a novel hybrid BN structure learning method that can incorporate expert knowledge as
hard constraints, including ancestral constraints. In our experimental evaluation, we demonstrate
that our method is able to find high-quality solutions to constrained problems, while scaling to more
variables than other existing methods. To the best of our knowledge, we are the first to successfully
incorporate ancestral constraints into a local search based BN structure learning approach.

1.3 Related work.

We briefly discuss some related work on BN structure learning algorithms.
In a classic paper by Tsamardinos et al. (2006), greedy hill-climbing was used efficiently and

accurately for standard BN structure learning. Another local search algorithm by de Campos and
Castellano (2007) was able to handle precisely the constraints (1) – (3). However, this local search
method is based on the space of DAGs while our proposed method primarily searches over the space
of topological orderings.

A recent exact approach by Chen et al. (2016) called EC Tree was specifically designed to han-
dle ancestral constraints. EC Tree can also handle constraints asserting the absence of a directed
path and finds solutions with guaranteed optimality which our proposed method cannot. However,
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their method does not scale beyond n = 20 random variables when using the BDeu score. GOB-
NILP (Bartlett and Cussens, 2017), a widely-used exact approach, is able to handle a large variety
of constraints. Chen et al. (2016) demonstrated that GOBNILP can be made to handle ancestral
constraints, but requires orders of magnitude more time than EC Tree.

Causal discovery via MML (CaMML) (Korb and Nicholson, 2010) uses stochastic search based
on Markov Chain Monte Carlo. It is capable of handling all of the constraints (1)-(4) except for arc
absence. One is also able to assert that two variables are correlated (i.e. not independent) and all
constraints can be specified as a soft constraint by setting confidence levels. We compare CaMML
with our proposed method in our experimental evaluation.

2. Background

We begin by reviewing preliminary details on Bayesian networks (BNs). A BN consists of a DAGG
with nodes V = {v1, . . . , vn}, where each node is a random variable, and a conditional probability
distribution P (vi | par(vi)) for each random variable vi, where par(vi) is the set of parents of vi
in G. Arcs in G from one node to another represent direct dependencies, and the full structure G
encodes all conditional dependencies between the n variables. In this paper, we focus on the score-
and-search method for BN structure learning. A scoring function σ(G) is chosen where every DAG
G on n variables is assigned a score based on how well G fits the observed data (we assume a lower
score is better). A common property of most scoring functions, such as BIC/MDL (Schwarz, 1978),
and BDeu (Heckerman et al., 1995), is decomposability, meaning the score of the DAG is the sum
of its local scores at each node:

σ(G) =

n∑
i=1

σ(vi, par(vi))

It is common practice to precompute the scores for each random variable vi and each candidate
parent set p ⊆ 2V \{vi}. Parent set identification involves pruning parent sets that never appear
in optimal scoring solutions (further discussed in Section 3). Structure optimization is the task of
assigning a parent set for each node to achieve a minimum scoring acyclic network.

In order to incorporate prior knowledge, we wish to solve the BN structure learning problem
with additional hard constraints. We formally present the problem we focus on for this paper.

Definition 1 (Constrained Bayesian network structure learning problem) Given a data setD =
{d1, . . . , dN}, where each di is a vector of discrete values over features/random variables V , a
scoring function σ that measures how well a candidate structure is supported by the observed data
D, and arbitrarily many constraints of one of the following forms:

1. x→ y (directed arc existence) or x — y (undirected arc existence)

2. x9 y (directed arc absence)

3. x < y (topological ordering constraint)

4. x y (ancestral constraint)

The constrained Bayesian network structure learning problem is to find a directed acyclic graph G
over V minimizing the score σ(G) subject to the following:
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• for every constraint x→ y, the arc xy is in G.

• for every constraint x — y, one of the arcs xy or yx is in G.

• for every constraint x9 y, the arc xy is not in G

• there exists an ordering O such that for all constraints x < y, x comes before y in O and O
is a topological ordering for G

• for every constraint x y, there exists a directed path from x to y in G

MINOBS applies the ordering-based search (Teyssier and Koller, 2005) approach to BN struc-
ture learning. Given a topological ordering O of the nodes, the optimal DAG consistent with O can
be found in polynomial time, assuming parent sets are restricted to some constant size at most k.
This approach searches over the O(n!) size space of orderings on n variables, where the score of an
ordering is the minimum score of a BN consistent with that ordering.

The rest of the paper focuses on the methods used to approximately solve the constrained BN
structure learning problem .

3. Parent Set Identification

Score-and-search approaches to BN structure learning rely on effective pruning strategies to reduce
the number of candidate parent sets for each variable. The problem of parent set identification
is to determine which parent sets do not appear in optimal solutions and hence do not need to
further be considered. Unfortunately, existing pruning rules preserve the optimal solution under the
assumption that we are solving the problem with no side constraints, but can be incorrect in the
presence of side constraints. For example, consider the following widely used pruning rule.

Lemma 2 (Teyssier and Koller (2005)) Let xi be a node, Π,Π′ potential parent sets for xi such
that Π ⊂ Π′ and σ(xi,Π) < σ(xi,Π

′). Then Π′ is not the parent set of xi in an optimal DAG G∗.

In the (unconstrained) BN structure learning problem, this rule allows Π′ to be pruned since for
any DAG G′ containing Π′ as a parent of xi, one can instead assign Π as the parent of xi resulting
in a DAG G with a strictly lower score than G′. However, when the addition of constraints are
considered, this rule no longer holds, as G′ may satisfy arc existence or ancestral constraints that G
does not. Therefore this pruning technique should not be used.

Our method uses new approaches to parent set identification specific to the constrained BN
structure learning problem. For example, the following rules use constraints to eliminate infeasible
solutions.

(P1) If x→ y, then any parent set of y that does not contain x can be pruned.

(P2) If x9 y, then we may prune all parent sets of y containing x.

(P3) If x < y, then we may prune parent sets of x containing y.

(P4) If x y, Π is a parent set of y, and for all nodes p ∈ Π, p < x, then Π may be pruned (since
assigning Π as the parent set of y immediately makes satisfaction of x y impossible).
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Using these rules to prune the candidate parent sets, any DAG constructed from the remaining
candidate parent sets must satisfy all constraints of the form x → y and x 9 y. If we wish to
only consider DAGs consistent with some ordering O, we can easily handle the constraint x — y
using (P1) as the direction of the arc can be deduced from O. The next rule is inexact but is able to
drastically reduce the number of candidate parent sets.
(P5) Let xi be a node, Π,Π′ potential parent sets for xi, λ ≥ 1 a constant such that Π ⊂ Π′ and
λσ(xi,Π) < σ(xi,Π

′). Then Π′ is pruned from the set of candidate parent sets.

Notice that this pruning rule is equivalent to Lemma 2 if λ = 1 is chosen. We prune a parent
set Π′ if its score is significantly worse than one of its subsets Π, as Π′ is unlikely to appear in
optimal solutions to the constrained BN structure learning problem. The choice of λ is important;
overpruning can be detrimental to the quality of DAGs found while underpruning is inefficient. We
compute an initial value of λ using the formula,

λ = 1 + ω(
n

N
)(1− (1− manc

n(n− 1)
)2),

where n is number of random variables, N is number of data points, manc is number of ancestral
constraints, and ω is a constant.

This formula satisfies some key desiderata. Consider G and H , the optimal-scoring DAGs
without and with ancestral constraints imposed, respectively. We expect G and H to be close in
structure and score if (i) the number of data points is large (as both approach the ground truth
network, or an I-equivalent network) or (ii) the number of ancestral constraints is small. Therefore,
in these cases we wish to have a small λ in order to prune parent sets with poor scores more liberally.

In our approach, we restart the search with a higher value of λ if feasible solutions cannot be
found. We also specify a value of ω in our experimental procedure.

4. Constraint-based Hill Climbing

In this section, we discuss how to search for an optimal solution consistent with a given ordering O
that satisfies all constraints. Recall that x → y, x 9 y, and x — y can all be handled in parent set
identification. We assume that O is consistent with all ordering constraints as this is handled in the
next section. Here we show how to handle ancestral constraints. For convenience, we denote φ(G)
to be the number of ancestral constraints x y that are satisfied by a DAG G.

Definition 3 (Parent assignment neighbour) Two DAGsG andG′ with the same nodes are parent
assignment neighbours if and only if the parent set of a single node differs between G and G′.

In Algorithm 2, the minimum scoring DAG consistent with O is computed and set as the initial
DAGG0. We then apply the hill climbing method in Algorithm 1 onG0. At each iteration of the hill
climb, we choose an improving parent assignment neighbour G′ of G, replacing G with G′. Here,
we say that G′ is an improvement over G if and only if φ(G′) > φ(G) or φ(G) = φ(G′), σ(G′) <
σ(G), i.e. satisfying the most ancestral constraints is the primary objective, with score optimization
as a secondary objective. The list of candidate parent sets, allParents, is sorted in increasing order of
score. For each candidate parent set p for node v, we consider G′, the parent assignment neighbour
of G that results from assigning p as the parent for v in G. As the number of candidate parent sets
can be large, we adopt a first improvement neighbour selection strategy. Unfortunately, computing
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Algorithm 1: hillClimbDAG(G, O)

allParents← allParentSets() ; /* sorted by increasing score */
while true do

for p in allParents do
x← child(p) ;
if not tabu(x) and feasible(p,O) then

G′← G;
G′.parentOf(x)← p ;
if G′ improves G then

G← G′ ;
break ;

end if
end if

end for
if no improvement found then

if random(0, 1) < walkProb then
p← random feasible parent set;
x← child(p) ;
G.parentOf(x)← p ;
tabu x for 3 iterations ;

else
break ;

end if
end if

end while
return G ;

Algorithm 2: bestDAGForOrdering(O)

G0← initialDAG(O) ;
return hillClimbDAG(G0, O) ;

φ(G′) can be quite expensive, performing a depth-first search to check each ancestral constraint
x  y in the worst case. However, a constraint x  y that is satisfied in G must be satisfied in
G′ unless v is a descendant of x and an ancestor of y in G. Furthermore, if a constraint x  y is
not satisfied in G, then it is satisfied in G′ if and only if v is an ancestor of y and v has a parent
in G′ that was a descendant of x in G. Thus, the number of depth first searches can be reduced by
precomputing which ancestral constraints are satisfied, and the descendants and ancestors of nodes
involved in ancestral constraints.

A problem with the parent assignment neighbourhood is that it is small and the hill climbing
algorithm can become stuck in low-quality local minima. We solve this by introducing random
walks and a tabu list. When the hill climb reaches a local minimum, it moves to a random non-
improving solution with some small probability walkProb. The node whose parent set was affected
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is then declared tabu for the next three iterations of the hill climb so the change is not immediately
undone (while a node is tabu, it cannot have its parent set reassigned).

5. Ordering-based Search

In this section, we focus on hill climbing over the space of topological orderings. The score of
an ordering O is the minimum value of σ(G) for DAGs G consistent with O and satisfying all
constraints. As the true minimum-scoring DAG is difficult to find, we treat the best DAG found by
Algorithm 2 as the score for O.

We follow roughly the same search strategy and neighbourhood that is outlined in MINOBS
(Lee and van Beek, 2017) which uses the insert neighbourhood and swap-adjacent neighbourhood.
Simply, O′ is an insert neighbour of O if it results from selecting an element of O and inserting it
to a new index (e.g. {x1, x2, x3, x4} and {x1, x4, x2, x3} are insert neighbours). A swap-adjacent
neighbour of O is an ordering resulting from swapping an element of O with its preceding element
(e.g. {x1, x2, x3, x4} and {x1, x2, x4, x3} are swap-adjacent neighbours).

The insert neighbourhood of O can be traversed using a series of swap-adjacent moves. Each
swap-adjacent move only affects the choice of parent sets for the two swapped elements when
no additional constraints are present, but this is not the case with side constraints. We found the
following strategy to be effective. Let the current ordering be O = (x1, ..., xi, xi+1, ..., xn) and the
best feasible DAG found consistent with O be G. Suppose index i is being swapped with index
i+ 1 and we wish to find the best feasible DAG consistent with O′ = (x1, ..., xi+1, xi, ..., xn). We
found that using G as the initial starting point for hill climbing on O′ improved the running time,
as G satisfies all ancestral constraints and is likely of high quality. If the parent set of xi+1 in G
contains xi, then G is not feasible under O′ but we fix this by replacing the parent of xi+1 with the
lowest-scoring feasible parent under O′.

6. Experimental Evaluation

In our experiments, we compare our proposed method, denoted by MINOBSx1, against the CaMML2

software. CaMML was chosen for comparison as it is widely used in application fields (see, e.g.
Flores et al. (2011), Kennett et al. (2001), Sesen et al. (2013)) and is also based on a stochastic
score-and-search approach. It is important to note that the learning problem is significantly easier
without ancestral constraints (adding any of the other constraints also generally improves perfor-
mance), therefore we did not find it useful to compare MINOBSx against methods that could not
handle ancestral constraints. Unfortunately, the source code for EC Tree was not made available.

Our test instances consist of all small and medium networks in the Bayesian Network Repos-
itory3, the largest of which is barley (48 nodes). We randomly sampled 6 small datasets and 6
large datasets from the associated joint probability distributions of these ground truth networks.
Two sets of experiments were run: (i) only imposing ancestral constraints and (ii) imposing various
constraints. For each set of experiments, we selected 4 fixed percentages and sampled 5 sets of
constraints at that percentage from the ground truth network. For a percentage p%, we sampled
constraints in the following way.

1. Code is available at https://github.com/acliuw/MINOBS-anc
2. http://bayesian-intelligence.com/software/
3. http://www.bnlearn.com/bnrepository/
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• We choose p% of all directed arcs in the ground truth network. For each arc xy we report
x→ y with probability 1

2 , otherwise we report x — y.

• We choose p% of all pairs (x, y) such that there is no directed arc xy in the ground truth
network and report x9 y.

• We choose p% of all pairs (x, y) such that there is a directed x, y-path in the ground truth
network and report x y.

• We use topological sort to retrieve an arbitrary topological ordering O of the ground truth
network and report p% of the

(
n
2

)
possible ordering constraints x < y for O.

When comparing MINOBSx and CaMML, we excluded arc absence constraints as CaMML
does not accept these. For each dataset and each constraint set, we ran both MINOBSx and CaMML,
providing the dataset and constraint set as input.

6.1 Setup.

All tests were run on a single core of an Intel “Broadwell” E5-2683 v4 CPU @ 2.1 Ghz with a
memory limit of 512 MB for small networks and 4 GB for medium networks.

The parent set scores for MINOBSx were generated using GOBNILP (Bartlett and Cussens,
2017) with a parent limit of 3, due to limited disk space.4 The running time for GOBNILP is
included in the running time for MINOBSx in the results. MINOBSx was run for 50 generations on
small networks and 10 generations on medium networks. The parameter ω described in Section 3
was tuned to a value of 50 using the cancer, child, and barley instances.

CaMML was run under its default settings. We allowed CaMML more running time than MI-
NOBSx as CaMML is implemented in Java while MINOBSx is implemented in C++. All constraints
passed to CaMML were specified with a confidence level of 1.0 (hard constraint) except ancestral
constraints, which were assigned a confidence of 0.9999. CaMML was often unable to produce any
solutions except on very small networks when the confidence level for ancestral constraints was set
to 1.0. Surprisingly, by changing the confidence to 0.9999 for ancestral constraints, CaMML was
able to completely solve some instances that it otherwise was not able to find any solutions to.

6.2 Results.

MINOBSx was able to find feasible solutions incorporating all constraints imposed for all tests.
CaMML was able to consistently incorporate most constraints on small networks, but performed
poorly on all larger cases. Results for 3 of the 11 networks are explicitly specified in Table 1. 5

We also compare the quality of the networks learned by MINOBSx against the ground truth
networks. We do not compare against the networks learned by CaMML as the two methods use
different scoring functions, which can have a large impact on results. For instances with only
ancestral constraints, we directly analyze the results produced in the previous group of experiments;
however, for instances with various constraints, we re-ran MINOBSx on constraint sets that included
arc absence constraints. We report the number of missing/extra/reversed arcs and the structural
intervention distance (SID) (Peters and Bühlmann, 2015) (which measures the difference in causal

4. For the largest case, barley, the number of parent sets generated is 48 ∗ (
(
48−1

3

)
+

(
48−1

2

)
+

(
48−1

1

)
+

(
48−1

0

)
) =

832,512 with a parent limit of 3. If the parent limit is increased to 4, the number of parent sets generated is 9,394,032.
5. Extended versions of Table 1 and Table 2 containing full results are available at github.com/acliuw/MINOBS-anc.
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instance N %
MINOBSx CaMML

% feasible % sat t (seconds) % feasible % sat t (seconds)

asia

8 variables
18 params

250

10 / 5 100 / 100 100 / 100 1.1 / 0.5 100 / 100 100 / 100 5.8 / 5.4
25 / 10 100 / 100 100 / 100 1.3 / 0.5 100 / 100 100 / 100 6.3 / 5.5
50 / 15 100 / 100 100 / 100 0.9 / 0.3 100 / 100 100 / 100 6.8 / 5.9
100 / 20 100 / 100 100 / 100 0.5 / 0.2 100 / 100 100 / 100 8.3 / 5.7

1000

10 / 5 100 / 100 100 / 100 0.9 / 0.4 100 / 100 100 / 100 5.5 / 5.0
25 / 10 100 / 100 100 / 100 1.1 / 0.4 100 / 100 100 / 100 6.0 / 5.3
50 / 15 100 / 100 100 / 100 0.7 / 0.3 100 / 96.7 100 / 99.7 6.3 / 5.6
100 / 20 100 / 100 100 / 100 0.4 / 0.2 100 / 100 100 / 100 7.3 / 5.6

insurance

27 variables
984 params

500

10 / 5 100 / 100 100 / 100 180.5 / 104.9 50.0 / 70.0 95.9 / 99.0 439.5 / 325.3
25 / 10 100 / 100 100 / 100 318.9 / 56.5 56.7 / 50.0 98.0 / 98.9 723.9 / 385.0
50 / 15 100 / 100 100 / 100 328.7 / 52.8 30.0 / 33.3 98.5 / 98.1 1165.6 / 485.2
100 / 20 100 / 100 100 / 100 292.5 / 37.4 0 / 53.3 98.1 / 99.6 2052.3 / 571.7

2000

10 / 5 100 / 100 100 / 100 124.0 / 88.3 0 / 53.3 78.8 / 98.1 438.5 / 309.8
25 / 10 100 / 100 100 / 100 236.3 / 49.6 16.7 / 23.3 92.4 / 96.8 748.6 / 393.2
50 / 15 100 / 100 100 / 100 251.5 / 48.2 3.3 / 10.0 94.4 / 96.6 1175.2 / 487.9
100 / 20 100 / 100 100 / 100 233.1 / 33.4 0 / 10.0 95.6 / 98.8 1956.8 / 571.1

barley

48 variables
114005 params

2000

10 / 5 100 / 100 100 / 100 2321.4 / 5866.8 0 / 0 70.3 / 89.3 19824.8 / 11666.1
25 / 10 100 / 100 100 / 100 4228.9 / 2941.3 0 / 0 74.4 / 93.6 37034.3 / 14864.9
50 / 15 100 / 100 100 / 100 7163.0 / 3518.9 0 / 0 73.9 / 95.0 70433.0 / 20339.2
100 / 20 100 / 100 100 / 100 7246.6 / 1806.3 0 / 0 80.9 / 96.3 114036.7 / 22366.9

8000

10 / 5 100 / 100 100 / 100 4761.1 / 6032.7 0 / 0 44.0 / 82.8 18092.6 / 10759.6
25 / 10 100 / 100 100 / 100 4063.8 / 3620.0 0 / 0 52.5 / 91.8 35308.3 / 14477.5
50 / 15 100 / 100 100 / 100 5137.8 / 3022.8 0 / 0 54.0 / 95.1 64893.5 / 18142.0
100 / 20 100 / 100 100 / 100 5675.6 / 1638.8 0 / 0 53.4 / 95.1 111338.4 / 21184.4

Table 1: Performance results for ancestral constraints only (first number in each pair) and with
various constraints (second number in each pair). N is number of observations, % is the fixed
percentage used to sample constraints, % feasible is the percentage of cases where the solution
satisfied all constraints imposed, % sat is the percentage of satisfied constraints out of those con-
straints imposed, t is the running time required by the program. Highlighted cells indicate that not
all constraints were able to be satisfied.

statements) between the learned and ground truth networks. We also report the percentage difference
between the BDeu score of the learned network and the optimal score produced by GOBNILP6 on
the instance without side constraints. The results for 4 networks of varying sizes are displayed in
Table 2; however, the other networks produced similar results.

From these results, MINOBSx appears much more robust than CaMML, especially as the num-
ber of variables increases. Even when it spends significantly more time than MINOBSx, CaMML
is often unable to find feasible solutions (e.g. see the barley case). Also, the percentage differ-
ence between the BDeu scores to the constrained problem and the unconstrained problem is small
and never over 4%. Hence, solutions produced by MINOBSx are within a 4% error margin of the
optimal constrained solution in the worst case.

When we analyze the affect of ancestral constraints on solution quality, we see that the number
of missing and reversed arcs tends to decrease while the number of extra arcs does not change or
worsens. However, in some cases, the number of missing arcs does not improve, even when 100%
of ancestral constraints are added. A small number of various constraints seems to offer more no-
ticeable and consistent improvements to missing and extra arcs. A likely reason is that arc existence

6. A parent limit of 8 was imposed for small networks, 6 on medium networks (except for mildew and barley), and 4
for mildew and barley due to time constraints.
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instance N % Missing Extra Reversed SID Score (BDeu)

asia

8 variables
18 parameters

250

0∗ 1.5 1.7 1.0 12.2 0%
10 / 5 1.4 / 1.4 1.6 / 1.6 0.7 / 0.9 10.3 / 11.1 0.0% / 0.0%

25 / 10 1.2 / 1.4 1.8 / 1.6 0.5 / 0.6 7.2 / 8.9 0.1% / 0.1%
50 / 15 1.0 / 0.8 2.0 / 1.4 0.3 / 0.4 4.3 / 4.4 0.2% / 0.3%

100 / 20 0.5 / 0.7 1.7 / 1.1 0.0 / 0.2 1.8 / 3.9 0.3% / 0.3%

1000

0∗ 0.8 0.3 1 9.0 0%
10 / 5 0.7 / 0.8 0.4 / 0.4 0.9 / 1.1 7.3 / 9.0 0.0% / 0.0%

25 / 10 0.4 / 0.5 0.5 / 0.3 0.4 / 0.8 4.2 / 6.4 0.0% / 0.0%
50 / 15 0.2 / 0.3 0.4 / 0.4 0.0 / 0.5 0.4 / 3.6 0.0% / 0.0%

100 / 20 0.0 / 0.2 0.3 / 0.3 0.0 / 0.4 0 / 3.1 0.0% / 0.0%

child

20 variables
230 parameters

500

0∗ 5.3 1.0 3.0 115.7 0%
10 / 5 4.8 / 4.8 1.1 / 0.8 1.9 / 1.3 91.4 / 82.6 0.1% / 0.2%

25 / 10 4.7 / 4.3 1.9 / 1.6 1.6 / 1.8 93.9 / 79.4 0.2% / 0.3%
50 / 15 3.9 / 4.2 1.4 / 1.2 1.7 / 0.7 76.1 / 69.9 0.3% / 0.4%

100 / 20 2.2 / 3.6 2.2 / 0.8 0.0 / 0.3 35.8 / 57.6 0.9% / 0.4%

2000

0∗ 1.7 0.2 3.5 79.2 0%
10 / 5 1.5 / 1.3 0.2 / 0.2 0.5 / 0.1 26.0 / 20.8 0.0% / 0.0%

25 / 10 0.7 / 1.0 0.3 / 0.3 0.3 / 0.5 12.1 / 18.0 0.0% / 0.0%
50 / 15 0.7 / 1.0 0.3 / 0.3 0.5 / 0.0 12.2 / 16.2 0.0% / 0.0%

100 / 20 0.2 / 1.0 0.3 / 0.1 0.0 / 0.0 2.5 / 16.6 0.1% / 0.0%

alarm

37 variables
509 parameters

1000

0∗ 2.2 5.8 1.3 45.7 0%
10 / 5 2.0 / 1.6 6.2 / 5.5 1.1 / 1.6 34.7 / 46.4 0.0% / 0.1%

25 / 10 2.0 / 1.8 6.3 / 5.4 0.7 / 0.8 27.7 / 32.2 0.1% / 0.1%
50 / 15 2.0 / 1.5 6.1 / 5.0 0.3 / 0.6 22.4 / 27.7 0.1% / 0.2%

100 / 20 2.0 / 1.5 6.2 / 4.4 0.0 / 0.1 18.0 / 18.3 0.1% / 0.2%

4000

0∗ 2.0 3.2 1.8 39.5 0%
10 / 5 2.0 / 1.6 4.6 / 4.5 0.6 / 1.2 24.9 / 38.8 0.0% / 0.0%

25 / 10 2.0 / 1.8 4.5 / 4.3 0.3 / 0.6 20.1 / 28.0 0.0% / 0.0%
50 / 15 2.0 / 1.5 4.1 / 4.2 0.0 / 0.4 18.0 / 22.3 0.0% / 0.1%

100 / 20 1.7 / 1.4 4.2 / 3.7 0.0 / 0.3 12.3 / 20.4 0.0% / 0.1%

barley

48 variables
114005 parameters

2000

0∗ 32.3 8.2 9.7 949.5 0%
10 / 5 33.3 / 31.7 14.4 / 12.2 5.1 / 4.4 792.9 / 756.7 0.6% / 1.4%

25 / 10 31.9 / 31.0 15.6 / 13.8 5.3 / 4.8 802.6 / 741.5 0.9% / 1.7%
50 / 15 31.0 / 27.5 17.4 / 11.3 3.0 / 3.2 699.4 / 666.9 1.4% / 2.9%

100 / 20 30.2 / 26.4 19.5 / 11.8 0.0 / 1.5 619.3 / 628.1 2.4% / 3.9%

8000

0∗ 25.5 3.7 9.7 794.7 0%
10 / 5 25.6 / 24.6 8.9 / 8.0 5.3 / 5.2 636.6 / 625.4 0.3% / 0.8%

25 / 10 25.0 / 24.0 10.4 / 8.8 5.5 / 4.3 644.4 / 584.7 0.4% / 0.9%
50 / 15 22.1 / 20.5 9.2 / 7.6 3.3 / 1.9 541.7 / 487.4 0.6% / 1.4%

100 / 20 20.8 / 19.3 12.0 / 7.0 0.0 / 1.6 457.2 / 507.2 0.9% / 1.8%

Table 2: Results for medium networks, with ancestral constraints only (first number in each pair)
and with various constraints (second number in each pair). Rows marked 0∗ under the % column
indicate optimal solutions produced by GOBNILP without side constraints.

and absence constraints can directly fix a missing or extra arc whereas ancestral constraints are am-
biguous. If an incorrect path is used to satisfy an ancestral constraint, this may create additional
extra arcs while not improving the number of missing arcs. On the other hand, ancestral constraints
alone appear to significantly improve the SID. This is expected, since ancestral constraints assert
indirect causes and the SID measures differences in causal statements.

One pitfall we note is that due to the low parent limit of 3, MINOBSx is unable to recover the
ground truth network in some cases, while CaMML does not explicitly set a parent limit. This is
observed in the results for alarm which contains a node with 4 parents. However, this is generally
insignificant as large parent sets result in overly complex models that are unlikely to appear in
optimal solutions, especially when the amount of data is small.
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7. Conclusion

We present a novel method for incorporating prior knowledge constraints into a local search algo-
rithm for Bayesian network structure learning, including non-decomposable ancestral constraints.
While previous exact methods could handle up to twenty random variables, we demonstrate that our
stochastic search method is able to scale up to nearly fifty random variables while producing high
quality networks. When compared against CaMML, a software widely used by researchers in ap-
plied fields, our proposed method shows much more robust and consistent performance on networks
with more than twenty nodes.

For future work, similar techniques to those presented in this paper may prove useful for effi-
ciently handling other non-decomposable constraints. One such example is d-separation, which can
be used to assert conditional independence relationships between variables.
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