
Proceedings of Machine Learning Research vol 72, 284-295, 2018 PGM 2018

Consistent Estimation given Data that are Missing Not At Random

Karthika Mohan KARTHIKA@CS.UCLA.EDU

Judea Pearl JUDEA@CS.UCLA.EDU

Abstract
This paper presents a unified approach for recovering causal and probabilistic queries using graphical
models given missing (or incomplete) data. To this end, we develop a general algorithm that can
recover conditional probability distributions and conditional causal effects in semi-Markovian
models.
Keywords: Missing Not At Random; Missing Data; Causal Bayesian Network.

1. Introduction

Missing data or incomplete data are data in which values of one or more variables are unobserved/not
available. Missing data could arise due to multiple reasons: reluctance of people to reveal sensitive
information such as salary, tax reports and heath related information, badly designed questionnaires
and accidental deletion of records.

As an example, consider data collected over the following variables: Education, Gender, Salary,
Age and University attended, in which Salary and Age are corrupted by missingness. We also know
that respondents with very high and very low salary were reluctant to reveal their salaries and due
to a random printing error, a few questionnaires did not have the question pertaining to age printed
on them. Given the incomplete data and the graphical model encoding the underlying assumptions
about the data generation process, we are interested in answering questions such as: (i) what is the
effect of age and gender on salary? (ii) what is the effect of gender on education? and (iii) how likely
is it to get a salary above $100,000 if you attended Cornell University?

Previous work in consistently estimating (i.e. recovering) causal and probabilistic relations
using graphical models include (Daniel et al., 2012; Mohan et al., 2013; Mohan and Pearl, 2014;
Shpitser et al., 2015; Shpitser, 2016). That said, missing data is a widely studied problem afflicting
all branches of empirical sciences and has resulted in a rich body of literature in diverse fields such
as statistics, machine learning, epidemiology and psychology (Rubin, 1996; Little and Rubin, 2002;
Enders, 2010; Graham, 2012; Darwiche, 2009; Koller and Friedman, 2009; Robins, 1997; Gill and
Robins, 1997)). However in this work we focus exclusively on consistently estimating causal and
probabilistic distributions given a graphical model encoding the missingness assumptions.

1.1 Missingness Graphs

Let G(V, E) be the causal DAG where V is the set of nodes and E is the set of edges. Nodes in the
graph correspond to variables in the dataset and are partitioned into five categories, i.e.

V = Vo ∪ Vm ∪ U ∪ V ∗ ∪R

Vo is the set of variables that are observed in all records in the population and Vm is the set of
variables that are missing in at least one record. Variable X is termed as fully observed if X ∈ Vo

and partially observed if X ∈ Vm. Rvi and V ∗i are two variables associated with every partially

284

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

observed variable, where V ∗i is a proxy variable that is actually observed, and Rvi represents the
status of the causal mechanism responsible for the missingness of V ∗i ; formally,

v∗i = f(rvi , vi) =

{
vi if rvi = 0
m if rvi = 1

(1)

V ∗ is the set of all proxy variables and R is the set of all causal mechanisms that are responsible for
missingness. Unless stated otherwise it is assumed that no variable in Vo ∪ Vm ∪U is a child of an R
variable. U is the set of unobserved nodes, also called latent variables. Two nodes X and Y can be
connected by a directed edge i.e. X → Y , indicating that X is a cause of Y , or by a bi-directed edge
X < − > Y denoting the existence of a U variable that is a parent of both X and Y .

This graphical representation is called a Missingness Graph (or m-graph) (Mohan et al., 2013).
Figure 1 (a) exemplifies an m-graph in which Vo = {Y }, Vm = {X}, V ∗ = {X∗}, U = ∅ and
R = {RX}. For any set of variables Z, Zm = Z ∩Vm. Proxy variables may not always be explicitly
shown in m-graphs in order to keep the figures simple and clear. The missing data distribution,
P (V ∗, Vo, R) is referred to as the manifest distribution and the distribution that we would have
obtained had there been no missingness, P (Vo, Vm, R) is called the underlying distribution. GX

denotes the graph obtained by deleting from G all arrows pointing to nodes in X . Conditional
Independencies are read off the graph using the d-separation criterion (Pearl, 2009).

1.2 Types of Missingness

(Rubin, 1976) classified missing data into three categories: Missing Completely At Random (MCAR),
Missing At Random (MAR) and Missing Not At Random (MNAR) based on the statistical depen-
dencies between the missingness mechanisms (R variables) and the variables in the dataset (Vm, Vo).
The graph based definition of these categories as stated in (Mohan et al., 2013) is: Data are MCAR if
Vm ∪ Vo ∪ U⊥⊥R holds in the m-graph, MAR if Vm ∪ U⊥⊥R|Vo holds, and MNAR otherwise.

Figure 1: m-graphs in which (a) P (X,Y) is recoverable, (b) P (X|Y) is recoverable.

1.3 Recoverability

Definition 1 (Recoverability of target quantity Q (Mohan et al., 2013)) Let A denote the set of
assumptions about the data generation process and let Q be any functional of the underlying
distribution P (Vm, VO, R). Q is recoverable if there exists an algorithm that computes a consistent
estimate of Q for all strictly positive manifest distributions P (V ∗, Vo, R) that may be generated
under A.

Since we encode all assumptions in the structure of the m-graph G, recoverability becomes a property
of the pair {Q,G}, and not of the data.

285

MOHAN AND PEARL

X∗ Y RX P (X∗, Y, RX)

0 0 0 0.2
0 1 0 0.2
1 0 0 0.1
1 1 0 0.1
m 0 1 0.2
m 1 1 0.2

Table 1: Manifest distribution cor-
responding to m-graph in figure
1(a)

X Y P (X,Y)

0 0 0.2
0.3 ∗ 0.5 = 1

3

0 1 0.2
0.3 ∗ 0.5 = 1

3

1 0 0.1
0.3 ∗ 0.5 = 0.5

3

1 1 0.1
0.3 ∗ 0.5 = 0.5

3

Table 2: Recovered distribution
P (X,Y)

Example 1 Given the m-graph G in figure 1(a) and data in table 1 we will detail the procedure to
recover P (X,Y).
P (X,Y) = P (X|Y)P (Y). Since X⊥⊥Rx|Y in G we have, P (X,Y) = P (X|Y,Rx = 0)P (Y).
It follows from equation 1 that when Rx = 0, X = X∗. Therefore, P (X,Y) = P (X∗|Y,Rx =
0)P (Y). Notice that P (X,Y) has been expressed in the terms of observed data i.e. P (X,Y) has
been recovered. The recovered distribution is given in table 2.

1.4 Inducing Path

Definition 2 (Inducing Path (Verma and Pearl, 1991)) A path p between nodes A and B is called
an inducing path if all the intermediate nodes on p are colliders and ancestors of A and/or B.

In the presence of such an inducing path, 6 ∃C such that A⊥⊥B|C. In this paper we detail how
P (X) can be recovered when Rx and X are connected by inducing path(s). Functions detectIP and
handleIP in the appendix detect problematic inducting paths and apply rules 2 and 3 of do-calculus
to transform the query so that in the corresponding mutilated graph inducing paths cease to exist.
We formalize a general procedure for recoverability in the following sections.

2. Unified Approach to Recoverability of Causal and Probabilistic Queries: An
Overview

Results in (Mohan and Pearl, 2014) confirm the need for procedures recovering conditional causal
effects to be able to handle conditional probability distributions. Similarly, results in (Shpitser
et al., 2015), show that in order to establish recoverability, especially in models with inducing paths,
one might need to convert a probablistic query into a causal one using rules of do calculus (Pearl,
2009). Hence we propose a unified approach for handling both causal and probabilistic queries. Our
approach relies on the notion of partial-recoverability, defined below.

Definition 3 (Partial Recoverability of P (A|B, ĉ)) Let D = (A ∪ B) ∩ Vm. A query of the form
P (A|B, ĉ) is said to be partially-recovered if D = ∅ or RD ⊆ C.

In words, A and B must either not contain partially observed variables or if they do, the corresponding
R variables should be present in C. Given a query P (X|Y, do(D)) where {X,Y,D} ⊆ Vm ∪ Vo,

286

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

we first convert it into partially recovered form and then apply techniques to recover the causal effect.
The function isParRec in the appendix checks if an input query is in partially recovered form. The
following subsection presents the factorization scheme that we apply to these problems.

2.1 General Missingness Factorization for Recovering P (X|Y, ŵ)

Definition 4 (General Missingness Factorization) Let X , Y and W be disjoint subsets of vari-
ables. Let D ⊆ Xm ∪ Ym be a maximal set such that ∀D1 ∈ D, RD1 /∈ X ∪ Y ∪ W . The
factorization:

P (X|Y, ŵ) = P (X|Y,RD = 0, ŵ)P (RD = 0|Y, ŵ)
P (RD = 0|X,Y, ŵ)

(2)

is called General Missingness Factorization (GMF).

P (X|Y, ẑ) =
P (X|Y,Rxy=0,ẑ)P (Rxy=0|Y,ẑ)

P (Rxy=0|X,Y,ẑ) We used Rxy = 0 as a shorthand for Rx = 0, Ry = 0
above. Let RD1 < RD2 < ... < RDn denote a (reverse) topological ordering of variables in set
RD such that all child nodes are ordered before their respective parent nodes. R(i)

D denotes the set
{RD1 , RD2 , ..., RDi} and R

(0)
D = ∅. P (RD = 0|Y, ŵ) and P (RD = 0|X,Y, ŵ) in equation (2) can

now be factorized as:

P (RD = 0|Y, ŵ) =
∏

RDi
∈RD

P (RDi = 0|Y,R(i−1)
D = 0, ŵ) (3)

P (RD = 0|X,Y, ŵ) =
∏

RDi
∈RD

P (RDi = 0|X,Y,R
(i−1)
D = 0, ŵ) (4)

Let Zi = {Y,R(i−1)
D }. Then the factors in the numerator and denominator in equation (2) can be

compactly denoted as P (RDi = 0|Zi) and P (RDi = 0|Zi, X), respectively.

Lemma 1 If RDi⊥⊥X|Zi in GW , equation (2) can be simplified by removing from it both P (RDi =
0|Zi, ŵ) and P (RDi = 0|X,Zi, ŵ).

Observe that whenever Y 6= ∅ in P (X|Y, ŵ) there exists a term P (RDi = 0|Zi, ŵ) in the numerator
corresponding to every term P (RDi = 0|Zi, X, ŵ) in the denominator. The following lemma
describes how to recover P (RDi = 0|Zi, ŵ) when P (RDi = 0|Zi, X, ŵ) is recoverable.

Lemma 2 Recoverability of P (RDi = 0|Zi, ŵ) from P (RDi = 0|Zi, X, ŵ) If P (RDi = 0, Zi|ŵ)
and ∀X = x, P (RDi = 0|X,Zi, ŵ) and P (RDi = 0, X, Zi|ŵ) are recoverable, then P (RDi =

0|Zi, ŵ) can be recovered as,
P (RDi

=0,Zi|ŵ)∑
X

P (RDi
=0,X,Zi|ŵ)

P (RDi
=0|X,Zi,ŵ)

.

When W = ∅, partial recoverability implies recoverability, as exemplified below.

Example 2 Consider the problem of recovering P (X|Y) given the m-graph in figure 1 (b). We
proceed by applying GMF which yields:

P (X|Y) =
P (X|Y,Rxy = 0)P (Ry = 0|Y,Rx = 0)P (Rx = 0|Y)

P (Ry = 0|X,Y,Rx = 0)P (Rx = 0|X,Y)

=
P (X|Y,Rx = 0, Ry = 0)P (Ry = 0|Y,Rx = 0)

P (Ry = 0|X,Y,Rx = 0)
(Applying lemma 1)

287

MOHAN AND PEARL

P (X|Y) is recoverable if all factors in the preceding equation are recoverable. P (X|Y,Rx =
0, Ry = 0) = P (X∗|Y ∗, Rx = 0, Ry = 0), and hence is recoverable. Since Rx ⊥⊥X|(Y,Ry),
P (Ry = 0|X,Y,Rx = 0) can be recovered as P (Ry = 0|X∗, Rx = 0). Recoverability of P (X|Y)
now hinges on the recoverability of P (Ry = 0|Y,Rx = 0). Given the following, recoverability of
P (Ry = 0|Y,Rx = 0) follows from lemma 2.

• P (Ry = 0, Y, Ry = 0) = P (Ry = 0, Y ∗, Ry = 0) (using eq 1)

• P (Ry = 0|X,Y,Rx = 0) = P (Ry = 0|X∗, Rx = 0), ∀X = x (using Ry⊥⊥Y |X,Rx, eq 1)

• P (Ry = 0, X, Y,Rx = 0) = P (Ry = 0, X∗, Y ∗, Rx = 0) ∀X = x (using eq 1)

Figure 2: Intermediate graphs corresponding to Example 3

Algorithm 1:
recoverAll(P(X|Y, d̂),G,H,addVar)

1: Y ← pruneQ(P(X|Y, d̂),G), S ← ∅
2: G← getAncGraph(X ∪Y ∪D,G)
3: If addVar then S ←

addVars(P(X|Y, d̂),G)
4: (H, flag)← seen(H,P (X,S|Y, d̂), G)
5: If flag then return FAIL
6: E ← isParRec(P (X,S|Y), G)
7: If E 6= FAIL then
8: If D == ∅ then return

∑
S E

9: E ← recoverCausal(E,G,H)
10: If E 6= FAIL then return

∑
S E

11: (F3, F1, F2)← gmf(P (X ∪ S|Y), G)
12: E ←

recFactors(P (X|Y, d̂), S, F3, F1, F2, G,H)
13: If E == FAIL then return FAIL
14: return

∑
S E

Function:
recFactors(P(X|Y, d̂),S,F3,F1,F2,G,H)

1: F3 ← recoverAll(F3, G,H, false)
2: If F3 == FAIL then return FAIL
3: If F2 == ∅ then return F3

4: (F2, Latent, flag)←
recover_Dr(P (X|Y), S, F2, G,H)

5: If flag then return F2

6: If F2 == FAIL then
7: If Latent == ∅ then return FAIL,
8: G∗ ← getLatentGraph(Latent,G)
9: return recoverAll(P (X,S −

Latent|Y, d̂), G∗, H, false)
10: If F1 == ∅ then return F3∏

j F2[j]

11: (F1, Latent)←
recover_Nr(P (X|Y), S, F1, G,H)

12: If F1 == FAIL then
13: If Latent == ∅ then return FAIL
14: G∗ ← getLatentGraph(Latent,G)
15: return recoverAll(P (X,S −

Latent|Y, d̂), G∗, H, false)

16: return F3∗
∏

i F1[i]∏
j F2[j]

288

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

3. Algorithm: RecoverAll

RecoverAll is the main result of this work and it takes the following inputs: query, m-graph, history
tracking variable H (initialized to ∅) and addVar (initialized to true). We will exemplify the workings
of this algorithm using two examples.

Example 3 We demonstrate recoverability using algorithm 1 when given the following inputs:
P (X), m-graph G in figure 2 (a), history variable H = ∅ and addVar initialized to true.
Execution of Algorithm RecoverAll:

1. Since P (X) is not a conditional distribution, function pruneQ returns ∅. S ← ∅.
2. The function getAncGraph prunes the graph by recursively removing nodes belonging to Vm∪Vo

that are not pertinent to the recovery procedure. In this case, all such nodes are on the path between
X and RX , hence none are removed and G remains unchanged.
3. addV ars identifies the variables to be included in the analysis taking care not to add variables
(such as colliders and their descendants) that can unblock paths. Since addVar is true, addVars returns
S = {Y,Z}.
4. seen checks if the input query-graph pair has been already processed in the current context (call
stack). Its purpose is to prevent infinite recursion of the algorithm. It adds (P (X,Y, Z), G) to H
and returns (H, false).
5. Since flag=false, we move to the next step.
6. isParRec checks if P (X) is in its partially recovered form or if it can be converted into its
partially recovered form using eq 1. It returns fail.
11. Function gmf returns (F3 = P (X,Y, Z,Rx = 0, Ry = 0, Rz = 0), F1 = ∅, F2 = {P (Rx =
0|X,Y, Z,Rz = 0, Ry = 0), P (Rz = 0|X,Y, Z,Ry = 0), P (Ry = 0|X,Y, Z)}.
12. Function recFactors is now invoked. A
Execution of Function recFactors

1. recoverAll is invoked to recover F3. As before Y = ∅ and G remains unchanged. Since
addVar is false, S = ∅. In step 4, (F3, G) (fig 2(a)) is appended to H . isPartiallyRecovered
returns P (X∗, Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0). In step 8, since F3 is not a causal query,
P (X∗, Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0) is returned.
2. Since F3 is not equal to FAIL, we proceed to step 3.
3. Since F2 6= ∅ , recover_Dr function is invoked. B
Execution of Function recover_Dr

2. Each factor in F2 is processed sequentially in step 2.
3. P (Ry = 0|X,Y, Z) is pruned to yield P (Ry = 0).
4. Graph is updated in the next step by making Y a latent variable.
5. No inducing paths are detected and we move to step 9.
9. recoverAll is invoked to recover P (Ry = 0). Step 2 in recoverAll reduces the graph to the single
node Ry. Step 8, returns the estimand as P (Ry = 0). Control passes back to recover_Dr.
10. Success is updated: Success← {P (Ry = 0)}.
Control passes back to step 2 to process the next factor P (Rx = 0|X,Y, Z,Rz = 0, Ry = 0). It is
pruned to yield P (Rx = 0|Z). As in the previous case recoverAll is invoked in step 9. Step 8 in
recoverAll, returns the estimand as P (Rx = 0|Z∗, Rz = 0). In line 10 of recover_Dr, success is
updated: Success← {P (Ry = 0), P (Rx = 0|Z∗, Rz = 0)}. Again control passes back to step 2 to

289

MOHAN AND PEARL

process the last factor P (Rz = 0|X,Y, Z,Ry = 0). It is pruned to yield P (Rz = 0|Y,Z,Ry = 0).
recoverAll is invoked in step 9. C
Execution of recoverAll

Steps 1 & 2 make no changes to Y and G
4. H is appended with (P (Rz = 0|Y,Z,Ry = 0), G).
5. Flag is false and we proceed to the next step.
6. E is assigned FAIL since the query is not partially recoverable. 11. gmf function is invoked in line
11. It returns (P (Rz = 0|Y,Z,Ry = 0), ∅, ∅). 12. recFactors is invoked and in line 1 an attempt to
recover P (Rz = 0|Y,Z,Ry = 0) is made again using recoverAll. However the query graph pair is
contained in H and line 4 in recoverAll returns FAIL. Consequently, control now goes back to C in
function recover_Dr.
Execution of Function recover_Dr continuing from C

11. Failed is updated: Failed = {P (Rz = 0|Y, Z,Ry = 0)}. Since Failed 6= ∅, we proceed to
step 13.
13. Function getLatentVars is invoked. {Y } is the set of all partially observed variables in the query,
P (Rz = 0|Y, Z,Ry = 0), excluding Z. Since the factor corresponding to Y i.e. P (Ry = 0|X,Y, Z)
is not in Failed, t is not assigned ’false’ in line 16. In line 17, since t is true and Z ∈ S, Latent=Z.
Function returns Z.
14. (False, Z, false) is returned. Control now goes back to B i.e. line 4 in recFactors.
Execution of Function recFactors continuing from B

8. Graph is changed to that shown in fig 2 (b).
9. recoverAll is invoked with the query P (XY). In line 2 of recoverAll, the graph is pruned and the
new graph is shown in fig 2 (c). H is appended with the new query graph pair and gmf is invoked
again to yield: (F3 : P (X,Y,Rx = 0, Ry = 0), F1 = ∅, F2 = {P (Rx = 0|X,Y,Ry = 0), P (Ry =

0|X,Y)}). As shown before these are recoverable and finally the estimand P (X∗,Y ∗,Rx=0,Ry=0)
P (Ry=0)P (Rx=0|Y ∗,Ry=0)

is returned. Control goes to A .
Execution of recoverAll continuing from A

12: E ← P (X∗,Y ∗,Rx=0,Ry=0)
P (Ry=0)P (Rx=0|Y ∗,Ry=0)

13. E 6= FAIL. Hence we move to the next step.
14.
∑

Z,Y
P(X∗,Y∗,Rx=0,Ry=0)

P(Ry=0)P(Rx=0|Y∗,Ry=0) is returned.

The following example demonstrates a complex case of recoverability involving inducing paths.
Example 4 We will demonstrate recoverability given the following inputs: Query P (X|D) m-graph
given in figure 3 (a), H = ∅, addvar = true. In line 1, pruneQ returns ∅ (since X⊥⊥D), thereby
changing the query to P (X). In line 2, graph is modified (by removing node D) as shown in figure 3
(b). Note that since D has been removed, RD shall be treated as a fully observed variable. Since
addV ar is true, S = {C,RD, Y }. Obviously the query P (X,Y,C,RD) is not partially recoverable.
In line 10, gmf returns F3 : P (X,Y,C,Rx = 0, Ry = 0, Rc = 0), F1 = ∅, F2 = {P (Rx =
0|Y,RD, Ry = 0, Rc = 0, C,X), P (Ry = 0|Y,RD, Rc = 0, C,X), P (Rc = 0|Y,RD, C,X)}.
Function recFactors is invoked. Recoverability of all factors except P (Ry = 0|Y,RD, Rc = 0, C,X)
is simple and identical to that discussed in example 3. We will hence discuss recoverability of
P (Ry = 0|Y,RD, Rc = 0, C,X), starting from line 3 of recover_Dr.

290

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

Figure 3: Intermediate graphs corresponding to Example 4

Execution of function recover_Dr

3. P (Ry = 0|Y,RD, Rc = 0, C,X) is pruned to P (Ry = 0|RD, X).
4. Since Y is no longer a part of the query now, the graph gets modified as shown in figure 3 (c).
5. No inducing paths are detected and we proceed to line 9.
9. Invoke recoverAll. In line 11 gmf further factorizes the query into F3 : P (Ry = 0|X,Rx =
0, RD), F1 = {P (Rx = 0|X,RD)}, F2 = {P (Rx = 0|Ry = 0, X,RD)}. In line 1 in recFactors,
F3 is recovered as P (Ry = 0|X∗, Rx = 0, RD). In line 4, recover_Dr is invoked. In line 5 of
recover_Dr an inducing path is detected between X and Rx i.e. IP = {X}. Function handleIP
transforms the parent query P (Ry = 0|X,RD) to P (Ry = 0|X, R̂d), using rule-2 of do calculus.
recoverAll is invoked in the last line of function handleIP D .
Execution of recoverAll

11. Function gmf returns: F3 = {P (Ry = 0|X,Rx = 0, r̂d)}, F2 = {P (Rx = 0|X,Ry =
0, r̂d)}, F1 = {P (Rx = 0|X, r̂d)}.
12. Function recoverFactors is invoked; in line 1 recoverAll is invoked to recover F3. In line 6
of recoverAll, E ← P (Ry = 0|X∗, Rx = 0, r̂d). Since E 6= FAIL and the query is causal, we
proceed to line 9. Function recoverCausal is invoked E .
Execution of function recoverCausal

1. Z∗ = {X∗}.
2. G∗ is shown in figure 3 (d).
3. E ←

∑
C P (X∗|Rx=0,Ry=0,C,rd),P (Rx=0|Ry=0,C,rd)P (Ry=0|C,rd)P (C)∑

C,Ry
P (X∗|Rx=0,Ry ,C,rd),P (Rx=0|Ry ,C,rd)P (Ry |C,rd)P (C)

5. Each factor in E is recoved using recoverAll.
9. Function returns

∑
C P (X∗|Rx=0,Ry=0,C∗,Rc=0,rd),P (Rx=0|Ry=0,C∗,Rc=0,rd)P (Ry=0|C∗,Rc=0,rd)P (C∗|Rc=0)∑

C,Ry
P (X∗|Rx=0,Ry ,C∗,Rc=0,rd),P (Rx=0|Ry ,C∗,Rc=0,rd)P (Ry |C∗,Rc=0,rd)P (C∗|Rc=0) .

Control goes to E in recoverAll.

In a similar manner factors F2 = {P (Rx = 0|X,Ry = 0, r̂d)} and F1 = {P (Rx = 0|X, r̂d)}
are recovered. Thus the factor P (Ry = 0|X,RD) and hence P (X) is recoverable.

291

MOHAN AND PEARL

Function recover_Dr(P (X|Y, d̂),S,
F,G,H)

1: Success← ∅, Failed← ∅, G∗ ← G
2: For every factor

fvi ← P (Rvi = 0|Zi, d̂) in F
3: Zi ← pruneQ(P (Rvi =

0|Zi, d̂), G)
4: If Vi /∈ Zi then G∗ ←

getLatentGraph (Vi, G)
5: IP ← detectIP (P (Rvi =

0|Zi, d̂), G
∗)

6: If IP 6= ∅ then
7: E ←

handleIP(P (X|Y, d̂), IP,G∗, H)
8: If (E 6= FAIL) then return

(E, ∅, true)
9: E ← recoverAll(P (Rvi =

0|Zi, d̂), G
∗, H, false)

10: If E 6= FAIL then
Success← Success ∪ E

11: Else Failed← Failed ∪ fvi
12: If Failed == ∅ then return

(Success, ∅, false)
13: Latent← getLatentVars(S,Failed,G)
14: return (FAIL, Latent, false)

Function recover_Nr(P (X|Y, d̂), S, F1,
F2, G,H)

1: Success← ∅, Failed← ∅, G∗ ← G
2: For every factor

fvi = P (Rvi = 0|Zi, d̂) in F1

3: Zi ← pruneQ(P (Rvi =
0|Zi, d̂), G)

4: If Vi /∈ Z then G∗ ←
getLatentGraph (Vi, G)

5: Let E1 ∈ F2 be the recovered
estimand of P (Rvi = 0|Zi, X, d̂).

6: If fvi is recoverable using lemma 2,
then let E denote the recovered
estimand. go to step (8)

7: E ← recoverAll(P (Rvi =
0|Zi), G

∗, H, false)
8: If E 6= FAIL then

Success← Success ∪ E
9: else Failed
← Failed ∪ P (Rvi = 0|Zi, d̂)

10: If Failed == ∅ then return
(Success, ∅)

11: Latent← getLatentVars(S,Failed,G)
12: return (FAIL, Latent)

4. Conclusions

We exemplified recoverability in cases where a variable and its mechanism are connected by an
inducing path. We presented a new factorization scheme that is general and applicable to both
probabilistic and causal queries. Using this factorization scheme, we developed a general algorithm
to recover conditional probability and interventional distributions.

Appendix A. Functions Invoked by Algorithm 1

Function pruneQ(P(X|Y, d̂),G)

1: If Y == ∅, then return Y
2: ∀Y1 ∈ Y , If X⊥⊥Y1|Y − {Y1}, D in

GD, then Y ← Y − {Y1}
3: return Y

Function seen(H,Q,G)

1: If (Q,G) ∈ H then return (H, TRUE)
2: H ← H ∪ (Q,G)
3: return (H, FALSE)

292

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

Function gmf(P(A|B, ŵ),G)

1: F3 ← P (A|B, ŵ), F2 ← ∅, F1 ← ∅
2: If 6 ∃D1 ∈ Am ∩Bm such that

RD1 /∈ {A,B,W} then return
(P (A|B, ŵ), F1, F2)

3: Let F3 be P (X|Y,RD = 0, ŵ) in eq 2
and F1 and F2 be lists containing factors
on the RHS of equations 3 and 4
respectively.

4: Simplify F1 and F2 further by applying
lemma 1.

5: return (F3, F1, F2)

Function isParRec(P (X|Y, d̂), G)

1: If X == ∅, return ∅
2: P (X|Y, d̂)← toProxy(P (X|Y, d̂))
3: Z ← (X ∪ Y) ∩ Vm

4: If Z == ∅ then return P (X|Y)
5: If {X,Y } ∩RZ 6= ∅ then return FAIL
6: RZ ← RZ −D
7: If X 6⊥⊥RZ |Y,D in GD then return

FAIL
8: return

toProxy(P (X|Y ∪ {RZ = 0}, d̂))

The function isParRec checks if equation 1 is applicable to the input query, and if so, converts cor-
responding partially observed variables to proxy variables. For example, given P (X1, X2|Y,Ry =
0, RX1 = 0), it will return P (X∗1 , X2|Y ∗, Ry = 0, RX1 = 0) and given P (X1, X2|Y,Ry =
0, RX1 = 1), it will return P (X1, X2|Y ∗, Ry = 0, RX1 = 1).

Function toProxy(P(X|Y, d̂))

1: ∀Z ∈ Y ∩ Vm such that Rz ∈ Y and Rz assumes the value 0, Y ← (Y − {Z}) ∪ {Z∗}
2: ∀Z ∈ X ∩ Vm such that Rz ∈ Y ∪X and Rz assumes the value 0, X ← (X − {Z}) ∪ {Z∗}
3: return P (X|Y, d̂)

Function getLatentVars(S, Failed,G)

1: Latent← ∅
2: For every factor P (Rvi = 0|Zi, X, d̂) in

Failed
3: t← true
4: For every

Vj ∈ ((Zi, X,D) ∩ Vm)− Vi

5: If P (Rvj = 0|Zj , d̂) ∈ Failed
then t← false

6: If t and Vi ∈ S then
Latent← Latent ∪ Vi

7: return Latent

Function addVars(P(X|Y, d̂),G)

1: S ← ∅
2: If D 6= ∅ then

G← getAncGraph({X,Y,D}, GD)
3: ∀Z ∈ Vm ∪ Vo − {X,Y,D}
4: If Z is not a collider or descendant of

a collider on any path between X1 and
RX1 for any X1 ∈ X ∩ Vm, then
S ← S ∪ {Z}

5: If Z is not a collider or descendant of
a collider on any path between X2 and
RX2 for any X2 ∈ Vm and
RX2 ∈ X ∩R, then S ← S ∪ {Z}

6: return S

The following function constructs a latent projection (Verma and Pearl, 1991; Pearl, 2009;
Shpitser et al., 2015) and returns the resulting graph Gl in which all variables in X will be treated as
latent and not explicitly portrayed in the graph.

293

MOHAN AND PEARL

Function getLatentGraph(X,G)

1: Do the following until no more edges
can be added to G

2: For all pairs of nodes Z, Y in G such
that {Z, Y } ∩X = ∅

3: If there exists a directed path from
Z to Y such that all intermediate nodes
belong to X and Z → Y is not an edge
in G, then Add the edge Z → Y

4: If there exists a marginally
d-connected path Z ← ...→ Y such
that all intermediate nodes belong to X
and Z ←→ Y is not an edge in G then
Add the edge Z ←→ Y

5: Remove all nodes in X from G
6: Vm ← Vm −X , U ← U ∪X

V ∗ ← V ∗ −X∗, R← R−RX ,
Vo ← Vo ∪X∗ ∪RX

7: return G

Function getAncGraph(X,G)

1: Y ← X
2: ∀x ∈ X, if ∃Rx, then add Rx to Y
3: Mark all y ∈ Y in G
4: A = ∅
5: ∀y ∈ Y add parent(y) to A, as long as

parent(y) /∈ Y
6: If A 6= ∅ then return

getAncGraph(A,G)
7: Let G∗ be the sub-graph of G

comprising of all marked nodes in G.
8: ∀ partially observed variables X in G∗,

add to G∗ proxy variable X∗, and the
edges Rx → X∗ and X → X∗

9: ∀Rx ∈ G∗ such that X /∈ G∗

10: R← R− {Rx}
11: Vo ← Vo ∪ {Rx}
12: return G∗

C-component of X (also known as district of X) is the set of variables (including X) that is
connected to X by a path comprising bi-directed edges.

Function detectIP(P (X|Y, d̂), G)

1: IP ← ∅
2: P (X|Y, d̂)← toProxy (P (X|Y, d̂))
3: For every X1 ∈ X ∩ Vm

4: If there exist inducing paths between
X1 and RX1 in G then IP ← IP ∪X1

5: For every Rw ∈ X ∩R
6: If W ∈ Y and there exist inducing

paths between W and Rw in G then
IP ← IP ∪W

7: return IP

Function handleIP(P (y|x, ŵ), Z, P,G,H)

1: Let C denote the C-component of RZ

2: D ←
(Parents(C)− C) ∩Ancestors(RZ)

3: ∀ D1 ∈ D
4: If D1 ∈ X &

P (y|x, ŵ) == P (y|x− d2, d̂2, ŵ) as
per Rule 2 of do-calculus then

5: X ← X − {D1}, W ←W ∪ {D1}
6: If D1 /∈ X ∪ Y &

P (y|x, ŵ) == P (y|x, d̂1, ŵ) as per
Rule 3 of do-calculus then

7: W ←W ∪ {D1}
8: return

recoverAll(P (y|x, ŵ), G,H, false)

References

R. Daniel, M. Kenward, S. Cousens, and B. De Stavola. Using causal diagrams to guide analysis in
missing data problems. Statistical Methods in Medical Research, 21(3):243–256, 2012.

A. Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University Press, 2009.

C. Enders. Applied Missing Data Analysis. Guilford Press, 2010.

294

CONSISTENT ESTIMATION GIVEN DATA THAT ARE MISSING NOT AT RANDOM

R. Gill and J. Robins. Sequential models for coarsening and missingness. In Proceedings of the First
Seattle Symposium in Biostatistics, pages 295–305. Springer, 1997.

J. Graham. Missing Data: Analysis and Design (Statistics for Social and Behavioral Sciences).
Springer, 2012.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. 2009.

R. Little and D. Rubin. Statistical analysis with missing data. Wiley, 2002.

K. Mohan and J. Pearl. Graphical models for recovering probabilistic and causal queries from
missing data. In Advances in Neural Information Processing Systems 27, pages 1520–1528.
Curran Associates, Inc., 2014.

K. Mohan, J. Pearl, and J. Tian. Graphical models for inference with missing data. In Advances in
Neural Information Processing Systems 26, pages 1277–1285. 2013.

J. Pearl. Causality: models, reasoning and inference. Cambridge Univ Press, New York, 2009.

J. Robins. Non-response models for the analysis of non-monotone non-ignorable missing data.
Statistics in medicine, 16(1):21–37, 1997.

D. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976.

D. Rubin. Multiple imputation after 18+ years. Journal of the American Statistical Association, 91
(434):473–489, 1996.

I. Shpitser. Consistent estimation of functions of data missing non-monotonically and not at random.
In Advances in Neural Information Processing Systems, pages 3144–3152, 2016.

I. Shpitser, K. Mohan, and J. Pearl. Missing data as a causal and probabilistic problem. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence, 2015.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth
Conference in Artificial Intelligence, pages 220–227. Association for Uncertainty in AI, 1991.

295

	Introduction
	Missingness Graphs
	Types of Missingness
	Recoverability
	Inducing Path

	Unified Approach to Recovering Causal and Probabilistic Queries
	General Missingness Factorization for Recovering P(X|Y,)

	Algorithm: RecoverAll
	Conclusions
	Functions Invoked by Algorithm 1

