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Abstract
The graphical lasso is a popular method for estimating the structure of undirected Gaussian graph-
ical models from data by penalized maximum likelihood. This paper extends the idea of structure
estimation of graphical models by penalized maximum likelihood to Gaussian chain graph models
for state space models. First we show how the class of linear Gaussian state space models can be
interpreted in the chain graph set-up under both the LWF and AMP Markov properties, and we
demonstrate how sparsity of the chain graph structure relates to sparsity of the model parameters.
Exploiting this relation we propose two different penalized maximum likelihood estimators for re-
covering the chain graph structure from data depending on the Markov interpretation at hand. We
frame the penalized maximum likelihood problem in a missing data set-up and carry out estimation
in each of the two cases using the EM algorithm. The common E-step is solved by smoothing, and
we solve the two different M-steps by utilizing existing methods from high dimensional statistics
and convex optimization.
Keywords: state space models; chain graph models; high dimensional statistics; sparse learning;
EM algorithm; convex optimization.

1. Introduction

The graphical lasso (Banerjee et al., 2008; Friedman et al., 2008) produces a sparse estimate of
the concentration matrix Θ = Σ−1 of a regular multivariate Gaussian distribution by penalized
maximum likelihood from independent samples x1, . . . , xN ∼ N (0,Σ). The estimator is given by

Θ̂ = arg min
Θ∈S++

p

{tr(ΘS)− log det Θ + ||W ◦Θ||1} (1)

where S++
p are the real, symmetric, positive definite p× p matrices, S = 1

N

∑N
i=1 xix

T
i is the em-

pirical covariance matrix, ||A||1 =
∑

ij |Aij | for a matrix A, ◦ denotes elementwise multiplication
and W is a matrix of non-negative tuning parameters, e.g. W = λ1p×p for λ ≥ 0. This is related to
undirected Gaussian graphical models through the fact that if X = (Xv)v∈V ∼ N (0,Σ), then X is
Markov w.r.t. its concentration graph G = (V,E) with edges E = {(u, v) | u 6= v,Θuv 6= 0}. See
Lauritzen (1996). Hence a sparse estimated concentation matrix Θ̂ gives rise to a sparse associated
concentration graph Ĝ, which gives simple model interpretations.

This paper is concerned with exploiting the principle of penalized maximum likelihood for
structure estimation in Gaussian chain graph models. This has previously been studied in a multi-
variate regression framework, Y = BX + ε with Y ∈ Rd, X ∈ Rp and ε ∼ N (0,Θ−1), which
corresponds to a chain graph with two chain components — one for covariates and one for re-
sponses. Rothman et al. (2010) and Lin et al. (2016) consider sparse estimation of B and Θ in
this set-up, which results in an estimated chain graph in the Andersson-Madigan-Perlman (AMP)
Markov interpretation (Andersson et al., 2001). However, this estimator gives rise to a non-convex
optimization problem for which there are no guarenties of convergence to a global optimum.
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Lee and Liu (2012) and McCarter and Kim (2014) also consider multivariate regression, but
in an exponential family parametrization with sparsity inducing penalties on the canonical param-
eters Θ = Σ−1 and Λ = ΘB, which gives an estimated chain graph in the Lauritzen-Wermuth-
Frydenberg (LWF) Markov interpretation (Frydenberg, 1990; Lauritzen and Wermuth, 1989). Here
the estimator gives rise to a convex optimization problem as a result of the exponential family
parametrization.

The purpose of this paper is to extend the existing methodology to Gaussian chain graphs for
state space models. This extends the usage from multivariate regressions to time series data and
allows for the case where the observations are corrupted by additive noise. State space models
with sparsity inducing penalties has previously been considered in Noor et al. (2012) and Hasegawa
et al. (2014), and our inference approach is similar to what is employed in their work. However, we
further give the problem a graphical modeling framework, and we relate the penalization strategy
to the chain graph Markov interpretation at hand. The main contributions of this paper are two EM
algorithms for performing simultaneous parameter estimation and structure learning of a state space
model and its associated chain graph under both the LWF and AMP Markov interpretation.

The paper is organized as follows. First we introduce linear Gaussian state space models and
motivate the necessity of chain graphs for giving a detailed description of conditional independence
for this model class. Next we give a brief introduction to chain graphs and their Markov properties,
and we demonstrate how state space models can be viewed in a chain graph framework. We then
develop an E-step and two different M-steps according to the Markov interpretation at hand.

2. Model Formulation

Let us begin by introducing our model class of interest.

Definition 1 We define a linear Gaussian state space model (LGSSM) to be a pair of discrete time
stochastic processes (Xt, Yt) with Xt and Yt both taking values in Rp such that

Xt | Xt−1 = xt−1 ∼ N (Bxt−1,Σ) and Yt | Xt = xt ∼ N (xt, ρ
2Ip) (2)

for t = 1, . . . , N where X0 is degenerate at x0 ∈ Rp. Here Σ ∈ S++
p is a covariance matrix,

B ∈ Rp×p is a matrix of regression coefficients and ρ2 ≥ 0. The process (Xt) is assumed to be
latent, while the process (Yt) is observable.

From the distributional specification (2) we have the following factorization of the density of
(X1, Y1, . . . , XN , YN ) conditional on the initial value X0 of the latent process:

f(x1, y1, . . . , xN , yN | x0) =

N∏
t=1

f(xt | xt−1)

N∏
t=1

f(yt | xt). (3)

Therefore the conditional independence structure of the process can be described by a directed
acyclic graphical model as in Figure 1. From this DAG we can read of conditional independen-
cies between the variables X1, Y1, . . . , XN , YN by using, e.g., d-separation. However, the DAG
does not give information about conditional independencies between single coordinates of the pro-
cesses, e.g., whether there are conditional independencies among Xt,1, . . . , Xt,p when conditioning
on Xt−1,1, . . . , Xt−1,p. In order to provide such a detailed description of the conditional indepen-
dence structure of the model, we will describe the model in a chain graph setting.
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X1
//

��

X2
//

��

· · · // Xt
//

��

· · · // XN

��
Y1 Y2 Yt YN

Figure 1: Directed acyclic graphical model for (X1, Y1, . . . , XN , YN ) | X0 = x0.

3. Chain Graph Models

We now introduce the basic definition of a chain graph, the two different Markov properties that are
usually associated with such graphs and their parametric restrictions in the Gaussian case.

Definition 2 Let G = (V,E) be a graph whereE is allowed to contain both undirected and directed
edges. If G has no semi-directed cycles, i.e., cycles where all directed edges point in the same
direction, then we call G a chain graph. Associated with a chain graph G we form the directed
graph D = (T , E), where T are the connected components of G after deleting all directed edges,
and τ → τ ′ ∈ E for τ, τ ′ ∈ T if there exists u ∈ τ and u′ ∈ τ ′ such that u → u′ ∈ E. We call D
the associated graph of chain components of G and note that the absence of semi-directed cycles
in G ensures that D is a DAG.

Chain graphs can be endowed with (at least) two different Markov interpretations, namely the
AMP and LWF interpretation, which we will now describe. Let Z = (Zv)v∈V be a collection of
random variables indexed by the vertices of a chain graph G = (V,E). For a subset of vertices
A ⊂ V , we denote by paG(A) and nbG(A) the parents and neighbors of A relative to the graph G.
Consider the following four properties that Z can potentially fulfill w.r.t. G:

C1) The distribution of Z satisfies the directed local Markov property w.r.t. D.

C2) For each τ ∈ T , the distribution of Zτ | ZpaD(τ) = zpaD(τ) is globally Markov w.r.t. Gτ .

C3) For each τ ∈ T and σ ⊂ τ we have σ ⊥⊥ (paD(τ) \ paG(σ)) | paG(σ) ∪ nbG(σ).

C4) For each τ ∈ T and σ ⊂ τ we have σ ⊥⊥ (paD(τ) \ paG(σ)) | paG(σ).

Here A ⊥⊥ B | C is shorthand for ZA ⊥⊥ ZB | ZC for disjoint A,B,C ⊂ V . From these conditions,
we can formulate the two Markov properties that we will associate with chain graphs.

Definition 3 Let Z = (Zv)v∈V and G = (V,E) be as above. If Z satisfies C1, C2 and C3, then we
say it has the LWF Markov property w.r.t. G. If Z satisfies C1, C2 and C4, we say it has the AMP
Markov property w.r.t. G.

As with undirected Gaussian graphical models, the LWF and AMP Markov properties impose
certain parametric restrictions for the Gaussian distribution. To describe these, assume further that
Z follows a regular multivariate Gaussian distribution N (0,Σ) on RV . If Z satisfies C1, which is
common to the LWF and AMP Markov property, then the distribution of Z is determined by the
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conditional distributions of Zτ | ZpaD(τ) = zpaD(τ) for τ ∈ T , because the density of Z factorizes
according to D. We can write each of these conditional distributions as a multivariate regression

Zτ | ZpaD(τ) = zpaD(τ) ∼ N
(
BτzpaD(τ),Στ

)
(4)

whereBτ is a matrix of regression coefficients. Alternatively we can introduce the parametersKτ =
Σ−1
τ and Λτ = KτBτ , which are the canonical parameters in an exponential family representation

of the distribution, such that

Zτ | ZpaD(τ) = zpaD(τ) ∼ N
(
K−1
τ ΛτzpaD(τ),K

−1
τ

)
. (5)

We then have the following description of the parametric restriction implied by the LWF and AMP
Markov properties. See Andersson et al. (2001) for details.

Proposition 4 Let Z = (Zv)v∈V and G = (V,E) be as above with Z satisfying C1. Then it holds
for any chain component τ ∈ T that

i) if Z satisfies C2, then (Kτ )uv = 0 for all u, v ∈ τ with u− v /∈ E,

ii) if Z satisfies C3, then (Λτ )uv = 0 for u ∈ τ and v ∈ paD(τ) \ paG(u),

iii) if Z satisfies C4, then (Bτ )uv = 0 for u ∈ τ and v ∈ paD(τ) \ paG(u).

In conclusion, the AMP Markov property encodes zeros in Bτ and Kτ of the regressions (4),
while the LWF Markov property implies zeros in the canonical parameters Λτ and Kτ correspond-
ing to the parametrization (5).

4. Chain Graphs for State Space Models

Let us now describe how LGSSMs can be viewed in the chain graph model setting. Naturally, we
associate the vertices V of our chain graph G = (V,E) with the random variables in our LGSSM,
and the chain components of our chain graph are the variables X1, Y1, . . . , XN , YN . Due to the
property C1 and the factorization (3), the graph in Figure 1 must necessarily be the DAG of chain
components of the chain graph. Now introduce the canonical parameters Θ = Σ−1 and Λ = ΘB
such that we can reparametrize our model as an exponential family:

Xt | Xt−1 = xt−1 ∼ N (Θ−1Λxt−1,Θ
−1) and Yt | Xt = xt ∼ N (ρ−2xt, (ρ

−2Ip)
−1). (6)

With inspiration from concentration graphs for undirected Gaussian graphical model and the prop-
erties i), ii) and iii) we can define the following chain graphs to associate with a LGSSM.

Definition 5 Let (Xt, Yt) follow a LGSSM with parameters Λ (B resp.) ∈ Rp×p, Θ ∈ S++
p and

ρ2 ≥ 0. Then we define the LWF (AMP resp.) concentration graph G = (V,E) associated with
these parameters to have D in Figure 1 as its associated DAG of chain components and edges E as
follows. If Θuv 6= 0, then we include the undirected edge Xt,u −Xt,v ∈ E for each t = 1, . . . , N .
If ρ2 > 0, then we let Xt,u → Yt,u ∈ E for each t = 1, . . . , N and u = 1, . . . , p. Lastly, if Λuv
(Buv resp.) 6= 0, then we include the directed edge Xt−1,v → Xt,u ∈ E for each t = 2, . . . , N .
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Example 1 Consider a LGSSM in the LWF interpretation with parameters

Λ =

∗ 0 0
∗ 0 ∗
0 ∗ 0

 , Θ =

∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 and ρ2 > 0 (7)

where ∗ refers to some non-zero value. The subgraph of the LWF concentration graph G containing
the latent process (Xt) can be seen in Figure 2. The undirected graphical structure within each

· · · X1
t−1

//

&&

X1
t

//

&&

X1
t+1 · · ·

· · · X2
t−1

&&

X2
t

&&

X2
t+1 · · ·

· · · X3
t−1

88

X3
t

88

X3
t+1 · · ·

Figure 2: LWF concentration graph G associated with the parameters (7) restricted to (Xt).

chain component is constructed from Θ analogously with undirected Gaussian graphical models,
while the directed edges between chain components are drawn using the zero-pattern of Λ. The
full chain graph G simply has a directed edge from each coordinate of Xt to the corresponding
coordinate of Yt, since there is a non-trivial noise term in this particular example.

It is not hard to show that if (Xt, Yt) follows a LGSSM with parameters Λ (B resp.) ∈
Rp×p,Θ ∈ S++

p and ρ2 ≥ 0, then (X1, Y1, . . . , XN , YN ) | X0 = x0 will be LWF (AMP resp.)
Markov with respect to its associated LWF (AMP resp.) concentration graph.

In conclusion, sparse parameters give rise to sparse chain graphs, which, in turn, give simple
model interpretations through the properties C1-C4. In practise the parameters — and thus the graph
structure — are unknown and must be estimated from data. However, we cannot expect to estimate
entries of the parameters to be exactly zero, and so the need for sparse estimation procedures arise.

5. Sparse Learning via EM Algorithm

Given data x0, y1, . . . , yN from a LGSSM we will carry out estimation by penalized maximum
likelihood with sparsity inducing `1-penalties on Λ and Θ orB and Θ depending on the chain graph
interpretation at hand.

We frame the estimation problem in a missing data set-up and perform inference using the
EM algorithm. In this context, the complete data is x0, x1, y1, . . . , xN , yN , the missing data is
x1, . . . , xN while the observed data is x0, y1, . . . , yN . We will here use a penalized version of
the EM algorithm, where penalization is applied in the M-step (Green, 1990). First we derive the
E-step, which involves computing the conditional expectation of the complete data log-likelihood
given data and current EM estimate.
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Proposition 6 Let x0, y1, . . . , yN be data from a LGSSM and θ(k) = (Λ(k),Θ(k), (ρ2)(k)) the pa-
rameter estimate in the current EM iteration. Then the expected complete data log-likelihood given
data and current parameter estimate is given by

Q(θ | θ(k)) = log det Θ− tr(ΘM1) + 2tr(ΛM2)− tr(ΛTΘ−1ΛM3)− p log ρ2 − 1

ρ2
M4

where M4 ∈ R and M1,M2,M3 ∈ Rp×p depends on data and θ(k) and are given by

M1 =
1

N

N∑
t=1

E(XtX
T
t | Y1:N = y1:N , θ

(k)),

M2 =
1

N

N∑
t=1

E(Xt−1X
T
t | Y1:N = y1:N , θ

(k)),

M3 =
1

N

N∑
t=1

E(Xt−1X
T
t−1 | Y1:N = y1:N , θ

(k)),

M4 =
1

N

N∑
t=1

yty
T
t − 2yTt E(Xt | Y1:N = y1:N , θ

(k)) + E(XT
t Xt | Y1:N = y1:N , θ

(k)),

where we use the shorthand notation Y1:N = (Y1, . . . , YN ).

Proof Due to the factorization (3) we can write the complete data log-likelihood as

`(Λ,Θ, ρ2 | x, y) =
N

2
log det Θ− 1

2

N∑
t=1

(xt −Θ−1Λxt−1)TΘ(xt −Θ−1Λxt−1)

− Np

2
log ρ2 − 1

2ρ2

N∑
t=1

(yt − xt)T (yt − xt)

where we have ignored additive constants. By rescaling with 2/N and using the cyclic property of
the matrix trace, i.e. tr(AB) = tr(BA) for conformable matrices, we obtain

`(Λ,Θ, ρ2 | x, y) ∝ log det Θ− 1

N

N∑
t=1

tr(ΘxtxTt )− 2tr(Λxt−1x
T
t ) + tr(ΛTΘ−1Λxt−1x

T
t−1)

− p log ρ2 − 1

ρ2

1

N

N∑
t=1

yTt yt − 2yTt xt + xTt xt.

Taking conditional expectation with respect to data and current EM estimate and using linearity of
the trace we obtain the wanted result.

Note that we have formulated the E-step in terms of the canonical parameters, but it is always
possible to re-parametrize using Λ = ΘB, and θ is simply a placeholder for the parameters under
consideration in what follows. The conditional expectations that are needed when computing the
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quantities M1, . . . ,M4 are the topic of smoothing in hidden Markov models, and one can use, e.g.,
the Rauch-Tung-Striebel smoother. See, e.g., Särkkä (2013) for details.

We now turn to the M-step. In the LWF interpretation we parametrize the expected complete
data log-likelihood using canonical parameters and put sparsity inducing `1-penalties on Λ and Θ.
The next EM iteration is produced by carrying out the optimization:

θ̂(k+1) = arg min
(Λ,Θ,ρ2)∈Rp×p×S++

p ×R+

{
f1(Λ,Θ) + f3(ρ2) + λ1||Λ||1,off + λ2||Θ||1,off

}
. (8)

Here the function f1 is the part of the negative expected complete data log-likelihood that depends
on the parameters Λ and Θ,

f1(Λ,Θ) = tr(ΘM1)− 2tr(ΛM2) + tr(ΛTΘ−1ΛM3)− log det Θ,

and f3(ρ2) = p log ρ2 + M4/ρ
2 is the part that depends on ρ2. We let ||Λ||1,off =

∑
i 6=j |Λij |, i.e.

we choose not to penalize the diagonal. The numbers λ1, λ2 ≥ 0 are tuning parameters determining
the sparsity level of the estimates.

In the AMP interpretation we parametrize the expected complete data log-likelihood using the
regression matrix and put `1-penalties on B and Θ. The M-step is then the optimization:

θ̂(k+1) = arg min
(B,Θ,ρ2)∈Rp×p×S++

p ×R+

{
f2(B,Θ) + f3(ρ2) + λ1||B||1,off + λ2||Θ||1,off

}
. (9)

Here f2 is the part that depends on the parameters B and Θ,

f2(B,Θ) = tr(ΘM1)− 2tr(ΘBM2) + tr(BTΘBM3)− log det Θ,

and f3(ρ2) = p log ρ2 +M4/ρ
2 as before.

Note that in both (8) and (9) there is variation independence between ρ2 and the remaining
parameters. Hence the optimization regarding ρ2 can be performed separately, and is given by the
conditional expectation of the empirical residual variance of the regression from Xt to Yt:

(ρ̂2)(k+1) =
1

Np

N∑
t=1

E
(

(Yt −Xt)
T (Yt −Xt) | Y1:N = y1:N , θ

(k)
)

=
1

p
M4. (10)

Next we turn to the problem of performing the optimization in (8) regarding Λ and Θ. As we
shall see, this task can be re-formulated into an equivalent optimization problem. Let the 2p × 2p
matrices T(Λ,Θ) and M be given by

T(Λ,Θ) =

(
T11 T12

TT12 T22

)
=

(
Θ −Λ
−ΛT Ip + ΛTΘ−1Λ

)
and M =

(
M1 MT

2

M2 M3

)
.

Consider the optimization problem

min
(Λ,Θ)∈Rp×p×S++

p

{tr(T(Λ,Θ)M)− log det T(Λ,Θ) + ||W ◦ T(Λ,Θ)||1} (11)

where W is the 2p× 2p matrix

W =

(
λ2E

1
2λ1E

1
2λ1E 0p×p

)
where E is the p× p matrix given by Ekk = 0 for k = 1, . . . , p and Eij = 1 for i 6= j.
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Proposition 7 Performing the optimization in (8) regarding Λ and Θ is equivalent with solving
the optimization problem (11). Furthermore, (11) can be solved by applying graphical lasso (1)
with optimization variable T, empirical covariance matrix S = M and penalization matrix W , and
afterwards extracting Θ̂(k+1) = T̂11 and Λ̂(k+1) = −T̂12.

Proof We show the equivalence by simply writing out the objective function of (11) and compare
with (8). First we see that the trace term of (11) can be written

tr(T(Λ,Θ)M) = tr(ΘM1 − ΛM2 − ΛTMT
2 +M3 +M3ΛTΘ−1Λ)

= tr(ΘM1)− 2tr(ΛM2) + tr(ΛTΘ−1ΛM3) + tr(M3),

and the determinant of T(Λ,Θ) is equal to

det T(Λ,Θ) = det Θ det(Ip + ΛTΘ−1Λ− (−ΛT )Θ−1(−Λ)) = det Θ det Ip = det Θ.

Lastly, we clearly have ||W ◦ T(Λ,Θ)||1 = λ1||Λ||1,off + λ2||Θ||1,off . Comparing to the part of the
objective function of (8) concerning Λ and Θ, we see that the two objective function are equal up
to the additive constant tr(M3). This constant is computed using the current EM estimate θ(k), but
does not depend on the optimization variable θ, so it does not affect the optimization.

Let us argue that (11) can be solved by graphical lasso. First we note that the objective function
has the correct functional form when comparing to (1). Secondly, we have T(Λ,Θ) ∈ S++

p if and
only if Θ ∈ S++

p so that the optimization domains are in fact equal. This is realized by using
the Schur complement characterization of positive definiteness, i.e. that T ∈ S++

p if and only if
T11 ∈ S++

p and T/T11 ∈ S++
p . Since T11 = Θ and T/T11 = Ip we conclude the wanted.

Input: Data x0, y1, . . . , yN , initial parameter values θ(0) and λ1, λ2 ≥ 0.
Output: Sparse parameter estimates Λ̂, Θ̂ and ρ̂2.
begin

k ← 0;
repeat

Compute M1, . . . ,M4 by smoothing using data and current estimate θ(k);
Update ρ2 using (10);
Solve the optimization (11) using graphical lasso to obtain T̂;
Update Λ and Θ using estimate T̂ as described in Proposition 7;
k ← k + 1;

until convergence criterion is met;
return (Λ(k),Θ(k), (ρ2)(k));

end
Algorithm 1: EM algorithm for sparse estimation of Λ,Θ and ρ2 in a LGSSM.

We now turn to the optimization (9) regarding the parameters B and Θ. First note that the
optimization problem (8) is convex, which is due to f1 being the (expected) negative log-likelihood
of an exponential family and that the `1-penalty is convex. However, the function f2 is not jointly
convex in B and Θ, but it is bi-convex, i.e. B 7→ f2(B,Θ0) and Θ 7→ f2(B0,Θ) are convex for
fixed Θ0 ∈ S++

p and B0 ∈ Rp×p respectively. See Lee and Liu (2012) for a discussion. Therefore,
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we will perform the optimization regarding B and Θ using an alternating convex search. More
specifically, set B(0)

∗ := B(k) and Θ
(0)
∗ := Θ(k), and then perform the optimizations

Θ
(i+1)
∗ = arg min

Θ∈S++
p

{
f2(B

(i)
∗ ,Θ) + λ2||Θ||1,off

}
, (12)

B
(i+1)
∗ = arg min

B∈Rp×p

{
f2(B,Θ

(i+1)
∗ ) + λ1||B||1,off

}
(13)

for i = 0, 1, . . . until convergence. Then set B(k+1) := B
(∞)
∗ and Θ(k+1) := Θ

(∞)
∗ at convergence.

The following proposition gives a way of solving (12) using existing methods.

Proposition 8 The optimization (12) can be solved with graphical lasso with empirical covariance
matrix S = M1 − 2B

(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T and penalty matrix W = λ2E where E is as before.

Proof We observe that

f2(B
(i)
∗ ,Θ) = tr(ΘM1)− 2tr(ΘB(i)

∗ M2) + tr((B(i)
∗ )TΘB

(i)
∗ M3)− log det Θ

= tr(Θ(M1 − 2B
(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T ))− log det Θ

such that the objective function of (12) matches that of the graphical lasso problem (1) with S =

M1− 2B
(i)
∗ M2 +B

(i)
∗ M3(B

(i)
∗ )T . Note that this is a valid empirical covariance matrix since in fact

S = E

(
1

N

N∑
t=1

(Xt −B(i)
∗ Xt−1)(Xt −B(i)

∗ Xt−1)T | Y1:N = y1:N , θ
(k)

)
,

i.e. S is the conditional expectation of the empirical covariance of the fitted residuals for the regres-
sion from Xt−1 to Xt given data and current EM estimate.

Just as (12) turned out to be solvable by applying graphical lasso, also (13) can be solved by
existing methods, namely the lasso estimator (Tibshirani, 1996). The lasso estimates β ∈ Rp in the
general linear model y = Aβ + ε, where A is a N × p design matrix and ε ∼ N (0, σ2Ip), by

β̂ = arg min
β∈Rp

{
1

2N
(y −Aβ)T (y −Aβ) + ||λ ◦ β||1

}
(14)

with λ ∈ Rp a vector of non-negative tuning parameters.

Proposition 9 The optimization (13) can be solved by applying lasso regression in the following
way. Let β̂ be the result of a lasso regression with design matrix A and response vector y given by

A =
√

2N(M3 ⊗Θ
(i+1)
∗ )1/2 and y =

√
2N(M3 ⊗Θ

(i+1)
∗ )1/2vec(MT

2 M
−1
3 ),

and tuning parameter λ = λ1R where R ∈ Rp2 with R1 = Rp+2 = R2p+3 = · · · = Rp2 = 0 and
all other entries are 1. Here⊗ denotes the Kronecker product, vec denotes vectorization of matrices
and C1/2 denotes the square root of a matrix C. Then B(i+1)

∗ is given by setting vec(B
(i+1)
∗ ) := β̂.
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Proof Writing out the lasso objective function yields

1

2N
(y −Aβ)T (y −Aβ) + λ1||β||1 = const. +

1

2N
βTATAβ − 1

N
yTAβ + λ||β||1, (15)

while writing out the objective function of (13) gives

f2(B,Θ
(i+1)
∗ ) + λ1||B||1,off = const. + tr(BTΘ

(i+1)
∗ BM3)− 2tr(Θ(i+1)

∗ BM2) + λ1||B||1,off .

First note the useful relation between the matrix trace and the kronecker product and vectorization
of matrices, tr(ABCD) = vec(AT )T (DT ⊗ B)vec(C), where A,B,C and D are conformable
matrices. Using this relation we can write

tr(BTΘ
(i)
∗ BM3) = vec(B)T (M3 ⊗Θ

(i+1)
∗ )vec(B)

and also

2tr(Θ(i)
∗ BM2) = 2tr(M−1

3 M2Θ
(i+1)
∗ BM3) = 2vec(MT

2 M
−1
3 )T (M3 ⊗Θ

(i+1)
∗ )vec(B).

LettingA and y be as in the proposition and pluggin into the lasso objective function (15) we recover
the objective function of (13) written in terms of vec and ⊗ as proposed.

Input: Data x0, y1, . . . , yN , initial parameter values θ(0) and λ1, λ2 ≥ 0.
Output: Sparse parameter estimates B̂, Θ̂ and ρ̂2.
begin

k ← 0;
repeat

Compute M1, . . . ,M4 by smoothing using data and current estimate θ(k);
Update ρ2 using (10);
Set B(0)

∗ ← B(k), Θ
(0)
∗ ← B(k) and i← 0;

repeat
Update Θ

(i+1)
∗ using Proposition 8;

Update B(i+1)
∗ using Proposition 9;

i← i+ 1;
until convergence criterion is met;

Set B(k+1) ← B
(∞)
∗ , Θ(k+1) ← Θ

(∞)
∗ and k ← k + 1;

until convergence criterion is met;
return (B(k),Θ(k), (ρ2)(k));

end
Algorithm 2: EM algorithm for sparse estimation of B,Θ and ρ2 in a LGSSM.

6. Simulations

In this section we evaluate convergence of our proposed algorithms by means of simulation. For the
case p = 40 and N = 200 we simulate valid true parameters for the LWF and AMP model such
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that each of the matrices Θ,Λ and B has 75% zero entries, and ρ2 is chosen to be 0.1 times the
average of the diagonal of Σ = Θ−1. We then simulate 100 independent data set from each of the
two LGSSMs and perform estimation using Algorithm 1 for LWF-data and Algorithm 2 for AMP-
data. For tuning parameters λ1, λ2 we choose values ad hoc that do not produce neither completely
sparse nor completely dense solutions. For each variable, say Θ, we track the relative difference
from one EM iteration to the next by computing RDΘ(k) := ||Θ(k)−Θ(k−1)||F ·||Θ(k−1)||−1

F , where
|| · ||F is the Frobenious norm. The results can be seen in Figure 3. We observe that the relative

Θ Λ ρ2 B

A
lgorithm

 1 (LW
F)

A
lgorithm

 2 (A
M

P)

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

−8

−6

−4

−2

0

−8
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0
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(k
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EM Convergence Behaviour

Figure 3: Selected quantiles of log10 RD(k) computed for each variable at each iteration k based on
100 runs of Algorithm 1 and Algorithm 2 on simulated data with fixed true parameters.
The algorithms were terminated when each relative difference dropped below 10−6.

difference decreases approximately linearly on log10-scale. Moreover, the convergence behaviour
is stable over the 100 runs. On average Algorithm 1 took 22.23 iterations before convergence, while
Algorithms 2 needed 22.61 iterations on average before convergence. On average Algorithm 2 took
11.23 times longer than Algorithm 1 before convergence.

7. Conclusion

The purpose of this paper was to give a chain graph model framework for linear Gaussian state space
model and develop algorithms for performing parameter estimation and structure learning from
empirical data. We have proposed two different EM algorithms for performing this task depending
on the chain graph interpretation (LWF or AMP) at hand, and we have justified convergence of the
algorithms empirically through simulation. Next steps include developing methods for choosing the
tuning parameters of the algorithms. This will enable us to consider edge-recovery properties of the
algorithms and, moreover, make the algorithms useful in real world applications of the models.
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