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Abstract
We present a discriminative learning algorithm for Sum-Product Networks (SPNs) (Poon and

Domingos, 2011) based on the Extended Baum-Welch (EBW) algorithm (Baum et al., 1970). We
formulate the conditional data likelihood in the SPN framework as a rational function, and we use
EBW to monotonically maximize it. We derive the algorithm for SPNs with both discrete and con-
tinuous variables. The experiments show that this algorithm performs better than both generative
Expectation-Maximization, and discriminative gradient descent on a wide variety of applications.
We also demonstrate the robustness of the algorithm in the case of missing features by comparing
its performance to Support Vector Machines and Neural Networks.

1. Introduction

Sum-Product networks (SPNs) were first proposed by Poon and Domingos (2011) as a new type of
deep architecture that can be viewed as probabilistic graphical models that are equivalent to arith-
metic circuits (ACs) (Darwiche, 2003). An SPN consists of an acyclic directed graph of sums and
products that computes a non-linear function of its inputs. SPNs can be viewed as deep neural net-
works where non-linearity is achieved by products instead of sigmoid, softmax, hyperbolic tangent
or rectified linear operations. They also have clear semantics in the sense that they encode a joint
distribution over a set of leaf random variables in the form of a hierarchical mixture model. To
better understand this distribution, SPNs can be converted into equivalent traditional probabilistic
graphical models such as Bayesian networks (BNs) and Markov networks (MNs) by treating sum
nodes as hidden variables (Zhao et al., 2015). An important advantage of SPNs over BNs and MNs
is that marginal inference can be done without any approximation in linear time with respect to the
size of the network. Marginal MAP inference is still intractable for SPNs.

Various generative learning algorithms have been designed to estimate the parameters of SPNs,
including Gradient Descent and hard EM (Poon and Domingos, 2011), soft EM (Peharz, 2015),
Bayesian moment matching (Rashwan et al., 2016), collapsed variational Bayes (Zhao et al., 2016),
sequential monomial approximations and the concave-convex procedure (Zhao and Poupart, 2016).
Discriminative training of SPNs by gradient descent was introduced by Gens and Domingos (2012).
Although gradient descent is tractable, convergence can be quite slow since it uses first order ap-
proximations. Adel et al. (2015) introduced a novel discriminative algorithm for SPNs that learns
the structure of the SPN while extracting features that are maximally correlated with the labels. The
algorithm has been shown to perform well compared to generative structure learning algorithms.
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However, it is a batch algorithm that recursively performs singular value decompositions that are
very expensive.

In this paper, we present a novel algorithm to train SPNs discriminatively based on the Ex-
tended Baum-Welch technique. While Expectation Maximization and Baum-Welch are equivalent
in generative training, they cannot be used directly in discriminative training and their extensions
for maximizing conditional likelihoods are not the same. Extended Baum-Welch (for discriminative
training) (Gopalakrishnan et al., 1991) is simpler both conceptually and computationally than condi-
tional EM (for discriminative training) (Jebara and Pentland, 1998, 2000; Salojärvi et al., 2005) and
therefore has become the most popular approach to train HMMs discriminatively. Extended Baum-
Welch provides a general approach to optimize rational functions such as conditional likelihoods. It
also offers faster convergence than gradient descent while guaranteeing monotonic improvement at
each iteration (Normandin, 1991). In order to apply Extended Baum-Welch to discriminative SPNs,
we will formulate the conditional distribution as a rational function. We will develop the algorithm
for SPNs with both multinomial and univariate Gaussian distributions at the leaves.

The paper is structured as follows, Section 2 reviews SPNs, Baum-Welch and Extended Baum-
Welch algorithms. Section 3 introduces discriminative SPNs and explains how to compute the
conditional likelihood for a classification task. Then, update formulas for discriminative gradient
descent and Extended Baum-Welch are derived for SPNs with discrete and continuous variables.
Section 4 presents three sets of experiments that we carried out to evaluate the performance of our
algorithm. Section 5 concludes the paper.

2. Background

2.1 Sum-Product Networks

Consider a set of random variables X. A sum-product network (SPN) (Poon and Domingos, 2011)
is a probabilistic graphical model that can be used to express a joint distribution over those ran-
dom variables. An SPN consists of a rooted acyclic directed graph where the interior nodes are
sums or products and the leaves are tractable distributions over a subset of variables. In this paper,
we will consider leaves that consist of Bernoulli distributions over binary variables and univari-
ate Gaussian distributions over continuous variables. Other works also consider SPNs with leaves
that contain multivariate discrete distributions (Rooshenas and Lowd, 2014), Poisson distributions
(Molina et al., 2017), multivariate Gaussian distributions (Jaini and Poupart, 2016; Hsu et al., 2017)
distributions from the exponential family (Desana and Schnörr, 2016) and piecewise polynomial
distributions (Molina et al., 2018). The edges emanating from sum nodes are labeled with weights
wnm (where n is the source node, m is the destination node, and wnm > 0). An SPN encodes a
function F (x) that takes as input a variable assignment X = x and produces an output at its root.
This function is defined recursively at each node n as follows:

Fn(x) =


P (Xn = xn) n is a leaf∏
m∈children(n) Fm(x) n is a product∑
m∈children(n)wnmFm(x) n is a sum

(1)

Here, Xn = xn denotes the variable assignment restricted to the variables contained in leaf n. If
none of the variables in leaf n are instantiated by X = x then P (Xn = xn) = P (∅) = 1. Note also
that if leaf n contains continuous variables, then P (Xn = xn) should be interpreted as a probability
density function pdf(Xn = xn).
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An SPN can be used to encode a joint distribution over X, which is defined by the graphical
structure and the weights. The probability of a joint assignment X = x is proportional to the value
at the root of the SPN induced by setting the variables according to the joint assignment.

P (X = x) =
Froot(x)

Froot(∅)
(2)

The normalization constant needed to obtain a probability is Froot(∅) where ∅ is the empty variable
assignment, which means that all the variables are marginalized. Eq. 2 can also be used to compute
the marginal probability of a partial assignment Y = y where Y ⊆ X. Conditional probabilities
can also be computed by evaluating two partial assignments:

P (Y = y|Z = z) =
P (Y = y,Z = z)

P (Z = z)
=
Froot(y, z)

Froot(z)
(3)

Since joint, marginal and conditional queries can all be answered by two network evaluations,
exact inference takes linear time with respect to the size of the network. This is a remarkable
property since inference in Bayesian and Markov networks may take exponential time in the size of
the network (i.e., number of nodes, edges and parameters).1

An SPN is said to be valid when it represents a distribution and Eqs 2 and 3 can be used to
answer inference queries correctly (Poon and Domingos, 2011). Decomposability and completeness
are sufficient conditions that ensure validity (Darwiche, 2003; Poon and Domingos, 2011). Below
we define decomposability and completeness in terms of the scope of a node.

Definition 1 (Scope) The scope of a node n is the set of all variables that appear in the leaves of
the sub-SPN rooted at n.

We can compute the scope of each node in a bottom up pass as follows. If n is a leaf with base
distribution P (Xi = xi), then scope(n) = {Xi}, otherwise scope(n) = ∪m∈children(n)scope(m).

Definition 2 (Decomposability) An SPN is decomposable when each product node has children
with disjoint scopes.

Definition 3 (Completeness) An SPN is complete when each sum node has children with identical
scope.

2.2 Extended Baum-Welch Algorithm

The Baum-Welch algorithm was introduced in 1970 to estimate the parameters for HMMs (Baum
et al., 1970). The algorithm was based on the Baum-Eagon inequality (Baum et al., 1967), which
monotonically maximizes polynomials that satisfy certain conditions. The algorithm was then ex-
tended to maximizing rational functions (i.e., ratio of two polynomial functions) (Gopalakrishnan
et al., 1991), which made it very useful in discriminative training settings. Extended Baum-Welch
(EBW) was used to discriminatively train HMMs, GMMs, as well as discrete distributions

1. It is common to measure the complexity of probabilistic graphical models with respect to their tree-width, however
tree-width is not a practical statistic since finding the tree-width of a graph is NP-hard. Instead, we describe the
complexity of inference with respect to the size of the graph (number of nodes, edges and parameters), which is
immediately available.
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(Pernkopf and Wohlmayr, 2010; Klautau et al., 2003; Normandin and Morgera, 1991) In this Sec-
tion, we will review the original Baum-Welch algorithm, then we will explain how it was extended
to work for rational polynomials. Finally, we will show how to use EBW to train SPNs discrimina-
tively in Section 3.

Theorem 4 (Baum et al., 1967) Let S(θ) be a homogeneous degree d polynomial with non-negative
coefficients. Let θ̄ = {θ̄ij} be any point in the domain D :

∑
j θij = 1, ∀i. Let θ̂ = T (θ̄) =

T ({θ̄ij}) be a transformation function such that

θ̂ij =
θ̄ij

∂S
∂θij

(θ̄)∑
j θ̄ij

∂S
∂θij

(θ̄)
, (4)

where
∑

j θ̄ij
∂S
∂θij

(θ̄) 6= 0, ∂S
∂θij

(θ̄) is the value of ∂S
∂θij

at θ̄. Then, S(θ̂) > S(θ̄) unless T (θ̄) = θ̄.

Theorem 4 is applied iteratively to optimize a polynomial S(θ). The transformation T (θ̄) is called
a growth transform since it increases S(θ) monotonically. In discrete HMMs and other discrete
mixture models, the likelihood function is a polynomial in the parameters θ and therefore Eq. 4 can
be used to iteratively improve the parameters in a way that the likelihood monotonically improves.
Interestingly, we obtain the same update formula as for Expectation-Maximization.

The growth transform can be extended to rational functions, Rd(θ) = Num(θ)
Den(θ) , where both the

numerator, Num(θ), and the denominator, Den(θ), are polynomials.

Theorem 5 (Gopalakrishnan et al., 1991) Let Rd(θ) = Num(θ)
Den(θ) be a rational function. Let θ̄ =

{θ̄ij} be any point in the domain D :
∑

j θij = 1, ∀i. Let’s construct polynomials Q(θ) and S(θ)
as follows

Q(θ) = Num(θ)−Rd(θ̄)Den(θ)

S(θ) = Q(θ) + C(θ)
(5)

where C(θ) = c

[∑
i,j θij + 1

]d
, c is chosen such that it cancels all negative coefficients in Q(θ),

and d is the degree of Q(θ). Based on the above construction, Theorem 4 can be applied to S(θ)
such that Rd(θ̂) > Rd(θ̄), unless T (θ̄) = θ̄.

In discriminative learning, the conditional likelihood can typically be expressed as a rational
function R(θ) (i.e., the data likelihood divided by the marginal of the inputs). In the next sec-
tion, we will show how to construct a polynomial S(θ) from the rational function corresponding to
the conditional likelihood of SPNs and then apply the growth function to improve the conditional
likelihood monotonically.

3. Discriminative Sum-Product Networks

Let the training set be X = {x1, ...,xN} and the corresponding labels Y = {y1, ..., yN}, where
xi ∈ {0, 1}M , yi ∈ {0, ..., Y }, N is the number of training examples, M is the feature size, and
Y is the number of class labels. In this section, we first provide some preliminary derivations for
discriminative SPNs, then extend the discriminative gradient descent technique proposed by
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Figure 1: Discriminative SPN architecture.

Gens and Domingos (2012) to continuous SPNs with Gaussian leaves, and finally we describe our
new discriminative learning technique based on Extended Baulm-Welch.

In discriminative training, we maximize the conditional probability distribution P (y|x). To
do that, we use the discriminative SPN architecture shown in Figure 1 where there is a sub-SPN,
SPNy, for each class y , and sub-SPNs can share part of the network. Each sub-SPN models the
likelihood of an observation given the class label, F yroot(x) = p(x|y). Evaluating the whole network
gives us the probability of an observation, p(x) =

∑
y p(y)F yroot(x). According to Bayes rule, the

conditional probability can be computed as follows:

P (y|x) =
p(y)p(x|y)

p(x)
=
p(y)F yroot(x)

Froot(x)
(6)

The label associated with the sub-SPN that maximizes the conditional probability distribution
is selected.

argmaxy=1,...,Y p(y)F yroot(x) (7)

In the training phase, the posterior P (Y|X) is maximized. The posterior is computed in terms
of the prior and the likelihoods as follows

P (Y|X) =
N∏
n=1

P (yn|xn) =
N∏
n=1

P (yn)F ynroot(xn)

Froot(xn)
(8)

Similarly log(P (Y|X)) is computed as follows.

log(P (Y|X)) =

N∑
n=1

log(p(yn)F ynroot(xn))− log
(
Froot(xn)

)
(9)

The above equations show that discriminative training aims at maximizing the likelihood of
the correct class, similar to generative training, while minimizing the likelihoods of the remaining
classes. Estimating P (y) can be done easily and robustly by normalizing the class frequencies in
the training data. Estimating the parameters of P (x|y), which are the weights of F yroot(x), is harder
and usually doesn’t have a closed form solution. Iterative methods are used in this case.

We will use F yj (x) to refer to the value of the sub-SPN associated with class y at node j.
Throughout the derivations, we assume that the SPN is always normalized to ensure that P (x|y) =
F yroot(x). This can be done by normalizing the weights after each iteration.

Finally, we will need to compute the partial derivative of the log likelihood with respect to
an arbitrary parameter θy in the SPN, where superscript y indicates that θy is a parameter in the
sub-SPN F yroot. The derivative of the log likelihood can be obtained as follows:
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∂log(P (Y|X))

∂θy
=

N∑
n=1

p(yn)
∂F yn

root
∂θy (xn)

p(yn)F ynroot(xn)
−

∂Froot
∂θy (xn)

Froot(xn)

=
N∑
n=1

1

F ynroot(xn)

∂F ynroot
∂θy

(xn)− 1

Froot(xn)

∂Froot
∂θy

(xn) (10)

Since we know that ∂F
yn
root
∂θy = 0 when y 6= yn, we can rewrite ∂F yn

root
∂θy as follows:

∂F ynroot
∂θy

= 1[y∈SPNyn ]
∂F yroot
∂θy

(11)

Also, since Froot(xn) =
∑

y p(y)F yroot(xn), we can rewrite ∂Froot
∂θy (xn) as follows:

∂Froot
∂θy

(xn) = p(y)
∂F yroot
∂θy

(xn) (12)

Finally, based on Eq. 11 and 12 we can rewrite Eq. 10 as follows:

∂log(P (Y|X))

∂θy
=

N∑
n=1

∂F yroot
∂θy

(xn)

[
1[y=yn]

F ynroot(xn)
− p(y)

Froot(xn)

]
=

N∑
n=1

∂F yroot
∂θy

(xn)γn (13)

where γn ≥ 0. Throughout the rest of this section, we will use the above equation whenever we
need the gradient of the log of the conditional likelihood.

3.1 Discriminative Learning for SPNs Using Gradient Descent

Gens and Domingos (2012) showed how to train edge weights for SPNs discriminatively by tak-
ing the gradient of the conditional log likelihood log(P (Y|X)). We briefly state how to compute
discriminative gradients in continuous SPNs with Gaussian leaves.

Using Eq. 13 and knowing that ∂F
y
root

∂wy
ij

(x) = F yj (xn)
∂F y

root

∂F y
i

(xn), the following formula can be

used to update each edge weight wyij by taking a small step η in the direction of the gradient.

wyij ← wyij + η
∂log(P (Y|X))

∂wyij
= wyij + η

∑
n

F yj (xn)
∂F yroot
∂F yi

(xn)γyn (14)

Similarly, for leaf univariate Gaussian distributions, µyij and (σ2)yij can be updated by taking a
small step η in the direction of the gradient.

µyij ← µyij + η
∑
n

N y
ij(xnj)

xnj − µyij
(σ2)yij

∂F yroot
∂F yi

(xn)γyn (15)

(σ2)yij ← (σ2)yij + η
∑
n

N y
ij(xnj)

2(σ2)yij

[
(xnj − µyij)2

(σ2)yij
− 1

]
∂F yroot
∂F yi

(xn)γyn (16)
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3.2 Discriminative Learning for SPNs using Extended Baum-Welch

We first derive the Baum-Welch algorithm to maximize the log likelihood for SPNs in a generative
way. Theorem 4 can be applied to SPNs assuming that the network is normalized. In that case,
the polynomial S(θ) is the likelihood of the data, which corresponds to a product of network poly-
nomials, i.e., P (X|Y) =

∏
n Froot(xn). The parameters θ = {wij} of the polynomial satisfy the

condition
∑

j wij = 1 since the sum of the weights for each sum node is one. To apply Theorem 4,
we need to deal with the sum of the log-likelihoods, log(P (X|Y)), instead of the likelihood of the
data, P (X|Y), since log(P (X|Y)) is easier to differentiate. We have

∂log(P (X|Y))

∂wij
=

1

P (X|Y)

∂P (X|Y)

∂wij
(17)

Hence, we can rewrite Eq. 4 as follows.

ŵij =
wijP (X|Y)∂log(P (X|Y))

∂wij∑
j wijP (X|Y)∂log(P (X|Y))

∂wij

=
wij

∂log(P (X|Y))
∂wij∑

j wij
∂log(P (X|Y))

∂wij

(18)

The above formula is the same update formula obtained by Expectation-Maximization and the
Convex-Concave Procedure (CCCP) (Zhao and Poupart, 2016).

In discriminative training for SPNs, applying Expectation-Maximization or CCCP doesn’t lead
to a closed form update formula (Gens and Domingos, 2012). Jebara and Pentland (1998, 2000)
derived a conditional version of EM that turned out to be complicated and computationally de-
manding. Salojärvi et al. (2005) derived a simpler and faster update formula, but it requires second
order derivatives, which is not tractable in large models with many parameters such as SPNs. In
contrast, EBW can be applied to maximize the conditional likelihood with a closed form formula.
Before applying Theorem 5 to SPNs, we will do the same as we did above to work with ∂logRd(θ)

∂θij
.

We start by taking the derivative of S(θ) in Eq. 5 with respect to the parameters θij

∂S(θ)

∂θij
=
∂Num(θ)

∂θij
−Rd(θ̄)

∂Den(θ)

∂θij
+
∂C(θ)

∂θij
(19)

where ∂C(θ)
∂θij

= cd

[∑
i,j θij + 1

]d−1

is also a constant. Since

∂log(Rd(θ))

∂θij
=

1

Num(θ)

∂Num(θ)

∂θij
− 1

Den(θ)

∂Den(θ)

∂θij
=

1

Num(θ)

[
∂Num(θ)

∂θij
−Rd(θ)

∂Den(θ)

∂θij

]
(20)

then we obtain the following equation.

∂S(θ̄)

∂θij
= Num(θ̄)

[
∂logRd
∂θij

(θ̄) +
1

Num(θ̄)

∂C(θ̄)

∂θij

]
= Num(θ̄)

[
∂logRd
∂θij

(θ̄) +D

]
(21)

Substituting Eq. 21 in Equation 4, we get the following update formula

θ̂ij =

θ̄ij

[
∂logRd
∂θij

(θ̄) +D

]
∑

j

[
θ̄ij

∂logRd
∂θij

(θ̄)

]
+D

(22)
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where D = 1
Num(θ̄)

∂C(θ̄)
∂θij

. D controls how different θ̂ij is from θ̄ij . Small values for D allow

θ̂ij to change freely, while large values restrict the magnitude of changes. In practice, D is chosen
such that D < 1

Num(θ̄)

∂C(θ̄)
∂θij

for faster convergence.
To apply EBW to SPNs, we have to define the rational function Rd, which in this case is the

posterior P (Y|X). The parameters θ of the posterior are the weights wyij , the mean µyij , and the
variance (σ2)yij .

For sum nodes, the weights will be updated as follows.

ŵyij =

wyij

[∑
n
F yj (xn)

∂F y
root

∂F y
i

(xn)γyn

]
+Dwyij[ ∑

j∈Children(i)

∑
n
F yj (xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

(23)

Normandin and Morgera (1991) proposed a discrete approximation for univariate Gaussian dis-
tributions that allows us to update µyij and (σ2)yij in the Gaussian leaves of SPNs as follows.

µ̂yij =

[∑
n

(
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

)
xnj

]
+Dµyij[∑

n
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

(24)

ˆ(σ2)
y

ij =

[∑
n

(
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn
)
x2
nj

]
+D

[
(σ2)yij + (µyij)

2

]
[∑

n
N y
ij(xn)

∂F y
root

∂F y
i

(xn)γyn

]
+D

− (µ̂yij)
2 (25)

Constant D plays an important role in the discriminative training part. D tries to preserve the
previous parameters. The larger D is, the stronger will be the influence of the previous parameters
on the current ones. Choosing constant D is not trivial since small values can prevent convergence,
while large values induce slow convergence. A rule of thumb is to start from a small value and to
increase it after each epoch.

4. Experiments

To evaluate Discriminative SPNs using EBW, we carried out three sets of experiments. In the first
experiment, we compared EBW to generative EM (discriminative EM requires second order deriva-
tives (Salojärvi et al., 2005), which is not tractable for SPNs of 1 thousand to 1 million parameters)
and discriminative gradient descent. The second experiment aims to illustrate the advantage of SPNs
over Support Vector Machines (SVMs) and Neural Networks in the case of missing features. In a
third experiment, we trained an SPN on MNIST images using generative EM and discriminative
EBW. We sample images from the resulting SPNs, and we show the effect of using discriminative
training on the model parameters. The implementation was coded in C++, and the code is publicly
available at https://github.com/arashwan/ebw_discriminative_spns.
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Table 1: The accuracies of EBW, generative EM, and discriminative GD on the test data of eight
different datasets.

Dataset Var# Dataset Size Classes# Var Type EBW genEM discGD
Banknote 4 1371 2 Binary 86.13% 83.94% 86.13%
Voice 20 3167 2 Cont 97.15% 96.20% 96.20%
Credit Card 29 284806 2 Cont 99.92% 99.38% 99.92%
Breast Cancer 30 865 2 Cont 96.42% 92.85% 91.07%
Sensorless Drive 48 85508 11 Cont 99.44% 99.36% 55.41%
Fault Detection 70 14354 41 Cont 60.45% 58.67% 58.12%
Activity Recognition 561 10299 6 Cont 90.53% 88.66% 76.45%
MNIST 784 70000 10 Binary 95.07% 93.35% 62.89%

For all experiments, we generated dense SPNs by using a variant of the algorithm proposed in
(Poon and Domingos, 2011). We recursively construct the SPN structure in a top down fashion as
follows. We treat the variables of each problem as a 1D array (or 2D array in the case of MNIST)
based on the order of the features in the data. For each sum node, we construct children product
nodes corresponding to all splits of the scope in two sub-arrays of variables (all vertical and hori-
zontal splits in two 2D arrays in the case of MNIST). We stop when the scope has a single variable,
in which case, a univariate leaf distribution is generated. To control the size of the network, we
randomly skip some partitions.

4.1 EBW versus Other Parameter Learning Algorithms

In this experiment, we used eight different datasets2 that span a wide spectrum of domains. The
number of classes ranges from 2 to 41, and the number of variables ranges from 4 to 784. For the
datasets that don’t have training and testing splits, we use 10% of the data for testing and the rest for
training. While we applied the algorithm on datasets where the variables are binary and continuous,
our implementation can also handle categorical variables.

EBW has one hyper-parameterD. InitializingD to 0.1 and increasing it after each epoch by 0.1
produces the best results. Generative EM doesn’t have any hyper-parameters. For gradient descent,
we found that initializing the learning rate to 1 and decreasing it after each epoch by multiplying by
0.9 produces the best results. During the experiments, we limited the number of epochs to 20.

Table 1 shows that EBW always outperforms genEM. We also observed that discGD converges
quickly to good solutions for small and shallow SPNs, but not deep SPNs, which suggests that it
suffers from the gradient vanishing problem.

We explored the convergence speeds for EBW and discGD on the training data. We ran every
algorithm for 20 epochs. Figure 2 shows the convergence speed and performance for both algo-
rithms. Both algorithms take the same time per epoch. The figure shows that EBW converges faster
to a better solution than discGD. Furthermore, discGD struggles to achieve good results consistently
as we can see in the Activity Recognition plot where it didn’t converge to a solution in 20 epochs
while EBW was able to converge after a few epochs.

2. The datasets are publicly available at archive.ics.uci.edu/ml/ and kaggle.com except fault detection, which is a private
dataset collected by Huawei.
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Figure 2: Accuracies on training data versus number of epochs for EBW and discriminative GD
algorithms. The time per epoch is the same for both algorithms.

4.2 EBW for Problems with Missing Features

Missing features is a problem that commonly happens in wearable devices where sensors can fail
frequently. SPNs can naturally handle missing features by summing out the corresponding unob-
served variables when doing inference. We show the robustness of SPNs trained using EBW in the
absence of some features. We compare the performance of SPNs to SVMs and Neural Networks.

We randomly set 50% of the features for each instance to be missing, SPNs can handle such
missing features by summing/integrating out the leaf distributions. Since SVMs and NNs need
values for all features, we set the missing features to their average.3 For SVMs, a polynomial kernel
was used and the penalty constant was tuned for best performance. For NNs, we limited the number
of parameters to be equal to the number of parameters in SPNs. We used neural networks with two
hidden layers and rectified linear units (ReLU) in each layer. We set the width of each layer such
that the number of parameters for the NNs is the same as the SPNs. We used TensorFlow to build
and train NNs. We set the number of epochs to 20. Table 2 shows that EBW-trained SPNs are
consistently more robust to missing features than both SVMs and NNs.

4.3 Visualizing the Parameters Learned by EBW

This experiment aims at visualizing the parameters learned by both EBW and generative EM by
sampling different images from the learned SPNs. We chose two classes, ’3’ and ’8’, with visual
similarities from the MNIST dataset. We trained an SPN using generative EM and a second SPN

3. It is possible to deal with missing features in kernel methods in a principled way by modifying the loss function to
take into account the uncertainty induced by the missing features, however modeling assumptions are needed and
the optimization problem is changed Pelckmans et al. (2005). Alternatively, one can also deal with missing features
by casting kernel methods as estimation problems in exponential families, but this yields non-convex optimization
problems Smola et al. (2005)
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Table 2: The test accuracies of EBW-trained SPNs, SVMs and NNs on seven datasets.
Algorithm EBW NN SVM
Dataset 0% 50% 0% 50% 0% 50%
Banknote 86.13% 94.90% 86.13% 62.04% 86.13% 54.74%
Voice 97.15% 88.60% 97.46% 88.60% 96.20% 77.53%
Credit Card 99.92% 99.80% 99.87% 99.80% 99.96% 99.73%
Breast Cancer 96.24% 89.28% 94.60% 83.92% 94.64% 87.50%
Sensorless Drive 99.44% 52.03% 96.03% 47.90% 75.50% 12.40%
Fault Detection 60.45% 48.40% 50.01% 46.80% 57.04% 47.09%
Activity Recognition 90.53% 88.59% 93.82% 81.57% 96.23% 61.14%

(a) Sampled images for digits ’3’ and ’8’ from generatively trained SPNs

(b) Sampled images for digits ’3’ and ’8’ from discriminatively trained SPNs

Figure 3: The above samples show the effect of training SPNs discriminatively. The sampled im-
ages for digit ’8’ in the discriminative training case illustrate that the SPN for digit ’8’
was tuned to focus on the parts that discriminate the digit ’8’ from the digit ’3’.

using discriminative EBW. We sampled images from the resulting SPNs to analyze the effect of
discriminative EBW on the learned parameters.

As shown in Figure 3, the sampled images from the generatively trained SPN resemble the ap-
pearance of digit ’3’ and digit ’8’. On the other hand, the sampled images from the discriminatively
trained SPN show the parts of the digits ’3’ and ’8’ that are discriminative. We know that the left
part of digit ’8’ differentiates it from digit ’3’, which is what was learned by the SPN.

5. Conclusion

We described a framework to train SPNs discriminatively using Extended Baum-Welch. We did so
by formulating the conditional likelihood as a rational function and applied Extended Baum-Welch
to maximize this function. We derived the update formulas for cases where the leaf nodes are either
multinomial or univariate normal distributions. The experiments show that EBW outperforms gen-
erative EM and discriminative gradient descent in a wide variety of applications. We demonstrated
the advantage of SPNs for classification tasks when some features are missing. We also illustrated
the effect of learning the parameters of SPNs using EBW.
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